You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgges.c 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. static doublereal c_b38 = 0.;
  488. static doublereal c_b39 = 1.;
  489. /* > \brief <b> DGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  490. or GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGGES + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
  509. /* SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, */
  510. /* LDVSR, WORK, LWORK, BWORK, INFO ) */
  511. /* CHARACTER JOBVSL, JOBVSR, SORT */
  512. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
  513. /* LOGICAL BWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  515. /* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
  516. /* $ VSR( LDVSR, * ), WORK( * ) */
  517. /* LOGICAL SELCTG */
  518. /* EXTERNAL SELCTG */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
  525. /* > the generalized eigenvalues, the generalized real Schur form (S,T), */
  526. /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
  527. /* > VSR). This gives the generalized Schur factorization */
  528. /* > */
  529. /* > (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
  530. /* > */
  531. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  532. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  533. /* > quasi-triangular matrix S and the upper triangular matrix T.The */
  534. /* > leading columns of VSL and VSR then form an orthonormal basis for the */
  535. /* > corresponding left and right eigenspaces (deflating subspaces). */
  536. /* > */
  537. /* > (If only the generalized eigenvalues are needed, use the driver */
  538. /* > DGGEV instead, which is faster.) */
  539. /* > */
  540. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  541. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  542. /* > usually represented as the pair (alpha,beta), as there is a */
  543. /* > reasonable interpretation for beta=0 or both being zero. */
  544. /* > */
  545. /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
  546. /* > upper triangular with non-negative diagonal and S is block upper */
  547. /* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
  548. /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
  549. /* > "standardized" by making the corresponding elements of T have the */
  550. /* > form: */
  551. /* > [ a 0 ] */
  552. /* > [ 0 b ] */
  553. /* > */
  554. /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
  555. /* > complex conjugate pair of generalized eigenvalues. */
  556. /* > */
  557. /* > \endverbatim */
  558. /* Arguments: */
  559. /* ========== */
  560. /* > \param[in] JOBVSL */
  561. /* > \verbatim */
  562. /* > JOBVSL is CHARACTER*1 */
  563. /* > = 'N': do not compute the left Schur vectors; */
  564. /* > = 'V': compute the left Schur vectors. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] JOBVSR */
  568. /* > \verbatim */
  569. /* > JOBVSR is CHARACTER*1 */
  570. /* > = 'N': do not compute the right Schur vectors; */
  571. /* > = 'V': compute the right Schur vectors. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] SORT */
  575. /* > \verbatim */
  576. /* > SORT is CHARACTER*1 */
  577. /* > Specifies whether or not to order the eigenvalues on the */
  578. /* > diagonal of the generalized Schur form. */
  579. /* > = 'N': Eigenvalues are not ordered; */
  580. /* > = 'S': Eigenvalues are ordered (see SELCTG); */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] SELCTG */
  584. /* > \verbatim */
  585. /* > SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments */
  586. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  587. /* > If SORT = 'N', SELCTG is not referenced. */
  588. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  589. /* > to the top left of the Schur form. */
  590. /* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
  591. /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
  592. /* > one of a complex conjugate pair of eigenvalues is selected, */
  593. /* > then both complex eigenvalues are selected. */
  594. /* > */
  595. /* > Note that in the ill-conditioned case, a selected complex */
  596. /* > eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
  597. /* > BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
  598. /* > in this case. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] N */
  602. /* > \verbatim */
  603. /* > N is INTEGER */
  604. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in,out] A */
  608. /* > \verbatim */
  609. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  610. /* > On entry, the first of the pair of matrices. */
  611. /* > On exit, A has been overwritten by its generalized Schur */
  612. /* > form S. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDA */
  616. /* > \verbatim */
  617. /* > LDA is INTEGER */
  618. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] B */
  622. /* > \verbatim */
  623. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  624. /* > On entry, the second of the pair of matrices. */
  625. /* > On exit, B has been overwritten by its generalized Schur */
  626. /* > form T. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in] LDB */
  630. /* > \verbatim */
  631. /* > LDB is INTEGER */
  632. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] SDIM */
  636. /* > \verbatim */
  637. /* > SDIM is INTEGER */
  638. /* > If SORT = 'N', SDIM = 0. */
  639. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  640. /* > for which SELCTG is true. (Complex conjugate pairs for which */
  641. /* > SELCTG is true for either eigenvalue count as 2.) */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] ALPHAR */
  645. /* > \verbatim */
  646. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] ALPHAI */
  650. /* > \verbatim */
  651. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] BETA */
  655. /* > \verbatim */
  656. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  657. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  658. /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, */
  659. /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
  660. /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
  661. /* > the real Schur form of (A,B) were further reduced to */
  662. /* > triangular form using 2-by-2 complex unitary transformations. */
  663. /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
  664. /* > positive, then the j-th and (j+1)-st eigenvalues are a */
  665. /* > complex conjugate pair, with ALPHAI(j+1) negative. */
  666. /* > */
  667. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  668. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  669. /* > Thus, the user should avoid naively computing the ratio. */
  670. /* > However, ALPHAR and ALPHAI will be always less than and */
  671. /* > usually comparable with norm(A) in magnitude, and BETA always */
  672. /* > less than and usually comparable with norm(B). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] VSL */
  676. /* > \verbatim */
  677. /* > VSL is DOUBLE PRECISION array, dimension (LDVSL,N) */
  678. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  679. /* > Not referenced if JOBVSL = 'N'. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[in] LDVSL */
  683. /* > \verbatim */
  684. /* > LDVSL is INTEGER */
  685. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  686. /* > if JOBVSL = 'V', LDVSL >= N. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] VSR */
  690. /* > \verbatim */
  691. /* > VSR is DOUBLE PRECISION array, dimension (LDVSR,N) */
  692. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  693. /* > Not referenced if JOBVSR = 'N'. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[in] LDVSR */
  697. /* > \verbatim */
  698. /* > LDVSR is INTEGER */
  699. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  700. /* > if JOBVSR = 'V', LDVSR >= N. */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[out] WORK */
  704. /* > \verbatim */
  705. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  706. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in] LWORK */
  710. /* > \verbatim */
  711. /* > LWORK is INTEGER */
  712. /* > The dimension of the array WORK. */
  713. /* > If N = 0, LWORK >= 1, else LWORK >= 8*N+16. */
  714. /* > For good performance , LWORK must generally be larger. */
  715. /* > */
  716. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  717. /* > only calculates the optimal size of the WORK array, returns */
  718. /* > this value as the first entry of the WORK array, and no error */
  719. /* > message related to LWORK is issued by XERBLA. */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] BWORK */
  723. /* > \verbatim */
  724. /* > BWORK is LOGICAL array, dimension (N) */
  725. /* > Not referenced if SORT = 'N'. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] INFO */
  729. /* > \verbatim */
  730. /* > INFO is INTEGER */
  731. /* > = 0: successful exit */
  732. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  733. /* > = 1,...,N: */
  734. /* > The QZ iteration failed. (A,B) are not in Schur */
  735. /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
  736. /* > be correct for j=INFO+1,...,N. */
  737. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  738. /* > =N+2: after reordering, roundoff changed values of */
  739. /* > some complex eigenvalues so that leading */
  740. /* > eigenvalues in the Generalized Schur form no */
  741. /* > longer satisfy SELCTG=.TRUE. This could also */
  742. /* > be caused due to scaling. */
  743. /* > =N+3: reordering failed in DTGSEN. */
  744. /* > \endverbatim */
  745. /* Authors: */
  746. /* ======== */
  747. /* > \author Univ. of Tennessee */
  748. /* > \author Univ. of California Berkeley */
  749. /* > \author Univ. of Colorado Denver */
  750. /* > \author NAG Ltd. */
  751. /* > \date December 2016 */
  752. /* > \ingroup doubleGEeigen */
  753. /* ===================================================================== */
  754. /* Subroutine */ void dgges_(char *jobvsl, char *jobvsr, char *sort, L_fp
  755. selctg, integer *n, doublereal *a, integer *lda, doublereal *b,
  756. integer *ldb, integer *sdim, doublereal *alphar, doublereal *alphai,
  757. doublereal *beta, doublereal *vsl, integer *ldvsl, doublereal *vsr,
  758. integer *ldvsr, doublereal *work, integer *lwork, logical *bwork,
  759. integer *info)
  760. {
  761. /* System generated locals */
  762. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  763. vsr_dim1, vsr_offset, i__1, i__2;
  764. doublereal d__1;
  765. /* Local variables */
  766. doublereal anrm, bnrm;
  767. integer idum[1], ierr, itau, iwrk;
  768. doublereal pvsl, pvsr;
  769. integer i__;
  770. extern logical lsame_(char *, char *);
  771. integer ileft, icols;
  772. logical cursl, ilvsl, ilvsr;
  773. integer irows;
  774. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dggbak_(
  775. char *, char *, integer *, integer *, integer *, doublereal *,
  776. doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer
  777. *, doublereal *, integer *, integer *, integer *, doublereal *,
  778. doublereal *, doublereal *, integer *);
  779. logical lst2sl;
  780. extern doublereal dlamch_(char *);
  781. integer ip;
  782. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  783. integer *, doublereal *);
  784. extern /* Subroutine */ void dgghrd_(char *, char *, integer *, integer *,
  785. integer *, doublereal *, integer *, doublereal *, integer *,
  786. doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
  787. *, doublereal *, integer *, integer *, doublereal *, integer *,
  788. integer *);
  789. logical ilascl, ilbscl;
  790. extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
  791. integer *, doublereal *, doublereal *, integer *, integer *),
  792. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  793. doublereal *, integer *);
  794. doublereal safmin;
  795. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  796. doublereal *, doublereal *, doublereal *, integer *);
  797. doublereal safmax;
  798. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  799. doublereal bignum;
  800. extern /* Subroutine */ void dhgeqz_(char *, char *, char *, integer *,
  801. integer *, integer *, doublereal *, integer *, doublereal *,
  802. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  803. integer *, doublereal *, integer *, doublereal *, integer *,
  804. integer *), dtgsen_(integer *, logical *,
  805. logical *, logical *, integer *, doublereal *, integer *,
  806. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  807. doublereal *, integer *, doublereal *, integer *, integer *,
  808. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  809. integer *, integer *, integer *);
  810. integer ijobvl, iright;
  811. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  812. integer *, integer *, ftnlen, ftnlen);
  813. integer ijobvr;
  814. extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
  815. doublereal *, integer *, doublereal *, doublereal *, integer *,
  816. integer *);
  817. doublereal anrmto, bnrmto;
  818. logical lastsl;
  819. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  820. integer *, doublereal *, integer *, doublereal *, doublereal *,
  821. integer *, doublereal *, integer *, integer *);
  822. integer minwrk, maxwrk;
  823. doublereal smlnum;
  824. logical wantst, lquery;
  825. doublereal dif[2];
  826. integer ihi, ilo;
  827. doublereal eps;
  828. /* -- LAPACK driver routine (version 3.7.0) -- */
  829. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  830. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  831. /* December 2016 */
  832. /* ===================================================================== */
  833. /* Decode the input arguments */
  834. /* Parameter adjustments */
  835. a_dim1 = *lda;
  836. a_offset = 1 + a_dim1 * 1;
  837. a -= a_offset;
  838. b_dim1 = *ldb;
  839. b_offset = 1 + b_dim1 * 1;
  840. b -= b_offset;
  841. --alphar;
  842. --alphai;
  843. --beta;
  844. vsl_dim1 = *ldvsl;
  845. vsl_offset = 1 + vsl_dim1 * 1;
  846. vsl -= vsl_offset;
  847. vsr_dim1 = *ldvsr;
  848. vsr_offset = 1 + vsr_dim1 * 1;
  849. vsr -= vsr_offset;
  850. --work;
  851. --bwork;
  852. /* Function Body */
  853. if (lsame_(jobvsl, "N")) {
  854. ijobvl = 1;
  855. ilvsl = FALSE_;
  856. } else if (lsame_(jobvsl, "V")) {
  857. ijobvl = 2;
  858. ilvsl = TRUE_;
  859. } else {
  860. ijobvl = -1;
  861. ilvsl = FALSE_;
  862. }
  863. if (lsame_(jobvsr, "N")) {
  864. ijobvr = 1;
  865. ilvsr = FALSE_;
  866. } else if (lsame_(jobvsr, "V")) {
  867. ijobvr = 2;
  868. ilvsr = TRUE_;
  869. } else {
  870. ijobvr = -1;
  871. ilvsr = FALSE_;
  872. }
  873. wantst = lsame_(sort, "S");
  874. /* Test the input arguments */
  875. *info = 0;
  876. lquery = *lwork == -1;
  877. if (ijobvl <= 0) {
  878. *info = -1;
  879. } else if (ijobvr <= 0) {
  880. *info = -2;
  881. } else if (! wantst && ! lsame_(sort, "N")) {
  882. *info = -3;
  883. } else if (*n < 0) {
  884. *info = -5;
  885. } else if (*lda < f2cmax(1,*n)) {
  886. *info = -7;
  887. } else if (*ldb < f2cmax(1,*n)) {
  888. *info = -9;
  889. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  890. *info = -15;
  891. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  892. *info = -17;
  893. }
  894. /* Compute workspace */
  895. /* (Note: Comments in the code beginning "Workspace:" describe the */
  896. /* minimal amount of workspace needed at that point in the code, */
  897. /* as well as the preferred amount for good performance. */
  898. /* NB refers to the optimal block size for the immediately */
  899. /* following subroutine, as returned by ILAENV.) */
  900. if (*info == 0) {
  901. if (*n > 0) {
  902. /* Computing MAX */
  903. i__1 = *n << 3, i__2 = *n * 6 + 16;
  904. minwrk = f2cmax(i__1,i__2);
  905. maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
  906. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  907. /* Computing MAX */
  908. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DORMQR",
  909. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  910. maxwrk = f2cmax(i__1,i__2);
  911. if (ilvsl) {
  912. /* Computing MAX */
  913. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "DOR"
  914. "GQR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  915. maxwrk = f2cmax(i__1,i__2);
  916. }
  917. } else {
  918. minwrk = 1;
  919. maxwrk = 1;
  920. }
  921. work[1] = (doublereal) maxwrk;
  922. if (*lwork < minwrk && ! lquery) {
  923. *info = -19;
  924. }
  925. }
  926. if (*info != 0) {
  927. i__1 = -(*info);
  928. xerbla_("DGGES ", &i__1, (ftnlen)6);
  929. return;
  930. } else if (lquery) {
  931. return;
  932. }
  933. /* Quick return if possible */
  934. if (*n == 0) {
  935. *sdim = 0;
  936. return;
  937. }
  938. /* Get machine constants */
  939. eps = dlamch_("P");
  940. safmin = dlamch_("S");
  941. safmax = 1. / safmin;
  942. dlabad_(&safmin, &safmax);
  943. smlnum = sqrt(safmin) / eps;
  944. bignum = 1. / smlnum;
  945. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  946. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  947. ilascl = FALSE_;
  948. if (anrm > 0. && anrm < smlnum) {
  949. anrmto = smlnum;
  950. ilascl = TRUE_;
  951. } else if (anrm > bignum) {
  952. anrmto = bignum;
  953. ilascl = TRUE_;
  954. }
  955. if (ilascl) {
  956. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  957. ierr);
  958. }
  959. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  960. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  961. ilbscl = FALSE_;
  962. if (bnrm > 0. && bnrm < smlnum) {
  963. bnrmto = smlnum;
  964. ilbscl = TRUE_;
  965. } else if (bnrm > bignum) {
  966. bnrmto = bignum;
  967. ilbscl = TRUE_;
  968. }
  969. if (ilbscl) {
  970. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  971. ierr);
  972. }
  973. /* Permute the matrix to make it more nearly triangular */
  974. /* (Workspace: need 6*N + 2*N space for storing balancing factors) */
  975. ileft = 1;
  976. iright = *n + 1;
  977. iwrk = iright + *n;
  978. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  979. ileft], &work[iright], &work[iwrk], &ierr);
  980. /* Reduce B to triangular form (QR decomposition of B) */
  981. /* (Workspace: need N, prefer N*NB) */
  982. irows = ihi + 1 - ilo;
  983. icols = *n + 1 - ilo;
  984. itau = iwrk;
  985. iwrk = itau + irows;
  986. i__1 = *lwork + 1 - iwrk;
  987. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  988. iwrk], &i__1, &ierr);
  989. /* Apply the orthogonal transformation to matrix A */
  990. /* (Workspace: need N, prefer N*NB) */
  991. i__1 = *lwork + 1 - iwrk;
  992. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  993. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  994. ierr);
  995. /* Initialize VSL */
  996. /* (Workspace: need N, prefer N*NB) */
  997. if (ilvsl) {
  998. dlaset_("Full", n, n, &c_b38, &c_b39, &vsl[vsl_offset], ldvsl);
  999. if (irows > 1) {
  1000. i__1 = irows - 1;
  1001. i__2 = irows - 1;
  1002. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  1003. ilo + 1 + ilo * vsl_dim1], ldvsl);
  1004. }
  1005. i__1 = *lwork + 1 - iwrk;
  1006. dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  1007. work[itau], &work[iwrk], &i__1, &ierr);
  1008. }
  1009. /* Initialize VSR */
  1010. if (ilvsr) {
  1011. dlaset_("Full", n, n, &c_b38, &c_b39, &vsr[vsr_offset], ldvsr);
  1012. }
  1013. /* Reduce to generalized Hessenberg form */
  1014. /* (Workspace: none needed) */
  1015. dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1016. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
  1017. /* Perform QZ algorithm, computing Schur vectors if desired */
  1018. /* (Workspace: need N) */
  1019. iwrk = itau;
  1020. i__1 = *lwork + 1 - iwrk;
  1021. dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1022. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
  1023. , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
  1024. if (ierr != 0) {
  1025. if (ierr > 0 && ierr <= *n) {
  1026. *info = ierr;
  1027. } else if (ierr > *n && ierr <= *n << 1) {
  1028. *info = ierr - *n;
  1029. } else {
  1030. *info = *n + 1;
  1031. }
  1032. goto L50;
  1033. }
  1034. /* Sort eigenvalues ALPHA/BETA if desired */
  1035. /* (Workspace: need 4*N+16 ) */
  1036. *sdim = 0;
  1037. if (wantst) {
  1038. /* Undo scaling on eigenvalues before SELCTGing */
  1039. if (ilascl) {
  1040. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
  1041. n, &ierr);
  1042. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
  1043. n, &ierr);
  1044. }
  1045. if (ilbscl) {
  1046. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
  1047. &ierr);
  1048. }
  1049. /* Select eigenvalues */
  1050. i__1 = *n;
  1051. for (i__ = 1; i__ <= i__1; ++i__) {
  1052. bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1053. /* L10: */
  1054. }
  1055. i__1 = *lwork - iwrk + 1;
  1056. dtgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1057. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  1058. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
  1059. pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
  1060. if (ierr == 1) {
  1061. *info = *n + 3;
  1062. }
  1063. }
  1064. /* Apply back-permutation to VSL and VSR */
  1065. /* (Workspace: none needed) */
  1066. if (ilvsl) {
  1067. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
  1068. vsl_offset], ldvsl, &ierr);
  1069. }
  1070. if (ilvsr) {
  1071. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
  1072. vsr_offset], ldvsr, &ierr);
  1073. }
  1074. /* Check if unscaling would cause over/underflow, if so, rescale */
  1075. /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
  1076. /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
  1077. if (ilascl) {
  1078. i__1 = *n;
  1079. for (i__ = 1; i__ <= i__1; ++i__) {
  1080. if (alphai[i__] != 0.) {
  1081. if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
  1082. i__] > anrm / anrmto) {
  1083. work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__],
  1084. abs(d__1));
  1085. beta[i__] *= work[1];
  1086. alphar[i__] *= work[1];
  1087. alphai[i__] *= work[1];
  1088. } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
  1089. alphai[i__] > anrm / anrmto) {
  1090. work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
  1091. i__], abs(d__1));
  1092. beta[i__] *= work[1];
  1093. alphar[i__] *= work[1];
  1094. alphai[i__] *= work[1];
  1095. }
  1096. }
  1097. /* L20: */
  1098. }
  1099. }
  1100. if (ilbscl) {
  1101. i__1 = *n;
  1102. for (i__ = 1; i__ <= i__1; ++i__) {
  1103. if (alphai[i__] != 0.) {
  1104. if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
  1105. > bnrm / bnrmto) {
  1106. work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
  1107. d__1));
  1108. beta[i__] *= work[1];
  1109. alphar[i__] *= work[1];
  1110. alphai[i__] *= work[1];
  1111. }
  1112. }
  1113. /* L30: */
  1114. }
  1115. }
  1116. /* Undo scaling */
  1117. if (ilascl) {
  1118. dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1119. ierr);
  1120. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1121. ierr);
  1122. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1123. ierr);
  1124. }
  1125. if (ilbscl) {
  1126. dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1127. ierr);
  1128. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1129. ierr);
  1130. }
  1131. if (wantst) {
  1132. /* Check if reordering is correct */
  1133. lastsl = TRUE_;
  1134. lst2sl = TRUE_;
  1135. *sdim = 0;
  1136. ip = 0;
  1137. i__1 = *n;
  1138. for (i__ = 1; i__ <= i__1; ++i__) {
  1139. cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1140. if (alphai[i__] == 0.) {
  1141. if (cursl) {
  1142. ++(*sdim);
  1143. }
  1144. ip = 0;
  1145. if (cursl && ! lastsl) {
  1146. *info = *n + 2;
  1147. }
  1148. } else {
  1149. if (ip == 1) {
  1150. /* Last eigenvalue of conjugate pair */
  1151. cursl = cursl || lastsl;
  1152. lastsl = cursl;
  1153. if (cursl) {
  1154. *sdim += 2;
  1155. }
  1156. ip = -1;
  1157. if (cursl && ! lst2sl) {
  1158. *info = *n + 2;
  1159. }
  1160. } else {
  1161. /* First eigenvalue of conjugate pair */
  1162. ip = 1;
  1163. }
  1164. }
  1165. lst2sl = lastsl;
  1166. lastsl = cursl;
  1167. /* L40: */
  1168. }
  1169. }
  1170. L50:
  1171. work[1] = (doublereal) maxwrk;
  1172. return;
  1173. /* End of DGGES */
  1174. } /* dgges_ */