You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytrf_aa.c 29 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c_n1 = -1;
  486. static complex c_b15 = {1.f,0.f};
  487. static complex c_b19 = {-1.f,0.f};
  488. /* > \brief \b CSYTRF_AA */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CSYTRF_AA + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrf_
  495. aa.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrf_
  498. aa.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrf_
  501. aa.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER N, LDA, LWORK, INFO */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ), WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CSYTRF_AA computes the factorization of a complex symmetric matrix A */
  517. /* > using the Aasen's algorithm. The form of the factorization is */
  518. /* > */
  519. /* > A = U**T*T*U or A = L*T*L**T */
  520. /* > */
  521. /* > where U (or L) is a product of permutation and unit upper (lower) */
  522. /* > triangular matrices, and T is a complex symmetric tridiagonal matrix. */
  523. /* > */
  524. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > = 'U': Upper triangle of A is stored; */
  532. /* > = 'L': Lower triangle of A is stored. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] N */
  536. /* > \verbatim */
  537. /* > N is INTEGER */
  538. /* > The order of the matrix A. N >= 0. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in,out] A */
  542. /* > \verbatim */
  543. /* > A is COMPLEX array, dimension (LDA,N) */
  544. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  545. /* > N-by-N upper triangular part of A contains the upper */
  546. /* > triangular part of the matrix A, and the strictly lower */
  547. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  548. /* > leading N-by-N lower triangular part of A contains the lower */
  549. /* > triangular part of the matrix A, and the strictly upper */
  550. /* > triangular part of A is not referenced. */
  551. /* > */
  552. /* > On exit, the tridiagonal matrix is stored in the diagonals */
  553. /* > and the subdiagonals of A just below (or above) the diagonals, */
  554. /* > and L is stored below (or above) the subdiaonals, when UPLO */
  555. /* > is 'L' (or 'U'). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] LDA */
  559. /* > \verbatim */
  560. /* > LDA is INTEGER */
  561. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[out] IPIV */
  565. /* > \verbatim */
  566. /* > IPIV is INTEGER array, dimension (N) */
  567. /* > On exit, it contains the details of the interchanges, i.e., */
  568. /* > the row and column k of A were interchanged with the */
  569. /* > row and column IPIV(k). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] WORK */
  573. /* > \verbatim */
  574. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  575. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LWORK */
  579. /* > \verbatim */
  580. /* > LWORK is INTEGER */
  581. /* > The length of WORK. LWORK >= MAX(1,2*N). For optimum performance */
  582. /* > LWORK >= N*(1+NB), where NB is the optimal blocksize. */
  583. /* > */
  584. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  585. /* > only calculates the optimal size of the WORK array, returns */
  586. /* > this value as the first entry of the WORK array, and no error */
  587. /* > message related to LWORK is issued by XERBLA. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] INFO */
  591. /* > \verbatim */
  592. /* > INFO is INTEGER */
  593. /* > = 0: successful exit */
  594. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  595. /* > \endverbatim */
  596. /* Authors: */
  597. /* ======== */
  598. /* > \author Univ. of Tennessee */
  599. /* > \author Univ. of California Berkeley */
  600. /* > \author Univ. of Colorado Denver */
  601. /* > \author NAG Ltd. */
  602. /* > \date November 2017 */
  603. /* > \ingroup complexSYcomputational */
  604. /* ===================================================================== */
  605. /* Subroutine */ void csytrf_aa_(char *uplo, integer *n, complex *a, integer *
  606. lda, integer *ipiv, complex *work, integer *lwork, integer *info)
  607. {
  608. /* System generated locals */
  609. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  610. /* Local variables */
  611. integer j;
  612. complex alpha;
  613. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  614. integer *), cgemm_(char *, char *, integer *, integer *, integer *
  615. , complex *, complex *, integer *, complex *, integer *, complex *
  616. , complex *, integer *);
  617. extern logical lsame_(char *, char *);
  618. extern /* Subroutine */ void clasyf_aa_(char *, integer *, integer *,
  619. integer *, complex *, integer *, integer *, complex *, integer *,
  620. complex *), cgemv_(char *, integer *, integer *, complex *
  621. , complex *, integer *, complex *, integer *, complex *, complex *
  622. , integer *), cswap_(integer *, complex *, integer *,
  623. complex *, integer *), ccopy_(integer *, complex *, integer *,
  624. complex *, integer *);
  625. logical upper;
  626. integer k1, k2, j1, j2, j3, jb, nb, mj, nj;
  627. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  628. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  629. integer *, integer *, ftnlen, ftnlen);
  630. integer lwkopt;
  631. logical lquery;
  632. /* -- LAPACK computational routine (version 3.8.0) -- */
  633. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  634. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  635. /* November 2017 */
  636. /* ===================================================================== */
  637. /* Determine the block size */
  638. /* Parameter adjustments */
  639. a_dim1 = *lda;
  640. a_offset = 1 + a_dim1 * 1;
  641. a -= a_offset;
  642. --ipiv;
  643. --work;
  644. /* Function Body */
  645. nb = ilaenv_(&c__1, "CSYTRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9,
  646. (ftnlen)1);
  647. /* Test the input parameters. */
  648. *info = 0;
  649. upper = lsame_(uplo, "U");
  650. lquery = *lwork == -1;
  651. if (! upper && ! lsame_(uplo, "L")) {
  652. *info = -1;
  653. } else if (*n < 0) {
  654. *info = -2;
  655. } else if (*lda < f2cmax(1,*n)) {
  656. *info = -4;
  657. } else /* if(complicated condition) */ {
  658. /* Computing MAX */
  659. i__1 = 1, i__2 = *n << 1;
  660. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  661. *info = -7;
  662. }
  663. }
  664. if (*info == 0) {
  665. lwkopt = (nb + 1) * *n;
  666. work[1].r = (real) lwkopt, work[1].i = 0.f;
  667. }
  668. if (*info != 0) {
  669. i__1 = -(*info);
  670. xerbla_("CSYTRF_AA", &i__1, (ftnlen)9);
  671. return;
  672. } else if (lquery) {
  673. return;
  674. }
  675. /* Quick return */
  676. if (*n == 0) {
  677. return;
  678. }
  679. ipiv[1] = 1;
  680. if (*n == 1) {
  681. return;
  682. }
  683. /* Adjust block size based on the workspace size */
  684. if (*lwork < (nb + 1) * *n) {
  685. nb = (*lwork - *n) / *n;
  686. }
  687. if (upper) {
  688. /* ..................................................... */
  689. /* Factorize A as U**T*D*U using the upper triangle of A */
  690. /* ..................................................... */
  691. /* Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
  692. ccopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
  693. /* J is the main loop index, increasing from 1 to N in steps of */
  694. /* JB, where JB is the number of columns factorized by CLASYF; */
  695. /* JB is either NB, or N-J+1 for the last block */
  696. j = 0;
  697. L10:
  698. if (j >= *n) {
  699. goto L20;
  700. }
  701. /* each step of the main loop */
  702. /* J is the last column of the previous panel */
  703. /* J1 is the first column of the current panel */
  704. /* K1 identifies if the previous column of the panel has been */
  705. /* explicitly stored, e.g., K1=1 for the first panel, and */
  706. /* K1=0 for the rest */
  707. j1 = j + 1;
  708. /* Computing MIN */
  709. i__1 = *n - j1 + 1;
  710. jb = f2cmin(i__1,nb);
  711. k1 = f2cmax(1,j) - j;
  712. /* Panel factorization */
  713. i__1 = 2 - k1;
  714. i__2 = *n - j;
  715. clasyf_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1],
  716. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  717. ;
  718. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  719. /* Computing MIN */
  720. i__2 = *n, i__3 = j + jb + 1;
  721. i__1 = f2cmin(i__2,i__3);
  722. for (j2 = j + 2; j2 <= i__1; ++j2) {
  723. ipiv[j2] += j;
  724. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  725. i__2 = j1 - k1 - 2;
  726. cswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] *
  727. a_dim1 + 1], &c__1);
  728. }
  729. }
  730. j += jb;
  731. /* Trailing submatrix update, where */
  732. /* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
  733. /* WORK stores the current block of the auxiriarly matrix H */
  734. if (j < *n) {
  735. /* If first panel and JB=1 (NB=1), then nothing to do */
  736. if (j1 > 1 || jb > 1) {
  737. /* Merge rank-1 update with BLAS-3 update */
  738. i__1 = j + (j + 1) * a_dim1;
  739. alpha.r = a[i__1].r, alpha.i = a[i__1].i;
  740. i__1 = j + (j + 1) * a_dim1;
  741. a[i__1].r = 1.f, a[i__1].i = 0.f;
  742. i__1 = *n - j;
  743. ccopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1
  744. - j1 + 1 + jb * *n], &c__1);
  745. i__1 = *n - j;
  746. cscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  747. /* K1 identifies if the previous column of the panel has been */
  748. /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
  749. /* while K1=0 and K2=1 for the rest */
  750. if (j1 > 1) {
  751. /* Not first panel */
  752. k2 = 1;
  753. } else {
  754. /* First panel */
  755. k2 = 0;
  756. /* First update skips the first column */
  757. --jb;
  758. }
  759. i__1 = *n;
  760. i__2 = nb;
  761. for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 +=
  762. i__2) {
  763. /* Computing MIN */
  764. i__3 = nb, i__4 = *n - j2 + 1;
  765. nj = f2cmin(i__3,i__4);
  766. /* Update (J2, J2) diagonal block with CGEMV */
  767. j3 = j2;
  768. for (mj = nj - 1; mj >= 1; --mj) {
  769. i__3 = jb + 1;
  770. cgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
  771. j1 + 1 + k1 * *n], n, &a[j1 - k2 + j3 *
  772. a_dim1], &c__1, &c_b15, &a[j3 + j3 * a_dim1],
  773. lda);
  774. ++j3;
  775. }
  776. /* Update off-diagonal block of J2-th block row with CGEMM */
  777. i__3 = *n - j3 + 1;
  778. i__4 = jb + 1;
  779. cgemm_("Transpose", "Transpose", &nj, &i__3, &i__4, &
  780. c_b19, &a[j1 - k2 + j2 * a_dim1], lda, &work[j3 -
  781. j1 + 1 + k1 * *n], n, &c_b15, &a[j2 + j3 * a_dim1]
  782. , lda);
  783. }
  784. /* Recover T( J, J+1 ) */
  785. i__2 = j + (j + 1) * a_dim1;
  786. a[i__2].r = alpha.r, a[i__2].i = alpha.i;
  787. }
  788. /* WORK(J+1, 1) stores H(J+1, 1) */
  789. i__2 = *n - j;
  790. ccopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
  791. }
  792. goto L10;
  793. } else {
  794. /* ..................................................... */
  795. /* Factorize A as L*D*L**T using the lower triangle of A */
  796. /* ..................................................... */
  797. /* copy first column A(1:N, 1) into H(1:N, 1) */
  798. /* (stored in WORK(1:N)) */
  799. ccopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
  800. /* J is the main loop index, increasing from 1 to N in steps of */
  801. /* JB, where JB is the number of columns factorized by CLASYF; */
  802. /* JB is either NB, or N-J+1 for the last block */
  803. j = 0;
  804. L11:
  805. if (j >= *n) {
  806. goto L20;
  807. }
  808. /* each step of the main loop */
  809. /* J is the last column of the previous panel */
  810. /* J1 is the first column of the current panel */
  811. /* K1 identifies if the previous column of the panel has been */
  812. /* explicitly stored, e.g., K1=1 for the first panel, and */
  813. /* K1=0 for the rest */
  814. j1 = j + 1;
  815. /* Computing MIN */
  816. i__2 = *n - j1 + 1;
  817. jb = f2cmin(i__2,nb);
  818. k1 = f2cmax(1,j) - j;
  819. /* Panel factorization */
  820. i__2 = 2 - k1;
  821. i__1 = *n - j;
  822. clasyf_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1],
  823. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  824. ;
  825. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  826. /* Computing MIN */
  827. i__1 = *n, i__3 = j + jb + 1;
  828. i__2 = f2cmin(i__1,i__3);
  829. for (j2 = j + 2; j2 <= i__2; ++j2) {
  830. ipiv[j2] += j;
  831. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  832. i__1 = j1 - k1 - 2;
  833. cswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1],
  834. lda);
  835. }
  836. }
  837. j += jb;
  838. /* Trailing submatrix update, where */
  839. /* A(J2+1, J1-1) stores L(J2+1, J1) and */
  840. /* WORK(J2+1, 1) stores H(J2+1, 1) */
  841. if (j < *n) {
  842. /* if first panel and JB=1 (NB=1), then nothing to do */
  843. if (j1 > 1 || jb > 1) {
  844. /* Merge rank-1 update with BLAS-3 update */
  845. i__2 = j + 1 + j * a_dim1;
  846. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  847. i__2 = j + 1 + j * a_dim1;
  848. a[i__2].r = 1.f, a[i__2].i = 0.f;
  849. i__2 = *n - j;
  850. ccopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j +
  851. 1 - j1 + 1 + jb * *n], &c__1);
  852. i__2 = *n - j;
  853. cscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  854. /* K1 identifies if the previous column of the panel has been */
  855. /* explicitly stored, e.g., K1=1 and K2= 0 for the first panel, */
  856. /* while K1=0 and K2=1 for the rest */
  857. if (j1 > 1) {
  858. /* Not first panel */
  859. k2 = 1;
  860. } else {
  861. /* First panel */
  862. k2 = 0;
  863. /* First update skips the first column */
  864. --jb;
  865. }
  866. i__2 = *n;
  867. i__1 = nb;
  868. for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 +=
  869. i__1) {
  870. /* Computing MIN */
  871. i__3 = nb, i__4 = *n - j2 + 1;
  872. nj = f2cmin(i__3,i__4);
  873. /* Update (J2, J2) diagonal block with CGEMV */
  874. j3 = j2;
  875. for (mj = nj - 1; mj >= 1; --mj) {
  876. i__3 = jb + 1;
  877. cgemv_("No transpose", &mj, &i__3, &c_b19, &work[j3 -
  878. j1 + 1 + k1 * *n], n, &a[j3 + (j1 - k2) *
  879. a_dim1], lda, &c_b15, &a[j3 + j3 * a_dim1], &
  880. c__1);
  881. ++j3;
  882. }
  883. /* Update off-diagonal block in J2-th block column with CGEMM */
  884. i__3 = *n - j3 + 1;
  885. i__4 = jb + 1;
  886. cgemm_("No transpose", "Transpose", &i__3, &nj, &i__4, &
  887. c_b19, &work[j3 - j1 + 1 + k1 * *n], n, &a[j2 + (
  888. j1 - k2) * a_dim1], lda, &c_b15, &a[j3 + j2 *
  889. a_dim1], lda);
  890. }
  891. /* Recover T( J+1, J ) */
  892. i__1 = j + 1 + j * a_dim1;
  893. a[i__1].r = alpha.r, a[i__1].i = alpha.i;
  894. }
  895. /* WORK(J+1, 1) stores H(J+1, 1) */
  896. i__1 = *n - j;
  897. ccopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
  898. c__1);
  899. }
  900. goto L11;
  901. }
  902. L20:
  903. return;
  904. /* End of CSYTRF_AA */
  905. } /* csytrf_aa__ */