You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatbs.c 49 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b36 = .5;
  488. /* > \brief \b ZLATBS solves a triangular banded system of equations. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZLATBS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatbs.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatbs.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatbs.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X, */
  507. /* SCALE, CNORM, INFO ) */
  508. /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
  509. /* INTEGER INFO, KD, LDAB, N */
  510. /* DOUBLE PRECISION SCALE */
  511. /* DOUBLE PRECISION CNORM( * ) */
  512. /* COMPLEX*16 AB( LDAB, * ), X( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > ZLATBS solves one of the triangular systems */
  519. /* > */
  520. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
  521. /* > */
  522. /* > with scaling to prevent overflow, where A is an upper or lower */
  523. /* > triangular band matrix. Here A**T denotes the transpose of A, x and b */
  524. /* > are n-element vectors, and s is a scaling factor, usually less than */
  525. /* > or equal to 1, chosen so that the components of x will be less than */
  526. /* > the overflow threshold. If the unscaled problem will not cause */
  527. /* > overflow, the Level 2 BLAS routine ZTBSV is called. If the matrix A */
  528. /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
  529. /* > non-trivial solution to A*x = 0 is returned. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] UPLO */
  534. /* > \verbatim */
  535. /* > UPLO is CHARACTER*1 */
  536. /* > Specifies whether the matrix A is upper or lower triangular. */
  537. /* > = 'U': Upper triangular */
  538. /* > = 'L': Lower triangular */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] TRANS */
  542. /* > \verbatim */
  543. /* > TRANS is CHARACTER*1 */
  544. /* > Specifies the operation applied to A. */
  545. /* > = 'N': Solve A * x = s*b (No transpose) */
  546. /* > = 'T': Solve A**T * x = s*b (Transpose) */
  547. /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] DIAG */
  551. /* > \verbatim */
  552. /* > DIAG is CHARACTER*1 */
  553. /* > Specifies whether or not the matrix A is unit triangular. */
  554. /* > = 'N': Non-unit triangular */
  555. /* > = 'U': Unit triangular */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] NORMIN */
  559. /* > \verbatim */
  560. /* > NORMIN is CHARACTER*1 */
  561. /* > Specifies whether CNORM has been set or not. */
  562. /* > = 'Y': CNORM contains the column norms on entry */
  563. /* > = 'N': CNORM is not set on entry. On exit, the norms will */
  564. /* > be computed and stored in CNORM. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] N */
  568. /* > \verbatim */
  569. /* > N is INTEGER */
  570. /* > The order of the matrix A. N >= 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] KD */
  574. /* > \verbatim */
  575. /* > KD is INTEGER */
  576. /* > The number of subdiagonals or superdiagonals in the */
  577. /* > triangular matrix A. KD >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] AB */
  581. /* > \verbatim */
  582. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  583. /* > The upper or lower triangular band matrix A, stored in the */
  584. /* > first KD+1 rows of the array. The j-th column of A is stored */
  585. /* > in the j-th column of the array AB as follows: */
  586. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  587. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDAB */
  591. /* > \verbatim */
  592. /* > LDAB is INTEGER */
  593. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] X */
  597. /* > \verbatim */
  598. /* > X is COMPLEX*16 array, dimension (N) */
  599. /* > On entry, the right hand side b of the triangular system. */
  600. /* > On exit, X is overwritten by the solution vector x. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] SCALE */
  604. /* > \verbatim */
  605. /* > SCALE is DOUBLE PRECISION */
  606. /* > The scaling factor s for the triangular system */
  607. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
  608. /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
  609. /* > the vector x is an exact or approximate solution to A*x = 0. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] CNORM */
  613. /* > \verbatim */
  614. /* > CNORM is DOUBLE PRECISION array, dimension (N) */
  615. /* > */
  616. /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
  617. /* > contains the norm of the off-diagonal part of the j-th column */
  618. /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
  619. /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
  620. /* > must be greater than or equal to the 1-norm. */
  621. /* > */
  622. /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
  623. /* > returns the 1-norm of the offdiagonal part of the j-th column */
  624. /* > of A. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit */
  631. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  632. /* > \endverbatim */
  633. /* Authors: */
  634. /* ======== */
  635. /* > \author Univ. of Tennessee */
  636. /* > \author Univ. of California Berkeley */
  637. /* > \author Univ. of Colorado Denver */
  638. /* > \author NAG Ltd. */
  639. /* > \date November 2017 */
  640. /* > \ingroup complex16OTHERauxiliary */
  641. /* > \par Further Details: */
  642. /* ===================== */
  643. /* > */
  644. /* > \verbatim */
  645. /* > */
  646. /* > A rough bound on x is computed; if that is less than overflow, ZTBSV */
  647. /* > is called, otherwise, specific code is used which checks for possible */
  648. /* > overflow or divide-by-zero at every operation. */
  649. /* > */
  650. /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
  651. /* > if A is lower triangular is */
  652. /* > */
  653. /* > x[1:n] := b[1:n] */
  654. /* > for j = 1, ..., n */
  655. /* > x(j) := x(j) / A(j,j) */
  656. /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
  657. /* > end */
  658. /* > */
  659. /* > Define bounds on the components of x after j iterations of the loop: */
  660. /* > M(j) = bound on x[1:j] */
  661. /* > G(j) = bound on x[j+1:n] */
  662. /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
  663. /* > */
  664. /* > Then for iteration j+1 we have */
  665. /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
  666. /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
  667. /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
  668. /* > */
  669. /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
  670. /* > column j+1 of A, not counting the diagonal. Hence */
  671. /* > */
  672. /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
  673. /* > 1<=i<=j */
  674. /* > and */
  675. /* > */
  676. /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
  677. /* > 1<=i< j */
  678. /* > */
  679. /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the */
  680. /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
  681. /* > f2cmax(underflow, 1/overflow). */
  682. /* > */
  683. /* > The bound on x(j) is also used to determine when a step in the */
  684. /* > columnwise method can be performed without fear of overflow. If */
  685. /* > the computed bound is greater than a large constant, x is scaled to */
  686. /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
  687. /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
  688. /* > */
  689. /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
  690. /* > A**H *x = b. The basic algorithm for A upper triangular is */
  691. /* > */
  692. /* > for j = 1, ..., n */
  693. /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
  694. /* > end */
  695. /* > */
  696. /* > We simultaneously compute two bounds */
  697. /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
  698. /* > M(j) = bound on x(i), 1<=i<=j */
  699. /* > */
  700. /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
  701. /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
  702. /* > Then the bound on x(j) is */
  703. /* > */
  704. /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
  705. /* > */
  706. /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
  707. /* > 1<=i<=j */
  708. /* > */
  709. /* > and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater */
  710. /* > than f2cmax(underflow, 1/overflow). */
  711. /* > \endverbatim */
  712. /* > */
  713. /* ===================================================================== */
  714. /* Subroutine */ int zlatbs_(char *uplo, char *trans, char *diag, char *
  715. normin, integer *n, integer *kd, doublecomplex *ab, integer *ldab,
  716. doublecomplex *x, doublereal *scale, doublereal *cnorm, integer *info)
  717. {
  718. /* System generated locals */
  719. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  720. doublereal d__1, d__2, d__3, d__4;
  721. doublecomplex z__1, z__2, z__3, z__4;
  722. /* Local variables */
  723. integer jinc, jlen;
  724. doublereal xbnd;
  725. integer imax;
  726. doublereal tmax;
  727. doublecomplex tjjs;
  728. doublereal xmax, grow;
  729. integer i__, j;
  730. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  731. integer *);
  732. integer maind;
  733. extern logical lsame_(char *, char *);
  734. doublereal tscal;
  735. doublecomplex uscal;
  736. integer jlast;
  737. doublecomplex csumj;
  738. extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
  739. doublecomplex *, integer *, doublecomplex *, integer *);
  740. logical upper;
  741. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  742. doublecomplex *, integer *, doublecomplex *, integer *);
  743. extern /* Subroutine */ int ztbsv_(char *, char *, char *, integer *,
  744. integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
  745. doublecomplex *, integer *, doublecomplex *, integer *), dlabad_(
  746. doublereal *, doublereal *);
  747. extern doublereal dlamch_(char *);
  748. doublereal xj;
  749. extern integer idamax_(integer *, doublereal *, integer *);
  750. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  751. integer *, doublereal *, doublecomplex *, integer *);
  752. doublereal bignum;
  753. extern integer izamax_(integer *, doublecomplex *, integer *);
  754. extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
  755. doublecomplex *);
  756. logical notran;
  757. integer jfirst;
  758. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  759. doublereal smlnum;
  760. logical nounit;
  761. doublereal rec, tjj;
  762. /* -- LAPACK auxiliary routine (version 3.8.0) -- */
  763. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  764. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  765. /* November 2017 */
  766. /* ===================================================================== */
  767. /* Parameter adjustments */
  768. ab_dim1 = *ldab;
  769. ab_offset = 1 + ab_dim1 * 1;
  770. ab -= ab_offset;
  771. --x;
  772. --cnorm;
  773. /* Function Body */
  774. *info = 0;
  775. upper = lsame_(uplo, "U");
  776. notran = lsame_(trans, "N");
  777. nounit = lsame_(diag, "N");
  778. /* Test the input parameters. */
  779. if (! upper && ! lsame_(uplo, "L")) {
  780. *info = -1;
  781. } else if (! notran && ! lsame_(trans, "T") && !
  782. lsame_(trans, "C")) {
  783. *info = -2;
  784. } else if (! nounit && ! lsame_(diag, "U")) {
  785. *info = -3;
  786. } else if (! lsame_(normin, "Y") && ! lsame_(normin,
  787. "N")) {
  788. *info = -4;
  789. } else if (*n < 0) {
  790. *info = -5;
  791. } else if (*kd < 0) {
  792. *info = -6;
  793. } else if (*ldab < *kd + 1) {
  794. *info = -8;
  795. }
  796. if (*info != 0) {
  797. i__1 = -(*info);
  798. xerbla_("ZLATBS", &i__1, (ftnlen)6);
  799. return 0;
  800. }
  801. /* Quick return if possible */
  802. if (*n == 0) {
  803. return 0;
  804. }
  805. /* Determine machine dependent parameters to control overflow. */
  806. smlnum = dlamch_("Safe minimum");
  807. bignum = 1. / smlnum;
  808. dlabad_(&smlnum, &bignum);
  809. smlnum /= dlamch_("Precision");
  810. bignum = 1. / smlnum;
  811. *scale = 1.;
  812. if (lsame_(normin, "N")) {
  813. /* Compute the 1-norm of each column, not including the diagonal. */
  814. if (upper) {
  815. /* A is upper triangular. */
  816. i__1 = *n;
  817. for (j = 1; j <= i__1; ++j) {
  818. /* Computing MIN */
  819. i__2 = *kd, i__3 = j - 1;
  820. jlen = f2cmin(i__2,i__3);
  821. cnorm[j] = dzasum_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], &
  822. c__1);
  823. /* L10: */
  824. }
  825. } else {
  826. /* A is lower triangular. */
  827. i__1 = *n;
  828. for (j = 1; j <= i__1; ++j) {
  829. /* Computing MIN */
  830. i__2 = *kd, i__3 = *n - j;
  831. jlen = f2cmin(i__2,i__3);
  832. if (jlen > 0) {
  833. cnorm[j] = dzasum_(&jlen, &ab[j * ab_dim1 + 2], &c__1);
  834. } else {
  835. cnorm[j] = 0.;
  836. }
  837. /* L20: */
  838. }
  839. }
  840. }
  841. /* Scale the column norms by TSCAL if the maximum element in CNORM is */
  842. /* greater than BIGNUM/2. */
  843. imax = idamax_(n, &cnorm[1], &c__1);
  844. tmax = cnorm[imax];
  845. if (tmax <= bignum * .5) {
  846. tscal = 1.;
  847. } else {
  848. tscal = .5 / (smlnum * tmax);
  849. dscal_(n, &tscal, &cnorm[1], &c__1);
  850. }
  851. /* Compute a bound on the computed solution vector to see if the */
  852. /* Level 2 BLAS routine ZTBSV can be used. */
  853. xmax = 0.;
  854. i__1 = *n;
  855. for (j = 1; j <= i__1; ++j) {
  856. /* Computing MAX */
  857. i__2 = j;
  858. d__3 = xmax, d__4 = (d__1 = x[i__2].r / 2., abs(d__1)) + (d__2 =
  859. d_imag(&x[j]) / 2., abs(d__2));
  860. xmax = f2cmax(d__3,d__4);
  861. /* L30: */
  862. }
  863. xbnd = xmax;
  864. if (notran) {
  865. /* Compute the growth in A * x = b. */
  866. if (upper) {
  867. jfirst = *n;
  868. jlast = 1;
  869. jinc = -1;
  870. maind = *kd + 1;
  871. } else {
  872. jfirst = 1;
  873. jlast = *n;
  874. jinc = 1;
  875. maind = 1;
  876. }
  877. if (tscal != 1.) {
  878. grow = 0.;
  879. goto L60;
  880. }
  881. if (nounit) {
  882. /* A is non-unit triangular. */
  883. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  884. /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
  885. grow = .5 / f2cmax(xbnd,smlnum);
  886. xbnd = grow;
  887. i__1 = jlast;
  888. i__2 = jinc;
  889. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  890. /* Exit the loop if the growth factor is too small. */
  891. if (grow <= smlnum) {
  892. goto L60;
  893. }
  894. i__3 = maind + j * ab_dim1;
  895. tjjs.r = ab[i__3].r, tjjs.i = ab[i__3].i;
  896. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  897. d__2));
  898. if (tjj >= smlnum) {
  899. /* M(j) = G(j-1) / abs(A(j,j)) */
  900. /* Computing MIN */
  901. d__1 = xbnd, d__2 = f2cmin(1.,tjj) * grow;
  902. xbnd = f2cmin(d__1,d__2);
  903. } else {
  904. /* M(j) could overflow, set XBND to 0. */
  905. xbnd = 0.;
  906. }
  907. if (tjj + cnorm[j] >= smlnum) {
  908. /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
  909. grow *= tjj / (tjj + cnorm[j]);
  910. } else {
  911. /* G(j) could overflow, set GROW to 0. */
  912. grow = 0.;
  913. }
  914. /* L40: */
  915. }
  916. grow = xbnd;
  917. } else {
  918. /* A is unit triangular. */
  919. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  920. /* Computing MIN */
  921. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  922. grow = f2cmin(d__1,d__2);
  923. i__2 = jlast;
  924. i__1 = jinc;
  925. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  926. /* Exit the loop if the growth factor is too small. */
  927. if (grow <= smlnum) {
  928. goto L60;
  929. }
  930. /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
  931. grow *= 1. / (cnorm[j] + 1.);
  932. /* L50: */
  933. }
  934. }
  935. L60:
  936. ;
  937. } else {
  938. /* Compute the growth in A**T * x = b or A**H * x = b. */
  939. if (upper) {
  940. jfirst = 1;
  941. jlast = *n;
  942. jinc = 1;
  943. maind = *kd + 1;
  944. } else {
  945. jfirst = *n;
  946. jlast = 1;
  947. jinc = -1;
  948. maind = 1;
  949. }
  950. if (tscal != 1.) {
  951. grow = 0.;
  952. goto L90;
  953. }
  954. if (nounit) {
  955. /* A is non-unit triangular. */
  956. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  957. /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
  958. grow = .5 / f2cmax(xbnd,smlnum);
  959. xbnd = grow;
  960. i__1 = jlast;
  961. i__2 = jinc;
  962. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  963. /* Exit the loop if the growth factor is too small. */
  964. if (grow <= smlnum) {
  965. goto L90;
  966. }
  967. /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
  968. xj = cnorm[j] + 1.;
  969. /* Computing MIN */
  970. d__1 = grow, d__2 = xbnd / xj;
  971. grow = f2cmin(d__1,d__2);
  972. i__3 = maind + j * ab_dim1;
  973. tjjs.r = ab[i__3].r, tjjs.i = ab[i__3].i;
  974. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  975. d__2));
  976. if (tjj >= smlnum) {
  977. /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
  978. if (xj > tjj) {
  979. xbnd *= tjj / xj;
  980. }
  981. } else {
  982. /* M(j) could overflow, set XBND to 0. */
  983. xbnd = 0.;
  984. }
  985. /* L70: */
  986. }
  987. grow = f2cmin(grow,xbnd);
  988. } else {
  989. /* A is unit triangular. */
  990. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  991. /* Computing MIN */
  992. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  993. grow = f2cmin(d__1,d__2);
  994. i__2 = jlast;
  995. i__1 = jinc;
  996. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  997. /* Exit the loop if the growth factor is too small. */
  998. if (grow <= smlnum) {
  999. goto L90;
  1000. }
  1001. /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
  1002. xj = cnorm[j] + 1.;
  1003. grow /= xj;
  1004. /* L80: */
  1005. }
  1006. }
  1007. L90:
  1008. ;
  1009. }
  1010. if (grow * tscal > smlnum) {
  1011. /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
  1012. /* elements of X is not too small. */
  1013. ztbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &x[1], &c__1);
  1014. } else {
  1015. /* Use a Level 1 BLAS solve, scaling intermediate results. */
  1016. if (xmax > bignum * .5) {
  1017. /* Scale X so that its components are less than or equal to */
  1018. /* BIGNUM in absolute value. */
  1019. *scale = bignum * .5 / xmax;
  1020. zdscal_(n, scale, &x[1], &c__1);
  1021. xmax = bignum;
  1022. } else {
  1023. xmax *= 2.;
  1024. }
  1025. if (notran) {
  1026. /* Solve A * x = b */
  1027. i__1 = jlast;
  1028. i__2 = jinc;
  1029. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1030. /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
  1031. i__3 = j;
  1032. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1033. abs(d__2));
  1034. if (nounit) {
  1035. i__3 = maind + j * ab_dim1;
  1036. z__1.r = tscal * ab[i__3].r, z__1.i = tscal * ab[i__3].i;
  1037. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1038. } else {
  1039. tjjs.r = tscal, tjjs.i = 0.;
  1040. if (tscal == 1.) {
  1041. goto L110;
  1042. }
  1043. }
  1044. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  1045. d__2));
  1046. if (tjj > smlnum) {
  1047. /* abs(A(j,j)) > SMLNUM: */
  1048. if (tjj < 1.) {
  1049. if (xj > tjj * bignum) {
  1050. /* Scale x by 1/b(j). */
  1051. rec = 1. / xj;
  1052. zdscal_(n, &rec, &x[1], &c__1);
  1053. *scale *= rec;
  1054. xmax *= rec;
  1055. }
  1056. }
  1057. i__3 = j;
  1058. zladiv_(&z__1, &x[j], &tjjs);
  1059. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1060. i__3 = j;
  1061. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1062. , abs(d__2));
  1063. } else if (tjj > 0.) {
  1064. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1065. if (xj > tjj * bignum) {
  1066. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
  1067. /* to avoid overflow when dividing by A(j,j). */
  1068. rec = tjj * bignum / xj;
  1069. if (cnorm[j] > 1.) {
  1070. /* Scale by 1/CNORM(j) to avoid overflow when */
  1071. /* multiplying x(j) times column j. */
  1072. rec /= cnorm[j];
  1073. }
  1074. zdscal_(n, &rec, &x[1], &c__1);
  1075. *scale *= rec;
  1076. xmax *= rec;
  1077. }
  1078. i__3 = j;
  1079. zladiv_(&z__1, &x[j], &tjjs);
  1080. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1081. i__3 = j;
  1082. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1083. , abs(d__2));
  1084. } else {
  1085. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1086. /* scale = 0, and compute a solution to A*x = 0. */
  1087. i__3 = *n;
  1088. for (i__ = 1; i__ <= i__3; ++i__) {
  1089. i__4 = i__;
  1090. x[i__4].r = 0., x[i__4].i = 0.;
  1091. /* L100: */
  1092. }
  1093. i__3 = j;
  1094. x[i__3].r = 1., x[i__3].i = 0.;
  1095. xj = 1.;
  1096. *scale = 0.;
  1097. xmax = 0.;
  1098. }
  1099. L110:
  1100. /* Scale x if necessary to avoid overflow when adding a */
  1101. /* multiple of column j of A. */
  1102. if (xj > 1.) {
  1103. rec = 1. / xj;
  1104. if (cnorm[j] > (bignum - xmax) * rec) {
  1105. /* Scale x by 1/(2*abs(x(j))). */
  1106. rec *= .5;
  1107. zdscal_(n, &rec, &x[1], &c__1);
  1108. *scale *= rec;
  1109. }
  1110. } else if (xj * cnorm[j] > bignum - xmax) {
  1111. /* Scale x by 1/2. */
  1112. zdscal_(n, &c_b36, &x[1], &c__1);
  1113. *scale *= .5;
  1114. }
  1115. if (upper) {
  1116. if (j > 1) {
  1117. /* Compute the update */
  1118. /* x(f2cmax(1,j-kd):j-1) := x(f2cmax(1,j-kd):j-1) - */
  1119. /* x(j)* A(f2cmax(1,j-kd):j-1,j) */
  1120. /* Computing MIN */
  1121. i__3 = *kd, i__4 = j - 1;
  1122. jlen = f2cmin(i__3,i__4);
  1123. i__3 = j;
  1124. z__2.r = -x[i__3].r, z__2.i = -x[i__3].i;
  1125. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1126. zaxpy_(&jlen, &z__1, &ab[*kd + 1 - jlen + j * ab_dim1]
  1127. , &c__1, &x[j - jlen], &c__1);
  1128. i__3 = j - 1;
  1129. i__ = izamax_(&i__3, &x[1], &c__1);
  1130. i__3 = i__;
  1131. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
  1132. &x[i__]), abs(d__2));
  1133. }
  1134. } else if (j < *n) {
  1135. /* Compute the update */
  1136. /* x(j+1:f2cmin(j+kd,n)) := x(j+1:f2cmin(j+kd,n)) - */
  1137. /* x(j) * A(j+1:f2cmin(j+kd,n),j) */
  1138. /* Computing MIN */
  1139. i__3 = *kd, i__4 = *n - j;
  1140. jlen = f2cmin(i__3,i__4);
  1141. if (jlen > 0) {
  1142. i__3 = j;
  1143. z__2.r = -x[i__3].r, z__2.i = -x[i__3].i;
  1144. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1145. zaxpy_(&jlen, &z__1, &ab[j * ab_dim1 + 2], &c__1, &x[
  1146. j + 1], &c__1);
  1147. }
  1148. i__3 = *n - j;
  1149. i__ = j + izamax_(&i__3, &x[j + 1], &c__1);
  1150. i__3 = i__;
  1151. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[
  1152. i__]), abs(d__2));
  1153. }
  1154. /* L120: */
  1155. }
  1156. } else if (lsame_(trans, "T")) {
  1157. /* Solve A**T * x = b */
  1158. i__2 = jlast;
  1159. i__1 = jinc;
  1160. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  1161. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1162. /* k<>j */
  1163. i__3 = j;
  1164. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1165. abs(d__2));
  1166. uscal.r = tscal, uscal.i = 0.;
  1167. rec = 1. / f2cmax(xmax,1.);
  1168. if (cnorm[j] > (bignum - xj) * rec) {
  1169. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1170. rec *= .5;
  1171. if (nounit) {
  1172. i__3 = maind + j * ab_dim1;
  1173. z__1.r = tscal * ab[i__3].r, z__1.i = tscal * ab[i__3]
  1174. .i;
  1175. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1176. } else {
  1177. tjjs.r = tscal, tjjs.i = 0.;
  1178. }
  1179. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1180. abs(d__2));
  1181. if (tjj > 1.) {
  1182. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1183. /* Computing MIN */
  1184. d__1 = 1., d__2 = rec * tjj;
  1185. rec = f2cmin(d__1,d__2);
  1186. zladiv_(&z__1, &uscal, &tjjs);
  1187. uscal.r = z__1.r, uscal.i = z__1.i;
  1188. }
  1189. if (rec < 1.) {
  1190. zdscal_(n, &rec, &x[1], &c__1);
  1191. *scale *= rec;
  1192. xmax *= rec;
  1193. }
  1194. }
  1195. csumj.r = 0., csumj.i = 0.;
  1196. if (uscal.r == 1. && uscal.i == 0.) {
  1197. /* If the scaling needed for A in the dot product is 1, */
  1198. /* call ZDOTU to perform the dot product. */
  1199. if (upper) {
  1200. /* Computing MIN */
  1201. i__3 = *kd, i__4 = j - 1;
  1202. jlen = f2cmin(i__3,i__4);
  1203. zdotu_(&z__1, &jlen, &ab[*kd + 1 - jlen + j * ab_dim1]
  1204. , &c__1, &x[j - jlen], &c__1);
  1205. csumj.r = z__1.r, csumj.i = z__1.i;
  1206. } else {
  1207. /* Computing MIN */
  1208. i__3 = *kd, i__4 = *n - j;
  1209. jlen = f2cmin(i__3,i__4);
  1210. if (jlen > 1) {
  1211. zdotu_(&z__1, &jlen, &ab[j * ab_dim1 + 2], &c__1,
  1212. &x[j + 1], &c__1);
  1213. csumj.r = z__1.r, csumj.i = z__1.i;
  1214. }
  1215. }
  1216. } else {
  1217. /* Otherwise, use in-line code for the dot product. */
  1218. if (upper) {
  1219. /* Computing MIN */
  1220. i__3 = *kd, i__4 = j - 1;
  1221. jlen = f2cmin(i__3,i__4);
  1222. i__3 = jlen;
  1223. for (i__ = 1; i__ <= i__3; ++i__) {
  1224. i__4 = *kd + i__ - jlen + j * ab_dim1;
  1225. z__3.r = ab[i__4].r * uscal.r - ab[i__4].i *
  1226. uscal.i, z__3.i = ab[i__4].r * uscal.i +
  1227. ab[i__4].i * uscal.r;
  1228. i__5 = j - jlen - 1 + i__;
  1229. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1230. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1231. i__5].r;
  1232. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1233. z__2.i;
  1234. csumj.r = z__1.r, csumj.i = z__1.i;
  1235. /* L130: */
  1236. }
  1237. } else {
  1238. /* Computing MIN */
  1239. i__3 = *kd, i__4 = *n - j;
  1240. jlen = f2cmin(i__3,i__4);
  1241. i__3 = jlen;
  1242. for (i__ = 1; i__ <= i__3; ++i__) {
  1243. i__4 = i__ + 1 + j * ab_dim1;
  1244. z__3.r = ab[i__4].r * uscal.r - ab[i__4].i *
  1245. uscal.i, z__3.i = ab[i__4].r * uscal.i +
  1246. ab[i__4].i * uscal.r;
  1247. i__5 = j + i__;
  1248. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1249. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1250. i__5].r;
  1251. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1252. z__2.i;
  1253. csumj.r = z__1.r, csumj.i = z__1.i;
  1254. /* L140: */
  1255. }
  1256. }
  1257. }
  1258. z__1.r = tscal, z__1.i = 0.;
  1259. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1260. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1261. /* was not used to scale the dotproduct. */
  1262. i__3 = j;
  1263. i__4 = j;
  1264. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1265. csumj.i;
  1266. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1267. i__3 = j;
  1268. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1269. , abs(d__2));
  1270. if (nounit) {
  1271. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1272. i__3 = maind + j * ab_dim1;
  1273. z__1.r = tscal * ab[i__3].r, z__1.i = tscal * ab[i__3]
  1274. .i;
  1275. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1276. } else {
  1277. tjjs.r = tscal, tjjs.i = 0.;
  1278. if (tscal == 1.) {
  1279. goto L160;
  1280. }
  1281. }
  1282. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1283. abs(d__2));
  1284. if (tjj > smlnum) {
  1285. /* abs(A(j,j)) > SMLNUM: */
  1286. if (tjj < 1.) {
  1287. if (xj > tjj * bignum) {
  1288. /* Scale X by 1/abs(x(j)). */
  1289. rec = 1. / xj;
  1290. zdscal_(n, &rec, &x[1], &c__1);
  1291. *scale *= rec;
  1292. xmax *= rec;
  1293. }
  1294. }
  1295. i__3 = j;
  1296. zladiv_(&z__1, &x[j], &tjjs);
  1297. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1298. } else if (tjj > 0.) {
  1299. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1300. if (xj > tjj * bignum) {
  1301. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1302. rec = tjj * bignum / xj;
  1303. zdscal_(n, &rec, &x[1], &c__1);
  1304. *scale *= rec;
  1305. xmax *= rec;
  1306. }
  1307. i__3 = j;
  1308. zladiv_(&z__1, &x[j], &tjjs);
  1309. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1310. } else {
  1311. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1312. /* scale = 0 and compute a solution to A**T *x = 0. */
  1313. i__3 = *n;
  1314. for (i__ = 1; i__ <= i__3; ++i__) {
  1315. i__4 = i__;
  1316. x[i__4].r = 0., x[i__4].i = 0.;
  1317. /* L150: */
  1318. }
  1319. i__3 = j;
  1320. x[i__3].r = 1., x[i__3].i = 0.;
  1321. *scale = 0.;
  1322. xmax = 0.;
  1323. }
  1324. L160:
  1325. ;
  1326. } else {
  1327. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1328. /* product has already been divided by 1/A(j,j). */
  1329. i__3 = j;
  1330. zladiv_(&z__2, &x[j], &tjjs);
  1331. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1332. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1333. }
  1334. /* Computing MAX */
  1335. i__3 = j;
  1336. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1337. d_imag(&x[j]), abs(d__2));
  1338. xmax = f2cmax(d__3,d__4);
  1339. /* L170: */
  1340. }
  1341. } else {
  1342. /* Solve A**H * x = b */
  1343. i__1 = jlast;
  1344. i__2 = jinc;
  1345. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1346. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1347. /* k<>j */
  1348. i__3 = j;
  1349. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1350. abs(d__2));
  1351. uscal.r = tscal, uscal.i = 0.;
  1352. rec = 1. / f2cmax(xmax,1.);
  1353. if (cnorm[j] > (bignum - xj) * rec) {
  1354. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1355. rec *= .5;
  1356. if (nounit) {
  1357. d_cnjg(&z__2, &ab[maind + j * ab_dim1]);
  1358. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1359. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1360. } else {
  1361. tjjs.r = tscal, tjjs.i = 0.;
  1362. }
  1363. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1364. abs(d__2));
  1365. if (tjj > 1.) {
  1366. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1367. /* Computing MIN */
  1368. d__1 = 1., d__2 = rec * tjj;
  1369. rec = f2cmin(d__1,d__2);
  1370. zladiv_(&z__1, &uscal, &tjjs);
  1371. uscal.r = z__1.r, uscal.i = z__1.i;
  1372. }
  1373. if (rec < 1.) {
  1374. zdscal_(n, &rec, &x[1], &c__1);
  1375. *scale *= rec;
  1376. xmax *= rec;
  1377. }
  1378. }
  1379. csumj.r = 0., csumj.i = 0.;
  1380. if (uscal.r == 1. && uscal.i == 0.) {
  1381. /* If the scaling needed for A in the dot product is 1, */
  1382. /* call ZDOTC to perform the dot product. */
  1383. if (upper) {
  1384. /* Computing MIN */
  1385. i__3 = *kd, i__4 = j - 1;
  1386. jlen = f2cmin(i__3,i__4);
  1387. zdotc_(&z__1, &jlen, &ab[*kd + 1 - jlen + j * ab_dim1]
  1388. , &c__1, &x[j - jlen], &c__1);
  1389. csumj.r = z__1.r, csumj.i = z__1.i;
  1390. } else {
  1391. /* Computing MIN */
  1392. i__3 = *kd, i__4 = *n - j;
  1393. jlen = f2cmin(i__3,i__4);
  1394. if (jlen > 1) {
  1395. zdotc_(&z__1, &jlen, &ab[j * ab_dim1 + 2], &c__1,
  1396. &x[j + 1], &c__1);
  1397. csumj.r = z__1.r, csumj.i = z__1.i;
  1398. }
  1399. }
  1400. } else {
  1401. /* Otherwise, use in-line code for the dot product. */
  1402. if (upper) {
  1403. /* Computing MIN */
  1404. i__3 = *kd, i__4 = j - 1;
  1405. jlen = f2cmin(i__3,i__4);
  1406. i__3 = jlen;
  1407. for (i__ = 1; i__ <= i__3; ++i__) {
  1408. d_cnjg(&z__4, &ab[*kd + i__ - jlen + j * ab_dim1])
  1409. ;
  1410. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1411. z__3.i = z__4.r * uscal.i + z__4.i *
  1412. uscal.r;
  1413. i__4 = j - jlen - 1 + i__;
  1414. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1415. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1416. i__4].r;
  1417. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1418. z__2.i;
  1419. csumj.r = z__1.r, csumj.i = z__1.i;
  1420. /* L180: */
  1421. }
  1422. } else {
  1423. /* Computing MIN */
  1424. i__3 = *kd, i__4 = *n - j;
  1425. jlen = f2cmin(i__3,i__4);
  1426. i__3 = jlen;
  1427. for (i__ = 1; i__ <= i__3; ++i__) {
  1428. d_cnjg(&z__4, &ab[i__ + 1 + j * ab_dim1]);
  1429. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1430. z__3.i = z__4.r * uscal.i + z__4.i *
  1431. uscal.r;
  1432. i__4 = j + i__;
  1433. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1434. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1435. i__4].r;
  1436. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1437. z__2.i;
  1438. csumj.r = z__1.r, csumj.i = z__1.i;
  1439. /* L190: */
  1440. }
  1441. }
  1442. }
  1443. z__1.r = tscal, z__1.i = 0.;
  1444. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1445. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1446. /* was not used to scale the dotproduct. */
  1447. i__3 = j;
  1448. i__4 = j;
  1449. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1450. csumj.i;
  1451. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1452. i__3 = j;
  1453. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1454. , abs(d__2));
  1455. if (nounit) {
  1456. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1457. d_cnjg(&z__2, &ab[maind + j * ab_dim1]);
  1458. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1459. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1460. } else {
  1461. tjjs.r = tscal, tjjs.i = 0.;
  1462. if (tscal == 1.) {
  1463. goto L210;
  1464. }
  1465. }
  1466. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1467. abs(d__2));
  1468. if (tjj > smlnum) {
  1469. /* abs(A(j,j)) > SMLNUM: */
  1470. if (tjj < 1.) {
  1471. if (xj > tjj * bignum) {
  1472. /* Scale X by 1/abs(x(j)). */
  1473. rec = 1. / xj;
  1474. zdscal_(n, &rec, &x[1], &c__1);
  1475. *scale *= rec;
  1476. xmax *= rec;
  1477. }
  1478. }
  1479. i__3 = j;
  1480. zladiv_(&z__1, &x[j], &tjjs);
  1481. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1482. } else if (tjj > 0.) {
  1483. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1484. if (xj > tjj * bignum) {
  1485. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1486. rec = tjj * bignum / xj;
  1487. zdscal_(n, &rec, &x[1], &c__1);
  1488. *scale *= rec;
  1489. xmax *= rec;
  1490. }
  1491. i__3 = j;
  1492. zladiv_(&z__1, &x[j], &tjjs);
  1493. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1494. } else {
  1495. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1496. /* scale = 0 and compute a solution to A**H *x = 0. */
  1497. i__3 = *n;
  1498. for (i__ = 1; i__ <= i__3; ++i__) {
  1499. i__4 = i__;
  1500. x[i__4].r = 0., x[i__4].i = 0.;
  1501. /* L200: */
  1502. }
  1503. i__3 = j;
  1504. x[i__3].r = 1., x[i__3].i = 0.;
  1505. *scale = 0.;
  1506. xmax = 0.;
  1507. }
  1508. L210:
  1509. ;
  1510. } else {
  1511. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1512. /* product has already been divided by 1/A(j,j). */
  1513. i__3 = j;
  1514. zladiv_(&z__2, &x[j], &tjjs);
  1515. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1516. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1517. }
  1518. /* Computing MAX */
  1519. i__3 = j;
  1520. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1521. d_imag(&x[j]), abs(d__2));
  1522. xmax = f2cmax(d__3,d__4);
  1523. /* L220: */
  1524. }
  1525. }
  1526. *scale /= tscal;
  1527. }
  1528. /* Scale the column norms by 1/TSCAL for return. */
  1529. if (tscal != 1.) {
  1530. d__1 = 1. / tscal;
  1531. dscal_(n, &d__1, &cnorm[1], &c__1);
  1532. }
  1533. return 0;
  1534. /* End of ZLATBS */
  1535. } /* zlatbs_ */