You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlahef_rook.c 59 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the b
  489. ounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZLAHEF_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX*16 A( LDA, * ), W( LDW, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZLAHEF_ROOK computes a partial factorization of a complex Hermitian */
  518. /* > matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting */
  519. /* > method. The partial factorization has the form: */
  520. /* > */
  521. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  522. /* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
  523. /* > */
  524. /* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' */
  525. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  526. /* > */
  527. /* > where the order of D is at most NB. The actual order is returned in */
  528. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  529. /* > Note that U**H denotes the conjugate transpose of U. */
  530. /* > */
  531. /* > ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses */
  532. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  533. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > Hermitian matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  570. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  571. /* > n-by-n upper triangular part of A contains the upper */
  572. /* > triangular part of the matrix A, and the strictly lower */
  573. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  574. /* > leading n-by-n lower triangular part of A contains the lower */
  575. /* > triangular part of the matrix A, and the strictly upper */
  576. /* > triangular part of A is not referenced. */
  577. /* > On exit, A contains details of the partial factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D. */
  590. /* > */
  591. /* > If UPLO = 'U': */
  592. /* > Only the last KB elements of IPIV are set. */
  593. /* > */
  594. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  595. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  596. /* > */
  597. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  598. /* > columns k and -IPIV(k) were interchanged and rows and */
  599. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  600. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  601. /* > */
  602. /* > If UPLO = 'L': */
  603. /* > Only the first KB elements of IPIV are set. */
  604. /* > */
  605. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  606. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  607. /* > */
  608. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  609. /* > columns k and -IPIV(k) were interchanged and rows and */
  610. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  611. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] W */
  615. /* > \verbatim */
  616. /* > W is COMPLEX*16 array, dimension (LDW,NB) */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDW */
  620. /* > \verbatim */
  621. /* > LDW is INTEGER */
  622. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  630. /* > has been completed, but the block diagonal matrix D is */
  631. /* > exactly singular. */
  632. /* > \endverbatim */
  633. /* Authors: */
  634. /* ======== */
  635. /* > \author Univ. of Tennessee */
  636. /* > \author Univ. of California Berkeley */
  637. /* > \author Univ. of Colorado Denver */
  638. /* > \author NAG Ltd. */
  639. /* > \date November 2013 */
  640. /* > \ingroup complex16HEcomputational */
  641. /* > \par Contributors: */
  642. /* ================== */
  643. /* > */
  644. /* > \verbatim */
  645. /* > */
  646. /* > November 2013, Igor Kozachenko, */
  647. /* > Computer Science Division, */
  648. /* > University of California, Berkeley */
  649. /* > */
  650. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  651. /* > School of Mathematics, */
  652. /* > University of Manchester */
  653. /* > \endverbatim */
  654. /* ===================================================================== */
  655. /* Subroutine */ int zlahef_rook_(char *uplo, integer *n, integer *nb,
  656. integer *kb, doublecomplex *a, integer *lda, integer *ipiv,
  657. doublecomplex *w, integer *ldw, integer *info)
  658. {
  659. /* System generated locals */
  660. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  661. doublereal d__1, d__2;
  662. doublecomplex z__1, z__2, z__3, z__4, z__5;
  663. /* Local variables */
  664. logical done;
  665. integer imax, jmax, j, k, p;
  666. doublereal t, alpha;
  667. extern logical lsame_(char *, char *);
  668. doublereal dtemp, sfmin;
  669. integer itemp;
  670. extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
  671. integer *, doublecomplex *, doublecomplex *, integer *,
  672. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  673. integer *);
  674. integer kstep;
  675. extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
  676. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  677. integer *, doublecomplex *, doublecomplex *, integer *);
  678. doublereal r1;
  679. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  680. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  681. integer *, doublecomplex *, integer *);
  682. doublecomplex d11, d21, d22;
  683. integer jb, ii, jj, kk;
  684. extern doublereal dlamch_(char *);
  685. integer kp;
  686. doublereal absakk;
  687. integer kw;
  688. extern /* Subroutine */ int zdscal_(integer *, doublereal *,
  689. doublecomplex *, integer *);
  690. doublereal colmax;
  691. extern /* Subroutine */ int zlacgv_(integer *, doublecomplex *, integer *)
  692. ;
  693. extern integer izamax_(integer *, doublecomplex *, integer *);
  694. integer jp1, jp2;
  695. doublereal rowmax;
  696. integer kkw;
  697. /* -- LAPACK computational routine (version 3.5.0) -- */
  698. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  699. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  700. /* November 2013 */
  701. /* ===================================================================== */
  702. /* Parameter adjustments */
  703. a_dim1 = *lda;
  704. a_offset = 1 + a_dim1 * 1;
  705. a -= a_offset;
  706. --ipiv;
  707. w_dim1 = *ldw;
  708. w_offset = 1 + w_dim1 * 1;
  709. w -= w_offset;
  710. /* Function Body */
  711. *info = 0;
  712. /* Initialize ALPHA for use in choosing pivot block size. */
  713. alpha = (sqrt(17.) + 1.) / 8.;
  714. /* Compute machine safe minimum */
  715. sfmin = dlamch_("S");
  716. if (lsame_(uplo, "U")) {
  717. /* Factorize the trailing columns of A using the upper triangle */
  718. /* of A and working backwards, and compute the matrix W = U12*D */
  719. /* for use in updating A11 (note that conjg(W) is actually stored) */
  720. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  721. k = *n;
  722. L10:
  723. /* KW is the column of W which corresponds to column K of A */
  724. kw = *nb + k - *n;
  725. /* Exit from loop */
  726. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  727. goto L30;
  728. }
  729. kstep = 1;
  730. p = k;
  731. /* Copy column K of A to column KW of W and update it */
  732. if (k > 1) {
  733. i__1 = k - 1;
  734. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
  735. c__1);
  736. }
  737. i__1 = k + kw * w_dim1;
  738. i__2 = k + k * a_dim1;
  739. d__1 = a[i__2].r;
  740. w[i__1].r = d__1, w[i__1].i = 0.;
  741. if (k < *n) {
  742. i__1 = *n - k;
  743. z__1.r = -1., z__1.i = 0.;
  744. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * a_dim1 + 1],
  745. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  746. w_dim1 + 1], &c__1);
  747. i__1 = k + kw * w_dim1;
  748. i__2 = k + kw * w_dim1;
  749. d__1 = w[i__2].r;
  750. w[i__1].r = d__1, w[i__1].i = 0.;
  751. }
  752. /* Determine rows and columns to be interchanged and whether */
  753. /* a 1-by-1 or 2-by-2 pivot block will be used */
  754. i__1 = k + kw * w_dim1;
  755. absakk = (d__1 = w[i__1].r, abs(d__1));
  756. /* IMAX is the row-index of the largest off-diagonal element in */
  757. /* column K, and COLMAX is its absolute value. */
  758. /* Determine both COLMAX and IMAX. */
  759. if (k > 1) {
  760. i__1 = k - 1;
  761. imax = izamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  762. i__1 = imax + kw * w_dim1;
  763. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  764. kw * w_dim1]), abs(d__2));
  765. } else {
  766. colmax = 0.;
  767. }
  768. if (f2cmax(absakk,colmax) == 0.) {
  769. /* Column K is zero or underflow: set INFO and continue */
  770. if (*info == 0) {
  771. *info = k;
  772. }
  773. kp = k;
  774. i__1 = k + k * a_dim1;
  775. i__2 = k + kw * w_dim1;
  776. d__1 = w[i__2].r;
  777. a[i__1].r = d__1, a[i__1].i = 0.;
  778. if (k > 1) {
  779. i__1 = k - 1;
  780. zcopy_(&i__1, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1],
  781. &c__1);
  782. }
  783. } else {
  784. /* ============================================================ */
  785. /* BEGIN pivot search */
  786. /* Case(1) */
  787. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  788. /* (used to handle NaN and Inf) */
  789. if (! (absakk < alpha * colmax)) {
  790. /* no interchange, use 1-by-1 pivot block */
  791. kp = k;
  792. } else {
  793. /* Lop until pivot found */
  794. done = FALSE_;
  795. L12:
  796. /* BEGIN pivot search loop body */
  797. /* Copy column IMAX to column KW-1 of W and update it */
  798. if (imax > 1) {
  799. i__1 = imax - 1;
  800. zcopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  801. w_dim1 + 1], &c__1);
  802. }
  803. i__1 = imax + (kw - 1) * w_dim1;
  804. i__2 = imax + imax * a_dim1;
  805. d__1 = a[i__2].r;
  806. w[i__1].r = d__1, w[i__1].i = 0.;
  807. i__1 = k - imax;
  808. zcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  809. 1 + (kw - 1) * w_dim1], &c__1);
  810. i__1 = k - imax;
  811. zlacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
  812. if (k < *n) {
  813. i__1 = *n - k;
  814. z__1.r = -1., z__1.i = 0.;
  815. zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) *
  816. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  817. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  818. i__1 = imax + (kw - 1) * w_dim1;
  819. i__2 = imax + (kw - 1) * w_dim1;
  820. d__1 = w[i__2].r;
  821. w[i__1].r = d__1, w[i__1].i = 0.;
  822. }
  823. /* JMAX is the column-index of the largest off-diagonal */
  824. /* element in row IMAX, and ROWMAX is its absolute value. */
  825. /* Determine both ROWMAX and JMAX. */
  826. if (imax != k) {
  827. i__1 = k - imax;
  828. jmax = imax + izamax_(&i__1, &w[imax + 1 + (kw - 1) *
  829. w_dim1], &c__1);
  830. i__1 = jmax + (kw - 1) * w_dim1;
  831. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  832. w[jmax + (kw - 1) * w_dim1]), abs(d__2));
  833. } else {
  834. rowmax = 0.;
  835. }
  836. if (imax > 1) {
  837. i__1 = imax - 1;
  838. itemp = izamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  839. i__1 = itemp + (kw - 1) * w_dim1;
  840. dtemp = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  841. itemp + (kw - 1) * w_dim1]), abs(d__2));
  842. if (dtemp > rowmax) {
  843. rowmax = dtemp;
  844. jmax = itemp;
  845. }
  846. }
  847. /* Case(2) */
  848. /* Equivalent to testing for */
  849. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  850. /* (used to handle NaN and Inf) */
  851. i__1 = imax + (kw - 1) * w_dim1;
  852. if (! ((d__1 = w[i__1].r, abs(d__1)) < alpha * rowmax)) {
  853. /* interchange rows and columns K and IMAX, */
  854. /* use 1-by-1 pivot block */
  855. kp = imax;
  856. /* copy column KW-1 of W to column KW of W */
  857. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  858. w_dim1 + 1], &c__1);
  859. done = TRUE_;
  860. /* Case(3) */
  861. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  862. /* (used to handle NaN and Inf) */
  863. } else if (p == jmax || rowmax <= colmax) {
  864. /* interchange rows and columns K-1 and IMAX, */
  865. /* use 2-by-2 pivot block */
  866. kp = imax;
  867. kstep = 2;
  868. done = TRUE_;
  869. /* Case(4) */
  870. } else {
  871. /* Pivot not found: set params and repeat */
  872. p = imax;
  873. colmax = rowmax;
  874. imax = jmax;
  875. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  876. zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  877. w_dim1 + 1], &c__1);
  878. }
  879. /* END pivot search loop body */
  880. if (! done) {
  881. goto L12;
  882. }
  883. }
  884. /* END pivot search */
  885. /* ============================================================ */
  886. /* KK is the column of A where pivoting step stopped */
  887. kk = k - kstep + 1;
  888. /* KKW is the column of W which corresponds to column KK of A */
  889. kkw = *nb + kk - *n;
  890. /* Interchange rows and columns P and K. */
  891. /* Updated column P is already stored in column KW of W. */
  892. if (kstep == 2 && p != k) {
  893. /* Copy non-updated column K to column P of submatrix A */
  894. /* at step K. No need to copy element into columns */
  895. /* K and K-1 of A for 2-by-2 pivot, since these columns */
  896. /* will be later overwritten. */
  897. i__1 = p + p * a_dim1;
  898. i__2 = k + k * a_dim1;
  899. d__1 = a[i__2].r;
  900. a[i__1].r = d__1, a[i__1].i = 0.;
  901. i__1 = k - 1 - p;
  902. zcopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  903. a_dim1], lda);
  904. i__1 = k - 1 - p;
  905. zlacgv_(&i__1, &a[p + (p + 1) * a_dim1], lda);
  906. if (p > 1) {
  907. i__1 = p - 1;
  908. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  909. 1], &c__1);
  910. }
  911. /* Interchange rows K and P in the last K+1 to N columns of A */
  912. /* (columns K and K-1 of A for 2-by-2 pivot will be */
  913. /* later overwritten). Interchange rows K and P */
  914. /* in last KKW to NB columns of W. */
  915. if (k < *n) {
  916. i__1 = *n - k;
  917. zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  918. 1) * a_dim1], lda);
  919. }
  920. i__1 = *n - kk + 1;
  921. zswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  922. ldw);
  923. }
  924. /* Interchange rows and columns KP and KK. */
  925. /* Updated column KP is already stored in column KKW of W. */
  926. if (kp != kk) {
  927. /* Copy non-updated column KK to column KP of submatrix A */
  928. /* at step K. No need to copy element into column K */
  929. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  930. /* will be later overwritten. */
  931. i__1 = kp + kp * a_dim1;
  932. i__2 = kk + kk * a_dim1;
  933. d__1 = a[i__2].r;
  934. a[i__1].r = d__1, a[i__1].i = 0.;
  935. i__1 = kk - 1 - kp;
  936. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  937. 1) * a_dim1], lda);
  938. i__1 = kk - 1 - kp;
  939. zlacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
  940. if (kp > 1) {
  941. i__1 = kp - 1;
  942. zcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  943. + 1], &c__1);
  944. }
  945. /* Interchange rows KK and KP in last K+1 to N columns of A */
  946. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  947. /* later overwritten). Interchange rows KK and KP */
  948. /* in last KKW to NB columns of W. */
  949. if (k < *n) {
  950. i__1 = *n - k;
  951. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  952. + 1) * a_dim1], lda);
  953. }
  954. i__1 = *n - kk + 1;
  955. zswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  956. w_dim1], ldw);
  957. }
  958. if (kstep == 1) {
  959. /* 1-by-1 pivot block D(k): column kw of W now holds */
  960. /* W(kw) = U(k)*D(k), */
  961. /* where U(k) is the k-th column of U */
  962. /* (1) Store subdiag. elements of column U(k) */
  963. /* and 1-by-1 block D(k) in column k of A. */
  964. /* (NOTE: Diagonal element U(k,k) is a UNIT element */
  965. /* and not stored) */
  966. /* A(k,k) := D(k,k) = W(k,kw) */
  967. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  968. /* (NOTE: No need to use for Hermitian matrix */
  969. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  970. /* element D(k,k) from W (potentially saves only one load)) */
  971. zcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  972. c__1);
  973. if (k > 1) {
  974. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  975. /* since that was ensured earlier in pivot search: */
  976. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  977. /* Handle division by a small number */
  978. i__1 = k + k * a_dim1;
  979. t = a[i__1].r;
  980. if (abs(t) >= sfmin) {
  981. r1 = 1. / t;
  982. i__1 = k - 1;
  983. zdscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  984. } else {
  985. i__1 = k - 1;
  986. for (ii = 1; ii <= i__1; ++ii) {
  987. i__2 = ii + k * a_dim1;
  988. i__3 = ii + k * a_dim1;
  989. z__1.r = a[i__3].r / t, z__1.i = a[i__3].i / t;
  990. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  991. /* L14: */
  992. }
  993. }
  994. /* (2) Conjugate column W(kw) */
  995. i__1 = k - 1;
  996. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  997. }
  998. } else {
  999. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  1000. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  1001. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1002. /* of U */
  1003. /* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  1004. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  1005. /* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  1006. /* block and not stored) */
  1007. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  1008. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  1009. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  1010. if (k > 2) {
  1011. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1012. /* block D, so that each column contains 1, to reduce the */
  1013. /* number of FLOPS when we multiply panel */
  1014. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1015. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1016. /* ( d21 d22 ) */
  1017. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1018. /* ( (-d21) ( d11 ) ) */
  1019. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1020. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1021. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1022. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1023. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1024. /* ( ( -1 ) ( D22 ) ) */
  1025. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1026. /* ( ( -1 ) ( D22 ) ) */
  1027. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1028. /* ( ( -1 ) ( D22 ) ) */
  1029. /* Handle division by a small number. (NOTE: order of */
  1030. /* operations is important) */
  1031. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1032. /* ( (( -1 ) ) (( D22 ) ) ), */
  1033. /* where D11 = d22/d21, */
  1034. /* D22 = d11/conj(d21), */
  1035. /* D21 = d21, */
  1036. /* T = 1/(D22*D11-1). */
  1037. /* (NOTE: No need to check for division by ZERO, */
  1038. /* since that was ensured earlier in pivot search: */
  1039. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1040. /* since |d21| should be larger than |d11| and |d22|; */
  1041. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1042. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1043. i__1 = k - 1 + kw * w_dim1;
  1044. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1045. d_cnjg(&z__2, &d21);
  1046. z_div(&z__1, &w[k + kw * w_dim1], &z__2);
  1047. d11.r = z__1.r, d11.i = z__1.i;
  1048. z_div(&z__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  1049. d22.r = z__1.r, d22.i = z__1.i;
  1050. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  1051. d22.i + d11.i * d22.r;
  1052. t = 1. / (z__1.r - 1.);
  1053. /* Update elements in columns A(k-1) and A(k) as */
  1054. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  1055. /* of D**(-1) */
  1056. i__1 = k - 2;
  1057. for (j = 1; j <= i__1; ++j) {
  1058. i__2 = j + (k - 1) * a_dim1;
  1059. i__3 = j + (kw - 1) * w_dim1;
  1060. z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1061. z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1062. .r;
  1063. i__4 = j + kw * w_dim1;
  1064. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1065. .i;
  1066. z_div(&z__2, &z__3, &d21);
  1067. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1068. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1069. i__2 = j + k * a_dim1;
  1070. i__3 = j + kw * w_dim1;
  1071. z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1072. z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1073. .r;
  1074. i__4 = j + (kw - 1) * w_dim1;
  1075. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1076. .i;
  1077. d_cnjg(&z__5, &d21);
  1078. z_div(&z__2, &z__3, &z__5);
  1079. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1080. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1081. /* L20: */
  1082. }
  1083. }
  1084. /* Copy D(k) to A */
  1085. i__1 = k - 1 + (k - 1) * a_dim1;
  1086. i__2 = k - 1 + (kw - 1) * w_dim1;
  1087. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1088. i__1 = k - 1 + k * a_dim1;
  1089. i__2 = k - 1 + kw * w_dim1;
  1090. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1091. i__1 = k + k * a_dim1;
  1092. i__2 = k + kw * w_dim1;
  1093. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1094. /* (2) Conjugate columns W(kw) and W(kw-1) */
  1095. i__1 = k - 1;
  1096. zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1097. i__1 = k - 2;
  1098. zlacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  1099. }
  1100. }
  1101. /* Store details of the interchanges in IPIV */
  1102. if (kstep == 1) {
  1103. ipiv[k] = kp;
  1104. } else {
  1105. ipiv[k] = -p;
  1106. ipiv[k - 1] = -kp;
  1107. }
  1108. /* Decrease K and return to the start of the main loop */
  1109. k -= kstep;
  1110. goto L10;
  1111. L30:
  1112. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1113. /* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
  1114. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1115. /* actually stored) */
  1116. i__1 = -(*nb);
  1117. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1118. i__1) {
  1119. /* Computing MIN */
  1120. i__2 = *nb, i__3 = k - j + 1;
  1121. jb = f2cmin(i__2,i__3);
  1122. /* Update the upper triangle of the diagonal block */
  1123. i__2 = j + jb - 1;
  1124. for (jj = j; jj <= i__2; ++jj) {
  1125. i__3 = jj + jj * a_dim1;
  1126. i__4 = jj + jj * a_dim1;
  1127. d__1 = a[i__4].r;
  1128. a[i__3].r = d__1, a[i__3].i = 0.;
  1129. i__3 = jj - j + 1;
  1130. i__4 = *n - k;
  1131. z__1.r = -1., z__1.i = 0.;
  1132. zgemv_("No transpose", &i__3, &i__4, &z__1, &a[j + (k + 1) *
  1133. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1134. &a[j + jj * a_dim1], &c__1);
  1135. i__3 = jj + jj * a_dim1;
  1136. i__4 = jj + jj * a_dim1;
  1137. d__1 = a[i__4].r;
  1138. a[i__3].r = d__1, a[i__3].i = 0.;
  1139. /* L40: */
  1140. }
  1141. /* Update the rectangular superdiagonal block */
  1142. if (j >= 2) {
  1143. i__2 = j - 1;
  1144. i__3 = *n - k;
  1145. z__1.r = -1., z__1.i = 0.;
  1146. zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1,
  1147. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1148. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1149. }
  1150. /* L50: */
  1151. }
  1152. /* Put U12 in standard form by partially undoing the interchanges */
  1153. /* in of rows in columns k+1:n looping backwards from k+1 to n */
  1154. j = k + 1;
  1155. L60:
  1156. /* Undo the interchanges (if any) of rows J and JP2 */
  1157. /* (or J and JP2, and J+1 and JP1) at each step J */
  1158. kstep = 1;
  1159. jp1 = 1;
  1160. /* (Here, J is a diagonal index) */
  1161. jj = j;
  1162. jp2 = ipiv[j];
  1163. if (jp2 < 0) {
  1164. jp2 = -jp2;
  1165. /* (Here, J is a diagonal index) */
  1166. ++j;
  1167. jp1 = -ipiv[j];
  1168. kstep = 2;
  1169. }
  1170. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  1171. /* of the rows to swap back doesn't include diagonal element) */
  1172. ++j;
  1173. if (jp2 != jj && j <= *n) {
  1174. i__1 = *n - j + 1;
  1175. zswap_(&i__1, &a[jp2 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1176. ;
  1177. }
  1178. ++jj;
  1179. if (kstep == 2 && jp1 != jj && j <= *n) {
  1180. i__1 = *n - j + 1;
  1181. zswap_(&i__1, &a[jp1 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1182. ;
  1183. }
  1184. if (j < *n) {
  1185. goto L60;
  1186. }
  1187. /* Set KB to the number of columns factorized */
  1188. *kb = *n - k;
  1189. } else {
  1190. /* Factorize the leading columns of A using the lower triangle */
  1191. /* of A and working forwards, and compute the matrix W = L21*D */
  1192. /* for use in updating A22 (note that conjg(W) is actually stored) */
  1193. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1194. k = 1;
  1195. L70:
  1196. /* Exit from loop */
  1197. if (k >= *nb && *nb < *n || k > *n) {
  1198. goto L90;
  1199. }
  1200. kstep = 1;
  1201. p = k;
  1202. /* Copy column K of A to column K of W and update column K of W */
  1203. i__1 = k + k * w_dim1;
  1204. i__2 = k + k * a_dim1;
  1205. d__1 = a[i__2].r;
  1206. w[i__1].r = d__1, w[i__1].i = 0.;
  1207. if (k < *n) {
  1208. i__1 = *n - k;
  1209. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
  1210. w_dim1], &c__1);
  1211. }
  1212. if (k > 1) {
  1213. i__1 = *n - k + 1;
  1214. i__2 = k - 1;
  1215. z__1.r = -1., z__1.i = 0.;
  1216. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], lda, &
  1217. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1218. i__1 = k + k * w_dim1;
  1219. i__2 = k + k * w_dim1;
  1220. d__1 = w[i__2].r;
  1221. w[i__1].r = d__1, w[i__1].i = 0.;
  1222. }
  1223. /* Determine rows and columns to be interchanged and whether */
  1224. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1225. i__1 = k + k * w_dim1;
  1226. absakk = (d__1 = w[i__1].r, abs(d__1));
  1227. /* IMAX is the row-index of the largest off-diagonal element in */
  1228. /* column K, and COLMAX is its absolute value. */
  1229. /* Determine both COLMAX and IMAX. */
  1230. if (k < *n) {
  1231. i__1 = *n - k;
  1232. imax = k + izamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1233. i__1 = imax + k * w_dim1;
  1234. colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax +
  1235. k * w_dim1]), abs(d__2));
  1236. } else {
  1237. colmax = 0.;
  1238. }
  1239. if (f2cmax(absakk,colmax) == 0.) {
  1240. /* Column K is zero or underflow: set INFO and continue */
  1241. if (*info == 0) {
  1242. *info = k;
  1243. }
  1244. kp = k;
  1245. i__1 = k + k * a_dim1;
  1246. i__2 = k + k * w_dim1;
  1247. d__1 = w[i__2].r;
  1248. a[i__1].r = d__1, a[i__1].i = 0.;
  1249. if (k < *n) {
  1250. i__1 = *n - k;
  1251. zcopy_(&i__1, &w[k + 1 + k * w_dim1], &c__1, &a[k + 1 + k *
  1252. a_dim1], &c__1);
  1253. }
  1254. } else {
  1255. /* ============================================================ */
  1256. /* BEGIN pivot search */
  1257. /* Case(1) */
  1258. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1259. /* (used to handle NaN and Inf) */
  1260. if (! (absakk < alpha * colmax)) {
  1261. /* no interchange, use 1-by-1 pivot block */
  1262. kp = k;
  1263. } else {
  1264. done = FALSE_;
  1265. /* Loop until pivot found */
  1266. L72:
  1267. /* BEGIN pivot search loop body */
  1268. /* Copy column IMAX to column k+1 of W and update it */
  1269. i__1 = imax - k;
  1270. zcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1271. w_dim1], &c__1);
  1272. i__1 = imax - k;
  1273. zlacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
  1274. i__1 = imax + (k + 1) * w_dim1;
  1275. i__2 = imax + imax * a_dim1;
  1276. d__1 = a[i__2].r;
  1277. w[i__1].r = d__1, w[i__1].i = 0.;
  1278. if (imax < *n) {
  1279. i__1 = *n - imax;
  1280. zcopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
  1281. imax + 1 + (k + 1) * w_dim1], &c__1);
  1282. }
  1283. if (k > 1) {
  1284. i__1 = *n - k + 1;
  1285. i__2 = k - 1;
  1286. z__1.r = -1., z__1.i = 0.;
  1287. zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1]
  1288. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1289. 1) * w_dim1], &c__1);
  1290. i__1 = imax + (k + 1) * w_dim1;
  1291. i__2 = imax + (k + 1) * w_dim1;
  1292. d__1 = w[i__2].r;
  1293. w[i__1].r = d__1, w[i__1].i = 0.;
  1294. }
  1295. /* JMAX is the column-index of the largest off-diagonal */
  1296. /* element in row IMAX, and ROWMAX is its absolute value. */
  1297. /* Determine both ROWMAX and JMAX. */
  1298. if (imax != k) {
  1299. i__1 = imax - k;
  1300. jmax = k - 1 + izamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1301. c__1);
  1302. i__1 = jmax + (k + 1) * w_dim1;
  1303. rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1304. w[jmax + (k + 1) * w_dim1]), abs(d__2));
  1305. } else {
  1306. rowmax = 0.;
  1307. }
  1308. if (imax < *n) {
  1309. i__1 = *n - imax;
  1310. itemp = imax + izamax_(&i__1, &w[imax + 1 + (k + 1) *
  1311. w_dim1], &c__1);
  1312. i__1 = itemp + (k + 1) * w_dim1;
  1313. dtemp = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[
  1314. itemp + (k + 1) * w_dim1]), abs(d__2));
  1315. if (dtemp > rowmax) {
  1316. rowmax = dtemp;
  1317. jmax = itemp;
  1318. }
  1319. }
  1320. /* Case(2) */
  1321. /* Equivalent to testing for */
  1322. /* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX */
  1323. /* (used to handle NaN and Inf) */
  1324. i__1 = imax + (k + 1) * w_dim1;
  1325. if (! ((d__1 = w[i__1].r, abs(d__1)) < alpha * rowmax)) {
  1326. /* interchange rows and columns K and IMAX, */
  1327. /* use 1-by-1 pivot block */
  1328. kp = imax;
  1329. /* copy column K+1 of W to column K of W */
  1330. i__1 = *n - k + 1;
  1331. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1332. w_dim1], &c__1);
  1333. done = TRUE_;
  1334. /* Case(3) */
  1335. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1336. /* (used to handle NaN and Inf) */
  1337. } else if (p == jmax || rowmax <= colmax) {
  1338. /* interchange rows and columns K+1 and IMAX, */
  1339. /* use 2-by-2 pivot block */
  1340. kp = imax;
  1341. kstep = 2;
  1342. done = TRUE_;
  1343. /* Case(4) */
  1344. } else {
  1345. /* Pivot not found: set params and repeat */
  1346. p = imax;
  1347. colmax = rowmax;
  1348. imax = jmax;
  1349. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1350. i__1 = *n - k + 1;
  1351. zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1352. w_dim1], &c__1);
  1353. }
  1354. /* End pivot search loop body */
  1355. if (! done) {
  1356. goto L72;
  1357. }
  1358. }
  1359. /* END pivot search */
  1360. /* ============================================================ */
  1361. /* KK is the column of A where pivoting step stopped */
  1362. kk = k + kstep - 1;
  1363. /* Interchange rows and columns P and K (only for 2-by-2 pivot). */
  1364. /* Updated column P is already stored in column K of W. */
  1365. if (kstep == 2 && p != k) {
  1366. /* Copy non-updated column KK-1 to column P of submatrix A */
  1367. /* at step K. No need to copy element into columns */
  1368. /* K and K+1 of A for 2-by-2 pivot, since these columns */
  1369. /* will be later overwritten. */
  1370. i__1 = p + p * a_dim1;
  1371. i__2 = k + k * a_dim1;
  1372. d__1 = a[i__2].r;
  1373. a[i__1].r = d__1, a[i__1].i = 0.;
  1374. i__1 = p - k - 1;
  1375. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) *
  1376. a_dim1], lda);
  1377. i__1 = p - k - 1;
  1378. zlacgv_(&i__1, &a[p + (k + 1) * a_dim1], lda);
  1379. if (p < *n) {
  1380. i__1 = *n - p;
  1381. zcopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1382. * a_dim1], &c__1);
  1383. }
  1384. /* Interchange rows K and P in first K-1 columns of A */
  1385. /* (columns K and K+1 of A for 2-by-2 pivot will be */
  1386. /* later overwritten). Interchange rows K and P */
  1387. /* in first KK columns of W. */
  1388. if (k > 1) {
  1389. i__1 = k - 1;
  1390. zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1391. }
  1392. zswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1393. }
  1394. /* Interchange rows and columns KP and KK. */
  1395. /* Updated column KP is already stored in column KK of W. */
  1396. if (kp != kk) {
  1397. /* Copy non-updated column KK to column KP of submatrix A */
  1398. /* at step K. No need to copy element into column K */
  1399. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1400. /* will be later overwritten. */
  1401. i__1 = kp + kp * a_dim1;
  1402. i__2 = kk + kk * a_dim1;
  1403. d__1 = a[i__2].r;
  1404. a[i__1].r = d__1, a[i__1].i = 0.;
  1405. i__1 = kp - kk - 1;
  1406. zcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1407. 1) * a_dim1], lda);
  1408. i__1 = kp - kk - 1;
  1409. zlacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
  1410. if (kp < *n) {
  1411. i__1 = *n - kp;
  1412. zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1413. + kp * a_dim1], &c__1);
  1414. }
  1415. /* Interchange rows KK and KP in first K-1 columns of A */
  1416. /* (column K (or K and K+1 for 2-by-2 pivot) of A will be */
  1417. /* later overwritten). Interchange rows KK and KP */
  1418. /* in first KK columns of W. */
  1419. if (k > 1) {
  1420. i__1 = k - 1;
  1421. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1422. }
  1423. zswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1424. }
  1425. if (kstep == 1) {
  1426. /* 1-by-1 pivot block D(k): column k of W now holds */
  1427. /* W(k) = L(k)*D(k), */
  1428. /* where L(k) is the k-th column of L */
  1429. /* (1) Store subdiag. elements of column L(k) */
  1430. /* and 1-by-1 block D(k) in column k of A. */
  1431. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1432. /* and not stored) */
  1433. /* A(k,k) := D(k,k) = W(k,k) */
  1434. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1435. /* (NOTE: No need to use for Hermitian matrix */
  1436. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1437. /* element D(k,k) from W (potentially saves only one load)) */
  1438. i__1 = *n - k + 1;
  1439. zcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1440. c__1);
  1441. if (k < *n) {
  1442. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1443. /* since that was ensured earlier in pivot search: */
  1444. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1445. /* Handle division by a small number */
  1446. i__1 = k + k * a_dim1;
  1447. t = a[i__1].r;
  1448. if (abs(t) >= sfmin) {
  1449. r1 = 1. / t;
  1450. i__1 = *n - k;
  1451. zdscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1452. } else {
  1453. i__1 = *n;
  1454. for (ii = k + 1; ii <= i__1; ++ii) {
  1455. i__2 = ii + k * a_dim1;
  1456. i__3 = ii + k * a_dim1;
  1457. z__1.r = a[i__3].r / t, z__1.i = a[i__3].i / t;
  1458. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1459. /* L74: */
  1460. }
  1461. }
  1462. /* (2) Conjugate column W(k) */
  1463. i__1 = *n - k;
  1464. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1465. }
  1466. } else {
  1467. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1468. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1469. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1470. /* of L */
  1471. /* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1472. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1473. /* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1474. /* block and not stored. */
  1475. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1476. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1477. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1478. if (k < *n - 1) {
  1479. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1480. /* block D, so that each column contains 1, to reduce the */
  1481. /* number of FLOPS when we multiply panel */
  1482. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1483. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1484. /* ( d21 d22 ) */
  1485. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1486. /* ( (-d21) ( d11 ) ) */
  1487. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1488. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1489. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1490. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1491. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1492. /* ( ( -1 ) ( D22 ) ) */
  1493. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1494. /* ( ( -1 ) ( D22 ) ) */
  1495. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1496. /* ( ( -1 ) ( D22 ) ) */
  1497. /* Handle division by a small number. (NOTE: order of */
  1498. /* operations is important) */
  1499. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1500. /* ( (( -1 ) ) (( D22 ) ) ), */
  1501. /* where D11 = d22/d21, */
  1502. /* D22 = d11/conj(d21), */
  1503. /* D21 = d21, */
  1504. /* T = 1/(D22*D11-1). */
  1505. /* (NOTE: No need to check for division by ZERO, */
  1506. /* since that was ensured earlier in pivot search: */
  1507. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1508. /* since |d21| should be larger than |d11| and |d22|; */
  1509. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1510. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1511. i__1 = k + 1 + k * w_dim1;
  1512. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1513. z_div(&z__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1514. d11.r = z__1.r, d11.i = z__1.i;
  1515. d_cnjg(&z__2, &d21);
  1516. z_div(&z__1, &w[k + k * w_dim1], &z__2);
  1517. d22.r = z__1.r, d22.i = z__1.i;
  1518. z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r *
  1519. d22.i + d11.i * d22.r;
  1520. t = 1. / (z__1.r - 1.);
  1521. /* Update elements in columns A(k) and A(k+1) as */
  1522. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1523. /* of D**(-1) */
  1524. i__1 = *n;
  1525. for (j = k + 2; j <= i__1; ++j) {
  1526. i__2 = j + k * a_dim1;
  1527. i__3 = j + k * w_dim1;
  1528. z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1529. z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1530. .r;
  1531. i__4 = j + (k + 1) * w_dim1;
  1532. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1533. .i;
  1534. d_cnjg(&z__5, &d21);
  1535. z_div(&z__2, &z__3, &z__5);
  1536. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1537. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1538. i__2 = j + (k + 1) * a_dim1;
  1539. i__3 = j + (k + 1) * w_dim1;
  1540. z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1541. z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1542. .r;
  1543. i__4 = j + k * w_dim1;
  1544. z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
  1545. .i;
  1546. z_div(&z__2, &z__3, &d21);
  1547. z__1.r = t * z__2.r, z__1.i = t * z__2.i;
  1548. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1549. /* L80: */
  1550. }
  1551. }
  1552. /* Copy D(k) to A */
  1553. i__1 = k + k * a_dim1;
  1554. i__2 = k + k * w_dim1;
  1555. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1556. i__1 = k + 1 + k * a_dim1;
  1557. i__2 = k + 1 + k * w_dim1;
  1558. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1559. i__1 = k + 1 + (k + 1) * a_dim1;
  1560. i__2 = k + 1 + (k + 1) * w_dim1;
  1561. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1562. /* (2) Conjugate columns W(k) and W(k+1) */
  1563. i__1 = *n - k;
  1564. zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1565. i__1 = *n - k - 1;
  1566. zlacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
  1567. }
  1568. }
  1569. /* Store details of the interchanges in IPIV */
  1570. if (kstep == 1) {
  1571. ipiv[k] = kp;
  1572. } else {
  1573. ipiv[k] = -p;
  1574. ipiv[k + 1] = -kp;
  1575. }
  1576. /* Increase K and return to the start of the main loop */
  1577. k += kstep;
  1578. goto L70;
  1579. L90:
  1580. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1581. /* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
  1582. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1583. /* actually stored) */
  1584. i__1 = *n;
  1585. i__2 = *nb;
  1586. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1587. /* Computing MIN */
  1588. i__3 = *nb, i__4 = *n - j + 1;
  1589. jb = f2cmin(i__3,i__4);
  1590. /* Update the lower triangle of the diagonal block */
  1591. i__3 = j + jb - 1;
  1592. for (jj = j; jj <= i__3; ++jj) {
  1593. i__4 = jj + jj * a_dim1;
  1594. i__5 = jj + jj * a_dim1;
  1595. d__1 = a[i__5].r;
  1596. a[i__4].r = d__1, a[i__4].i = 0.;
  1597. i__4 = j + jb - jj;
  1598. i__5 = k - 1;
  1599. z__1.r = -1., z__1.i = 0.;
  1600. zgemv_("No transpose", &i__4, &i__5, &z__1, &a[jj + a_dim1],
  1601. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1602. , &c__1);
  1603. i__4 = jj + jj * a_dim1;
  1604. i__5 = jj + jj * a_dim1;
  1605. d__1 = a[i__5].r;
  1606. a[i__4].r = d__1, a[i__4].i = 0.;
  1607. /* L100: */
  1608. }
  1609. /* Update the rectangular subdiagonal block */
  1610. if (j + jb <= *n) {
  1611. i__3 = *n - j - jb + 1;
  1612. i__4 = k - 1;
  1613. z__1.r = -1., z__1.i = 0.;
  1614. zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1,
  1615. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1616. &a[j + jb + j * a_dim1], lda);
  1617. }
  1618. /* L110: */
  1619. }
  1620. /* Put L21 in standard form by partially undoing the interchanges */
  1621. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1622. j = k - 1;
  1623. L120:
  1624. /* Undo the interchanges (if any) of rows J and JP2 */
  1625. /* (or J and JP2, and J-1 and JP1) at each step J */
  1626. kstep = 1;
  1627. jp1 = 1;
  1628. /* (Here, J is a diagonal index) */
  1629. jj = j;
  1630. jp2 = ipiv[j];
  1631. if (jp2 < 0) {
  1632. jp2 = -jp2;
  1633. /* (Here, J is a diagonal index) */
  1634. --j;
  1635. jp1 = -ipiv[j];
  1636. kstep = 2;
  1637. }
  1638. /* (NOTE: Here, J is used to determine row length. Length J */
  1639. /* of the rows to swap back doesn't include diagonal element) */
  1640. --j;
  1641. if (jp2 != jj && j >= 1) {
  1642. zswap_(&j, &a[jp2 + a_dim1], lda, &a[jj + a_dim1], lda);
  1643. }
  1644. --jj;
  1645. if (kstep == 2 && jp1 != jj && j >= 1) {
  1646. zswap_(&j, &a[jp1 + a_dim1], lda, &a[jj + a_dim1], lda);
  1647. }
  1648. if (j > 1) {
  1649. goto L120;
  1650. }
  1651. /* Set KB to the number of columns factorized */
  1652. *kb = k - 1;
  1653. }
  1654. return 0;
  1655. /* End of ZLAHEF_ROOK */
  1656. } /* zlahef_rook__ */