You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasy2.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__4 = 4;
  485. static integer c__1 = 1;
  486. static integer c__16 = 16;
  487. static integer c__0 = 0;
  488. /* > \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLASY2 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, */
  507. /* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) */
  508. /* LOGICAL LTRANL, LTRANR */
  509. /* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 */
  510. /* DOUBLE PRECISION SCALE, XNORM */
  511. /* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), */
  512. /* $ X( LDX, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */
  519. /* > */
  520. /* > op(TL)*X + ISGN*X*op(TR) = SCALE*B, */
  521. /* > */
  522. /* > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
  523. /* > -1. op(T) = T or T**T, where T**T denotes the transpose of T. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] LTRANL */
  528. /* > \verbatim */
  529. /* > LTRANL is LOGICAL */
  530. /* > On entry, LTRANL specifies the op(TL): */
  531. /* > = .FALSE., op(TL) = TL, */
  532. /* > = .TRUE., op(TL) = TL**T. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] LTRANR */
  536. /* > \verbatim */
  537. /* > LTRANR is LOGICAL */
  538. /* > On entry, LTRANR specifies the op(TR): */
  539. /* > = .FALSE., op(TR) = TR, */
  540. /* > = .TRUE., op(TR) = TR**T. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] ISGN */
  544. /* > \verbatim */
  545. /* > ISGN is INTEGER */
  546. /* > On entry, ISGN specifies the sign of the equation */
  547. /* > as described before. ISGN may only be 1 or -1. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] N1 */
  551. /* > \verbatim */
  552. /* > N1 is INTEGER */
  553. /* > On entry, N1 specifies the order of matrix TL. */
  554. /* > N1 may only be 0, 1 or 2. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] N2 */
  558. /* > \verbatim */
  559. /* > N2 is INTEGER */
  560. /* > On entry, N2 specifies the order of matrix TR. */
  561. /* > N2 may only be 0, 1 or 2. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] TL */
  565. /* > \verbatim */
  566. /* > TL is DOUBLE PRECISION array, dimension (LDTL,2) */
  567. /* > On entry, TL contains an N1 by N1 matrix. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDTL */
  571. /* > \verbatim */
  572. /* > LDTL is INTEGER */
  573. /* > The leading dimension of the matrix TL. LDTL >= f2cmax(1,N1). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] TR */
  577. /* > \verbatim */
  578. /* > TR is DOUBLE PRECISION array, dimension (LDTR,2) */
  579. /* > On entry, TR contains an N2 by N2 matrix. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDTR */
  583. /* > \verbatim */
  584. /* > LDTR is INTEGER */
  585. /* > The leading dimension of the matrix TR. LDTR >= f2cmax(1,N2). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] B */
  589. /* > \verbatim */
  590. /* > B is DOUBLE PRECISION array, dimension (LDB,2) */
  591. /* > On entry, the N1 by N2 matrix B contains the right-hand */
  592. /* > side of the equation. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDB */
  596. /* > \verbatim */
  597. /* > LDB is INTEGER */
  598. /* > The leading dimension of the matrix B. LDB >= f2cmax(1,N1). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] SCALE */
  602. /* > \verbatim */
  603. /* > SCALE is DOUBLE PRECISION */
  604. /* > On exit, SCALE contains the scale factor. SCALE is chosen */
  605. /* > less than or equal to 1 to prevent the solution overflowing. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] X */
  609. /* > \verbatim */
  610. /* > X is DOUBLE PRECISION array, dimension (LDX,2) */
  611. /* > On exit, X contains the N1 by N2 solution. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LDX */
  615. /* > \verbatim */
  616. /* > LDX is INTEGER */
  617. /* > The leading dimension of the matrix X. LDX >= f2cmax(1,N1). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] XNORM */
  621. /* > \verbatim */
  622. /* > XNORM is DOUBLE PRECISION */
  623. /* > On exit, XNORM is the infinity-norm of the solution. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] INFO */
  627. /* > \verbatim */
  628. /* > INFO is INTEGER */
  629. /* > On exit, INFO is set to */
  630. /* > 0: successful exit. */
  631. /* > 1: TL and TR have too close eigenvalues, so TL or */
  632. /* > TR is perturbed to get a nonsingular equation. */
  633. /* > NOTE: In the interests of speed, this routine does not */
  634. /* > check the inputs for errors. */
  635. /* > \endverbatim */
  636. /* Authors: */
  637. /* ======== */
  638. /* > \author Univ. of Tennessee */
  639. /* > \author Univ. of California Berkeley */
  640. /* > \author Univ. of Colorado Denver */
  641. /* > \author NAG Ltd. */
  642. /* > \date June 2016 */
  643. /* > \ingroup doubleSYauxiliary */
  644. /* ===================================================================== */
  645. /* Subroutine */ void dlasy2_(logical *ltranl, logical *ltranr, integer *isgn,
  646. integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *
  647. tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale,
  648. doublereal *x, integer *ldx, doublereal *xnorm, integer *info)
  649. {
  650. /* Initialized data */
  651. static integer locu12[4] = { 3,4,1,2 };
  652. static integer locl21[4] = { 2,1,4,3 };
  653. static integer locu22[4] = { 4,3,2,1 };
  654. static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
  655. static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
  656. /* System generated locals */
  657. integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1,
  658. x_offset;
  659. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
  660. /* Local variables */
  661. doublereal btmp[4], smin;
  662. integer ipiv;
  663. doublereal temp;
  664. integer jpiv[4];
  665. doublereal xmax;
  666. integer ipsv, jpsv, i__, j, k;
  667. logical bswap;
  668. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  669. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  670. *, doublereal *, integer *);
  671. logical xswap;
  672. doublereal x2[2], l21, u11, u12;
  673. integer ip, jp;
  674. doublereal u22, t16[16] /* was [4][4] */;
  675. extern doublereal dlamch_(char *);
  676. extern integer idamax_(integer *, doublereal *, integer *);
  677. doublereal smlnum, gam, bet, eps, sgn, tmp[4], tau1;
  678. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  679. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  680. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  681. /* June 2016 */
  682. /* ===================================================================== */
  683. /* Parameter adjustments */
  684. tl_dim1 = *ldtl;
  685. tl_offset = 1 + tl_dim1 * 1;
  686. tl -= tl_offset;
  687. tr_dim1 = *ldtr;
  688. tr_offset = 1 + tr_dim1 * 1;
  689. tr -= tr_offset;
  690. b_dim1 = *ldb;
  691. b_offset = 1 + b_dim1 * 1;
  692. b -= b_offset;
  693. x_dim1 = *ldx;
  694. x_offset = 1 + x_dim1 * 1;
  695. x -= x_offset;
  696. /* Function Body */
  697. /* Do not check the input parameters for errors */
  698. *info = 0;
  699. /* Quick return if possible */
  700. if (*n1 == 0 || *n2 == 0) {
  701. return;
  702. }
  703. /* Set constants to control overflow */
  704. eps = dlamch_("P");
  705. smlnum = dlamch_("S") / eps;
  706. sgn = (doublereal) (*isgn);
  707. k = *n1 + *n1 + *n2 - 2;
  708. switch (k) {
  709. case 1: goto L10;
  710. case 2: goto L20;
  711. case 3: goto L30;
  712. case 4: goto L50;
  713. }
  714. /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */
  715. L10:
  716. tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  717. bet = abs(tau1);
  718. if (bet <= smlnum) {
  719. tau1 = smlnum;
  720. bet = smlnum;
  721. *info = 1;
  722. }
  723. *scale = 1.;
  724. gam = (d__1 = b[b_dim1 + 1], abs(d__1));
  725. if (smlnum * gam > bet) {
  726. *scale = 1. / gam;
  727. }
  728. x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
  729. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
  730. return;
  731. /* 1 by 2: */
  732. /* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] */
  733. /* [TR21 TR22] */
  734. L20:
  735. /* Computing MAX */
  736. /* Computing MAX */
  737. d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
  738. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
  739. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tr[
  740. tr_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  741. tr[(tr_dim1 << 1) + 2], abs(d__5));
  742. d__6 = eps * f2cmax(d__7,d__8);
  743. smin = f2cmax(d__6,smlnum);
  744. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  745. tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  746. if (*ltranr) {
  747. tmp[1] = sgn * tr[tr_dim1 + 2];
  748. tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
  749. } else {
  750. tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
  751. tmp[2] = sgn * tr[tr_dim1 + 2];
  752. }
  753. btmp[0] = b[b_dim1 + 1];
  754. btmp[1] = b[(b_dim1 << 1) + 1];
  755. goto L40;
  756. /* 2 by 1: */
  757. /* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] */
  758. /* [TL21 TL22] [X21] [X21] [B21] */
  759. L30:
  760. /* Computing MAX */
  761. /* Computing MAX */
  762. d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
  763. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
  764. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tl[
  765. tl_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  766. tl[(tl_dim1 << 1) + 2], abs(d__5));
  767. d__6 = eps * f2cmax(d__7,d__8);
  768. smin = f2cmax(d__6,smlnum);
  769. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  770. tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  771. if (*ltranl) {
  772. tmp[1] = tl[(tl_dim1 << 1) + 1];
  773. tmp[2] = tl[tl_dim1 + 2];
  774. } else {
  775. tmp[1] = tl[tl_dim1 + 2];
  776. tmp[2] = tl[(tl_dim1 << 1) + 1];
  777. }
  778. btmp[0] = b[b_dim1 + 1];
  779. btmp[1] = b[b_dim1 + 2];
  780. L40:
  781. /* Solve 2 by 2 system using complete pivoting. */
  782. /* Set pivots less than SMIN to SMIN. */
  783. ipiv = idamax_(&c__4, tmp, &c__1);
  784. u11 = tmp[ipiv - 1];
  785. if (abs(u11) <= smin) {
  786. *info = 1;
  787. u11 = smin;
  788. }
  789. u12 = tmp[locu12[ipiv - 1] - 1];
  790. l21 = tmp[locl21[ipiv - 1] - 1] / u11;
  791. u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
  792. xswap = xswpiv[ipiv - 1];
  793. bswap = bswpiv[ipiv - 1];
  794. if (abs(u22) <= smin) {
  795. *info = 1;
  796. u22 = smin;
  797. }
  798. if (bswap) {
  799. temp = btmp[1];
  800. btmp[1] = btmp[0] - l21 * temp;
  801. btmp[0] = temp;
  802. } else {
  803. btmp[1] -= l21 * btmp[0];
  804. }
  805. *scale = 1.;
  806. if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) >
  807. abs(u11)) {
  808. /* Computing MAX */
  809. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);
  810. *scale = .5 / f2cmax(d__1,d__2);
  811. btmp[0] *= *scale;
  812. btmp[1] *= *scale;
  813. }
  814. x2[1] = btmp[1] / u22;
  815. x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
  816. if (xswap) {
  817. temp = x2[1];
  818. x2[1] = x2[0];
  819. x2[0] = temp;
  820. }
  821. x[x_dim1 + 1] = x2[0];
  822. if (*n1 == 1) {
  823. x[(x_dim1 << 1) + 1] = x2[1];
  824. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1)
  825. + 1], abs(d__2));
  826. } else {
  827. x[x_dim1 + 2] = x2[1];
  828. /* Computing MAX */
  829. d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
  830. , abs(d__2));
  831. *xnorm = f2cmax(d__3,d__4);
  832. }
  833. return;
  834. /* 2 by 2: */
  835. /* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
  836. /* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] */
  837. /* Solve equivalent 4 by 4 system using complete pivoting. */
  838. /* Set pivots less than SMIN to SMIN. */
  839. L50:
  840. /* Computing MAX */
  841. d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 <<
  842. 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tr[
  843. tr_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 =
  844. tr[(tr_dim1 << 1) + 2], abs(d__4));
  845. smin = f2cmax(d__5,d__6);
  846. /* Computing MAX */
  847. d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = f2cmax(d__5,
  848. d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 =
  849. f2cmax(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =
  850. f2cmax(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))
  851. ;
  852. smin = f2cmax(d__5,d__6);
  853. /* Computing MAX */
  854. d__1 = eps * smin;
  855. smin = f2cmax(d__1,smlnum);
  856. btmp[0] = 0.;
  857. dcopy_(&c__16, btmp, &c__0, t16, &c__1);
  858. t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  859. t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  860. t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  861. t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
  862. if (*ltranl) {
  863. t16[4] = tl[tl_dim1 + 2];
  864. t16[1] = tl[(tl_dim1 << 1) + 1];
  865. t16[14] = tl[tl_dim1 + 2];
  866. t16[11] = tl[(tl_dim1 << 1) + 1];
  867. } else {
  868. t16[4] = tl[(tl_dim1 << 1) + 1];
  869. t16[1] = tl[tl_dim1 + 2];
  870. t16[14] = tl[(tl_dim1 << 1) + 1];
  871. t16[11] = tl[tl_dim1 + 2];
  872. }
  873. if (*ltranr) {
  874. t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
  875. t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
  876. t16[2] = sgn * tr[tr_dim1 + 2];
  877. t16[7] = sgn * tr[tr_dim1 + 2];
  878. } else {
  879. t16[8] = sgn * tr[tr_dim1 + 2];
  880. t16[13] = sgn * tr[tr_dim1 + 2];
  881. t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
  882. t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
  883. }
  884. btmp[0] = b[b_dim1 + 1];
  885. btmp[1] = b[b_dim1 + 2];
  886. btmp[2] = b[(b_dim1 << 1) + 1];
  887. btmp[3] = b[(b_dim1 << 1) + 2];
  888. /* Perform elimination */
  889. for (i__ = 1; i__ <= 3; ++i__) {
  890. xmax = 0.;
  891. for (ip = i__; ip <= 4; ++ip) {
  892. for (jp = i__; jp <= 4; ++jp) {
  893. if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {
  894. xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));
  895. ipsv = ip;
  896. jpsv = jp;
  897. }
  898. /* L60: */
  899. }
  900. /* L70: */
  901. }
  902. if (ipsv != i__) {
  903. dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
  904. temp = btmp[i__ - 1];
  905. btmp[i__ - 1] = btmp[ipsv - 1];
  906. btmp[ipsv - 1] = temp;
  907. }
  908. if (jpsv != i__) {
  909. dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4],
  910. &c__1);
  911. }
  912. jpiv[i__ - 1] = jpsv;
  913. if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {
  914. *info = 1;
  915. t16[i__ + (i__ << 2) - 5] = smin;
  916. }
  917. for (j = i__ + 1; j <= 4; ++j) {
  918. t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
  919. btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
  920. for (k = i__ + 1; k <= 4; ++k) {
  921. t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
  922. k << 2) - 5];
  923. /* L80: */
  924. }
  925. /* L90: */
  926. }
  927. /* L100: */
  928. }
  929. if (abs(t16[15]) < smin) {
  930. *info = 1;
  931. t16[15] = smin;
  932. }
  933. *scale = 1.;
  934. if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])
  935. > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) ||
  936. smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {
  937. /* Computing MAX */
  938. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = f2cmax(d__1,d__2), d__2
  939. = abs(btmp[2]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[3]);
  940. *scale = .125 / f2cmax(d__1,d__2);
  941. btmp[0] *= *scale;
  942. btmp[1] *= *scale;
  943. btmp[2] *= *scale;
  944. btmp[3] *= *scale;
  945. }
  946. for (i__ = 1; i__ <= 4; ++i__) {
  947. k = 5 - i__;
  948. temp = 1. / t16[k + (k << 2) - 5];
  949. tmp[k - 1] = btmp[k - 1] * temp;
  950. for (j = k + 1; j <= 4; ++j) {
  951. tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
  952. /* L110: */
  953. }
  954. /* L120: */
  955. }
  956. for (i__ = 1; i__ <= 3; ++i__) {
  957. if (jpiv[4 - i__ - 1] != 4 - i__) {
  958. temp = tmp[4 - i__ - 1];
  959. tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
  960. tmp[jpiv[4 - i__ - 1] - 1] = temp;
  961. }
  962. /* L130: */
  963. }
  964. x[x_dim1 + 1] = tmp[0];
  965. x[x_dim1 + 2] = tmp[1];
  966. x[(x_dim1 << 1) + 1] = tmp[2];
  967. x[(x_dim1 << 1) + 2] = tmp[3];
  968. /* Computing MAX */
  969. d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);
  970. *xnorm = f2cmax(d__1,d__2);
  971. return;
  972. /* End of DLASY2 */
  973. } /* dlasy2_ */