You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhprfs.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* > \brief \b ZHPRFS */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZHPRFS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhprfs.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhprfs.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhprfs.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, */
  507. /* FERR, BERR, WORK, RWORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDB, LDX, N, NRHS */
  510. /* INTEGER IPIV( * ) */
  511. /* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) */
  512. /* COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZHPRFS improves the computed solution to a system of linear */
  520. /* > equations when the coefficient matrix is Hermitian indefinite */
  521. /* > and packed, and provides error bounds and backward error estimates */
  522. /* > for the solution. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] UPLO */
  527. /* > \verbatim */
  528. /* > UPLO is CHARACTER*1 */
  529. /* > = 'U': Upper triangle of A is stored; */
  530. /* > = 'L': Lower triangle of A is stored. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The order of the matrix A. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] NRHS */
  540. /* > \verbatim */
  541. /* > NRHS is INTEGER */
  542. /* > The number of right hand sides, i.e., the number of columns */
  543. /* > of the matrices B and X. NRHS >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] AP */
  547. /* > \verbatim */
  548. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  549. /* > The upper or lower triangle of the Hermitian matrix A, packed */
  550. /* > columnwise in a linear array. The j-th column of A is stored */
  551. /* > in the array AP as follows: */
  552. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  553. /* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] AFP */
  557. /* > \verbatim */
  558. /* > AFP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  559. /* > The factored form of the matrix A. AFP contains the block */
  560. /* > diagonal matrix D and the multipliers used to obtain the */
  561. /* > factor U or L from the factorization A = U*D*U**H or */
  562. /* > A = L*D*L**H as computed by ZHPTRF, stored as a packed */
  563. /* > triangular matrix. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] IPIV */
  567. /* > \verbatim */
  568. /* > IPIV is INTEGER array, dimension (N) */
  569. /* > Details of the interchanges and the block structure of D */
  570. /* > as determined by ZHPTRF. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] B */
  574. /* > \verbatim */
  575. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  576. /* > The right hand side matrix B. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDB */
  580. /* > \verbatim */
  581. /* > LDB is INTEGER */
  582. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] X */
  586. /* > \verbatim */
  587. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  588. /* > On entry, the solution matrix X, as computed by ZHPTRS. */
  589. /* > On exit, the improved solution matrix X. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDX */
  593. /* > \verbatim */
  594. /* > LDX is INTEGER */
  595. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] FERR */
  599. /* > \verbatim */
  600. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  601. /* > The estimated forward error bound for each solution vector */
  602. /* > X(j) (the j-th column of the solution matrix X). */
  603. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  604. /* > is an estimated upper bound for the magnitude of the largest */
  605. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  606. /* > largest element in X(j). The estimate is as reliable as */
  607. /* > the estimate for RCOND, and is almost always a slight */
  608. /* > overestimate of the true error. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] BERR */
  612. /* > \verbatim */
  613. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  614. /* > The componentwise relative backward error of each solution */
  615. /* > vector X(j) (i.e., the smallest relative change in */
  616. /* > any element of A or B that makes X(j) an exact solution). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] WORK */
  620. /* > \verbatim */
  621. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] RWORK */
  625. /* > \verbatim */
  626. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] INFO */
  630. /* > \verbatim */
  631. /* > INFO is INTEGER */
  632. /* > = 0: successful exit */
  633. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  634. /* > \endverbatim */
  635. /* > \par Internal Parameters: */
  636. /* ========================= */
  637. /* > */
  638. /* > \verbatim */
  639. /* > ITMAX is the maximum number of steps of iterative refinement. */
  640. /* > \endverbatim */
  641. /* Authors: */
  642. /* ======== */
  643. /* > \author Univ. of Tennessee */
  644. /* > \author Univ. of California Berkeley */
  645. /* > \author Univ. of Colorado Denver */
  646. /* > \author NAG Ltd. */
  647. /* > \date December 2016 */
  648. /* > \ingroup complex16OTHERcomputational */
  649. /* ===================================================================== */
  650. /* Subroutine */ int zhprfs_(char *uplo, integer *n, integer *nrhs,
  651. doublecomplex *ap, doublecomplex *afp, integer *ipiv, doublecomplex *
  652. b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *ferr,
  653. doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
  654. info)
  655. {
  656. /* System generated locals */
  657. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  658. doublereal d__1, d__2, d__3, d__4;
  659. doublecomplex z__1;
  660. /* Local variables */
  661. integer kase;
  662. doublereal safe1, safe2;
  663. integer i__, j, k;
  664. doublereal s;
  665. extern logical lsame_(char *, char *);
  666. integer isave[3], count;
  667. logical upper;
  668. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  669. doublecomplex *, integer *), zhpmv_(char *, integer *,
  670. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  671. doublecomplex *, doublecomplex *, integer *), zaxpy_(
  672. integer *, doublecomplex *, doublecomplex *, integer *,
  673. doublecomplex *, integer *), zlacn2_(integer *, doublecomplex *,
  674. doublecomplex *, doublereal *, integer *, integer *);
  675. integer ik, kk;
  676. extern doublereal dlamch_(char *);
  677. doublereal xk;
  678. integer nz;
  679. doublereal safmin;
  680. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  681. doublereal lstres;
  682. extern /* Subroutine */ int zhptrs_(char *, integer *, integer *,
  683. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  684. doublereal eps;
  685. /* -- LAPACK computational routine (version 3.7.0) -- */
  686. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  687. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  688. /* December 2016 */
  689. /* ===================================================================== */
  690. /* Test the input parameters. */
  691. /* Parameter adjustments */
  692. --ap;
  693. --afp;
  694. --ipiv;
  695. b_dim1 = *ldb;
  696. b_offset = 1 + b_dim1 * 1;
  697. b -= b_offset;
  698. x_dim1 = *ldx;
  699. x_offset = 1 + x_dim1 * 1;
  700. x -= x_offset;
  701. --ferr;
  702. --berr;
  703. --work;
  704. --rwork;
  705. /* Function Body */
  706. *info = 0;
  707. upper = lsame_(uplo, "U");
  708. if (! upper && ! lsame_(uplo, "L")) {
  709. *info = -1;
  710. } else if (*n < 0) {
  711. *info = -2;
  712. } else if (*nrhs < 0) {
  713. *info = -3;
  714. } else if (*ldb < f2cmax(1,*n)) {
  715. *info = -8;
  716. } else if (*ldx < f2cmax(1,*n)) {
  717. *info = -10;
  718. }
  719. if (*info != 0) {
  720. i__1 = -(*info);
  721. xerbla_("ZHPRFS", &i__1, (ftnlen)6);
  722. return 0;
  723. }
  724. /* Quick return if possible */
  725. if (*n == 0 || *nrhs == 0) {
  726. i__1 = *nrhs;
  727. for (j = 1; j <= i__1; ++j) {
  728. ferr[j] = 0.;
  729. berr[j] = 0.;
  730. /* L10: */
  731. }
  732. return 0;
  733. }
  734. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  735. nz = *n + 1;
  736. eps = dlamch_("Epsilon");
  737. safmin = dlamch_("Safe minimum");
  738. safe1 = nz * safmin;
  739. safe2 = safe1 / eps;
  740. /* Do for each right hand side */
  741. i__1 = *nrhs;
  742. for (j = 1; j <= i__1; ++j) {
  743. count = 1;
  744. lstres = 3.;
  745. L20:
  746. /* Loop until stopping criterion is satisfied. */
  747. /* Compute residual R = B - A * X */
  748. zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  749. z__1.r = -1., z__1.i = 0.;
  750. zhpmv_(uplo, n, &z__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
  751. work[1], &c__1);
  752. /* Compute componentwise relative backward error from formula */
  753. /* f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
  754. /* where abs(Z) is the componentwise absolute value of the matrix */
  755. /* or vector Z. If the i-th component of the denominator is less */
  756. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  757. /* numerator and denominator before dividing. */
  758. i__2 = *n;
  759. for (i__ = 1; i__ <= i__2; ++i__) {
  760. i__3 = i__ + j * b_dim1;
  761. rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
  762. i__ + j * b_dim1]), abs(d__2));
  763. /* L30: */
  764. }
  765. /* Compute abs(A)*abs(X) + abs(B). */
  766. kk = 1;
  767. if (upper) {
  768. i__2 = *n;
  769. for (k = 1; k <= i__2; ++k) {
  770. s = 0.;
  771. i__3 = k + j * x_dim1;
  772. xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
  773. x_dim1]), abs(d__2));
  774. ik = kk;
  775. i__3 = k - 1;
  776. for (i__ = 1; i__ <= i__3; ++i__) {
  777. i__4 = ik;
  778. rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 =
  779. d_imag(&ap[ik]), abs(d__2))) * xk;
  780. i__4 = ik;
  781. i__5 = i__ + j * x_dim1;
  782. s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
  783. ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
  784. + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
  785. ));
  786. ++ik;
  787. /* L40: */
  788. }
  789. i__3 = kk + k - 1;
  790. rwork[k] = rwork[k] + (d__1 = ap[i__3].r, abs(d__1)) * xk + s;
  791. kk += k;
  792. /* L50: */
  793. }
  794. } else {
  795. i__2 = *n;
  796. for (k = 1; k <= i__2; ++k) {
  797. s = 0.;
  798. i__3 = k + j * x_dim1;
  799. xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
  800. x_dim1]), abs(d__2));
  801. i__3 = kk;
  802. rwork[k] += (d__1 = ap[i__3].r, abs(d__1)) * xk;
  803. ik = kk + 1;
  804. i__3 = *n;
  805. for (i__ = k + 1; i__ <= i__3; ++i__) {
  806. i__4 = ik;
  807. rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 =
  808. d_imag(&ap[ik]), abs(d__2))) * xk;
  809. i__4 = ik;
  810. i__5 = i__ + j * x_dim1;
  811. s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
  812. ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
  813. + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
  814. ));
  815. ++ik;
  816. /* L60: */
  817. }
  818. rwork[k] += s;
  819. kk += *n - k + 1;
  820. /* L70: */
  821. }
  822. }
  823. s = 0.;
  824. i__2 = *n;
  825. for (i__ = 1; i__ <= i__2; ++i__) {
  826. if (rwork[i__] > safe2) {
  827. /* Computing MAX */
  828. i__3 = i__;
  829. d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  830. d_imag(&work[i__]), abs(d__2))) / rwork[i__];
  831. s = f2cmax(d__3,d__4);
  832. } else {
  833. /* Computing MAX */
  834. i__3 = i__;
  835. d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  836. d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
  837. + safe1);
  838. s = f2cmax(d__3,d__4);
  839. }
  840. /* L80: */
  841. }
  842. berr[j] = s;
  843. /* Test stopping criterion. Continue iterating if */
  844. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  845. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  846. /* last iteration, and */
  847. /* 3) At most ITMAX iterations tried. */
  848. if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
  849. /* Update solution and try again. */
  850. zhptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info);
  851. zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  852. lstres = berr[j];
  853. ++count;
  854. goto L20;
  855. }
  856. /* Bound error from formula */
  857. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  858. /* norm( abs(inv(A))* */
  859. /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
  860. /* where */
  861. /* norm(Z) is the magnitude of the largest component of Z */
  862. /* inv(A) is the inverse of A */
  863. /* abs(Z) is the componentwise absolute value of the matrix or */
  864. /* vector Z */
  865. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  866. /* EPS is machine epsilon */
  867. /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
  868. /* is incremented by SAFE1 if the i-th component of */
  869. /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
  870. /* Use ZLACN2 to estimate the infinity-norm of the matrix */
  871. /* inv(A) * diag(W), */
  872. /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
  873. i__2 = *n;
  874. for (i__ = 1; i__ <= i__2; ++i__) {
  875. if (rwork[i__] > safe2) {
  876. i__3 = i__;
  877. rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  878. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  879. ;
  880. } else {
  881. i__3 = i__;
  882. rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  883. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  884. + safe1;
  885. }
  886. /* L90: */
  887. }
  888. kase = 0;
  889. L100:
  890. zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  891. if (kase != 0) {
  892. if (kase == 1) {
  893. /* Multiply by diag(W)*inv(A**H). */
  894. zhptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info);
  895. i__2 = *n;
  896. for (i__ = 1; i__ <= i__2; ++i__) {
  897. i__3 = i__;
  898. i__4 = i__;
  899. i__5 = i__;
  900. z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
  901. * work[i__5].i;
  902. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  903. /* L110: */
  904. }
  905. } else if (kase == 2) {
  906. /* Multiply by inv(A)*diag(W). */
  907. i__2 = *n;
  908. for (i__ = 1; i__ <= i__2; ++i__) {
  909. i__3 = i__;
  910. i__4 = i__;
  911. i__5 = i__;
  912. z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
  913. * work[i__5].i;
  914. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  915. /* L120: */
  916. }
  917. zhptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[1], n, info);
  918. }
  919. goto L100;
  920. }
  921. /* Normalize error. */
  922. lstres = 0.;
  923. i__2 = *n;
  924. for (i__ = 1; i__ <= i__2; ++i__) {
  925. /* Computing MAX */
  926. i__3 = i__ + j * x_dim1;
  927. d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  928. d_imag(&x[i__ + j * x_dim1]), abs(d__2));
  929. lstres = f2cmax(d__3,d__4);
  930. /* L130: */
  931. }
  932. if (lstres != 0.) {
  933. ferr[j] /= lstres;
  934. }
  935. /* L140: */
  936. }
  937. return 0;
  938. /* End of ZHPRFS */
  939. } /* zhprfs_ */