You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytrd_sb2st.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__2 = 2;
  487. static integer c_n1 = -1;
  488. static integer c__3 = 3;
  489. static integer c__4 = 4;
  490. static doublereal c_b26 = 0.;
  491. /* > \brief \b DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DSYTRD_SB2ST + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd_
  498. sb2st.f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd_
  501. sb2st.f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd_
  504. sb2st.f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, */
  510. /* D, E, HOUS, LHOUS, WORK, LWORK, INFO ) */
  511. /* #if defined(_OPENMP) */
  512. /* use omp_lib */
  513. /* #endif */
  514. /* IMPLICIT NONE */
  515. /* CHARACTER STAGE1, UPLO, VECT */
  516. /* INTEGER N, KD, IB, LDAB, LHOUS, LWORK, INFO */
  517. /* DOUBLE PRECISION D( * ), E( * ) */
  518. /* DOUBLE PRECISION AB( LDAB, * ), HOUS( * ), WORK( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric */
  525. /* > tridiagonal form T by a orthogonal similarity transformation: */
  526. /* > Q**T * A * Q = T. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] STAGE1 */
  531. /* > \verbatim */
  532. /* > STAGE1 is CHARACTER*1 */
  533. /* > = 'N': "No": to mention that the stage 1 of the reduction */
  534. /* > from dense to band using the dsytrd_sy2sb routine */
  535. /* > was not called before this routine to reproduce AB. */
  536. /* > In other term this routine is called as standalone. */
  537. /* > = 'Y': "Yes": to mention that the stage 1 of the */
  538. /* > reduction from dense to band using the dsytrd_sy2sb */
  539. /* > routine has been called to produce AB (e.g., AB is */
  540. /* > the output of dsytrd_sy2sb. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] VECT */
  544. /* > \verbatim */
  545. /* > VECT is CHARACTER*1 */
  546. /* > = 'N': No need for the Housholder representation, */
  547. /* > and thus LHOUS is of size f2cmax(1, 4*N); */
  548. /* > = 'V': the Householder representation is needed to */
  549. /* > either generate or to apply Q later on, */
  550. /* > then LHOUS is to be queried and computed. */
  551. /* > (NOT AVAILABLE IN THIS RELEASE). */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] UPLO */
  555. /* > \verbatim */
  556. /* > UPLO is CHARACTER*1 */
  557. /* > = 'U': Upper triangle of A is stored; */
  558. /* > = 'L': Lower triangle of A is stored. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The order of the matrix A. N >= 0. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] KD */
  568. /* > \verbatim */
  569. /* > KD is INTEGER */
  570. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  571. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] AB */
  575. /* > \verbatim */
  576. /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
  577. /* > On entry, the upper or lower triangle of the symmetric band */
  578. /* > matrix A, stored in the first KD+1 rows of the array. The */
  579. /* > j-th column of A is stored in the j-th column of the array AB */
  580. /* > as follows: */
  581. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  582. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  583. /* > On exit, the diagonal elements of AB are overwritten by the */
  584. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  585. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  586. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  587. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  588. /* > values generated during the reduction. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDAB */
  592. /* > \verbatim */
  593. /* > LDAB is INTEGER */
  594. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] D */
  598. /* > \verbatim */
  599. /* > D is DOUBLE PRECISION array, dimension (N) */
  600. /* > The diagonal elements of the tridiagonal matrix T. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] E */
  604. /* > \verbatim */
  605. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  606. /* > The off-diagonal elements of the tridiagonal matrix T: */
  607. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] HOUS */
  611. /* > \verbatim */
  612. /* > HOUS is DOUBLE PRECISION array, dimension LHOUS, that */
  613. /* > store the Householder representation. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] LHOUS */
  617. /* > \verbatim */
  618. /* > LHOUS is INTEGER */
  619. /* > The dimension of the array HOUS. LHOUS = MAX(1, dimension) */
  620. /* > If LWORK = -1, or LHOUS=-1, */
  621. /* > then a query is assumed; the routine */
  622. /* > only calculates the optimal size of the HOUS array, returns */
  623. /* > this value as the first entry of the HOUS array, and no error */
  624. /* > message related to LHOUS is issued by XERBLA. */
  625. /* > LHOUS = MAX(1, dimension) where */
  626. /* > dimension = 4*N if VECT='N' */
  627. /* > not available now if VECT='H' */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] WORK */
  631. /* > \verbatim */
  632. /* > WORK is DOUBLE PRECISION array, dimension LWORK. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LWORK */
  636. /* > \verbatim */
  637. /* > LWORK is INTEGER */
  638. /* > The dimension of the array WORK. LWORK = MAX(1, dimension) */
  639. /* > If LWORK = -1, or LHOUS=-1, */
  640. /* > then a workspace query is assumed; the routine */
  641. /* > only calculates the optimal size of the WORK array, returns */
  642. /* > this value as the first entry of the WORK array, and no error */
  643. /* > message related to LWORK is issued by XERBLA. */
  644. /* > LWORK = MAX(1, dimension) where */
  645. /* > dimension = (2KD+1)*N + KD*NTHREADS */
  646. /* > where KD is the blocking size of the reduction, */
  647. /* > FACTOPTNB is the blocking used by the QR or LQ */
  648. /* > algorithm, usually FACTOPTNB=128 is a good choice */
  649. /* > NTHREADS is the number of threads used when */
  650. /* > openMP compilation is enabled, otherwise =1. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] INFO */
  654. /* > \verbatim */
  655. /* > INFO is INTEGER */
  656. /* > = 0: successful exit */
  657. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  658. /* > \endverbatim */
  659. /* Authors: */
  660. /* ======== */
  661. /* > \author Univ. of Tennessee */
  662. /* > \author Univ. of California Berkeley */
  663. /* > \author Univ. of Colorado Denver */
  664. /* > \author NAG Ltd. */
  665. /* > \date November 2017 */
  666. /* > \ingroup real16OTHERcomputational */
  667. /* > \par Further Details: */
  668. /* ===================== */
  669. /* > */
  670. /* > \verbatim */
  671. /* > */
  672. /* > Implemented by Azzam Haidar. */
  673. /* > */
  674. /* > All details are available on technical report, SC11, SC13 papers. */
  675. /* > */
  676. /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
  677. /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
  678. /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
  679. /* > of 2011 International Conference for High Performance Computing, */
  680. /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
  681. /* > Article 8 , 11 pages. */
  682. /* > http://doi.acm.org/10.1145/2063384.2063394 */
  683. /* > */
  684. /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
  685. /* > An improved parallel singular value algorithm and its implementation */
  686. /* > for multicore hardware, In Proceedings of 2013 International Conference */
  687. /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
  688. /* > Denver, Colorado, USA, 2013. */
  689. /* > Article 90, 12 pages. */
  690. /* > http://doi.acm.org/10.1145/2503210.2503292 */
  691. /* > */
  692. /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
  693. /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
  694. /* > calculations based on fine-grained memory aware tasks. */
  695. /* > International Journal of High Performance Computing Applications. */
  696. /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
  697. /* > http://hpc.sagepub.com/content/28/2/196 */
  698. /* > */
  699. /* > \endverbatim */
  700. /* > */
  701. /* ===================================================================== */
  702. /* Subroutine */ int dsytrd_sb2st_(char *stage1, char *vect, char *uplo,
  703. integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *
  704. d__, doublereal *e, doublereal *hous, integer *lhous, doublereal *
  705. work, integer *lwork, integer *info)
  706. {
  707. /* System generated locals */
  708. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  709. real r__1;
  710. /* Local variables */
  711. integer inda;
  712. extern integer ilaenv2stage_(integer *, char *, char *, integer *,
  713. integer *, integer *, integer *);
  714. integer thed, indv, myid, indw, apos, dpos, abofdpos, nthreads, i__, k, m,
  715. edind, debug;
  716. extern logical lsame_(char *, char *);
  717. integer lhmin, sidev, sizea, shift, stind, colpt, lwmin, awpos;
  718. logical wantq, upper;
  719. integer grsiz, ttype, stepercol, ed, ib, st, abdpos;
  720. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  721. doublereal *, integer *, doublereal *, integer *),
  722. dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
  723. doublereal *, integer *), xerbla_(char *, integer *, ftnlen);
  724. integer thgrid;
  725. extern /* Subroutine */ int dsb2st_kernels_(char *, logical *, integer *,
  726. integer *, integer *, integer *, integer *, integer *, integer *,
  727. doublereal *, integer *, doublereal *, doublereal *, integer *,
  728. doublereal *);
  729. integer thgrnb, indtau, ofdpos, blklastind;
  730. extern /* Subroutine */ int mecago_();
  731. logical lquery, afters1;
  732. integer lda, tid, ldv, stt, sweepid, nbtiles, sizetau, thgrsiz;
  733. /* -- LAPACK computational routine (version 3.8.0) -- */
  734. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  735. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  736. /* November 2017 */
  737. /* ===================================================================== */
  738. /* Determine the minimal workspace size required. */
  739. /* Test the input parameters */
  740. /* Parameter adjustments */
  741. ab_dim1 = *ldab;
  742. ab_offset = 1 + ab_dim1 * 1;
  743. ab -= ab_offset;
  744. --d__;
  745. --e;
  746. --hous;
  747. --work;
  748. /* Function Body */
  749. debug = 0;
  750. *info = 0;
  751. afters1 = lsame_(stage1, "Y");
  752. wantq = lsame_(vect, "V");
  753. upper = lsame_(uplo, "U");
  754. lquery = *lwork == -1 || *lhous == -1;
  755. /* Determine the block size, the workspace size and the hous size. */
  756. ib = ilaenv2stage_(&c__2, "DSYTRD_SB2ST", vect, n, kd, &c_n1, &c_n1);
  757. lhmin = ilaenv2stage_(&c__3, "DSYTRD_SB2ST", vect, n, kd, &ib, &c_n1);
  758. lwmin = ilaenv2stage_(&c__4, "DSYTRD_SB2ST", vect, n, kd, &ib, &c_n1);
  759. if (! afters1 && ! lsame_(stage1, "N")) {
  760. *info = -1;
  761. } else if (! lsame_(vect, "N")) {
  762. *info = -2;
  763. } else if (! upper && ! lsame_(uplo, "L")) {
  764. *info = -3;
  765. } else if (*n < 0) {
  766. *info = -4;
  767. } else if (*kd < 0) {
  768. *info = -5;
  769. } else if (*ldab < *kd + 1) {
  770. *info = -7;
  771. } else if (*lhous < lhmin && ! lquery) {
  772. *info = -11;
  773. } else if (*lwork < lwmin && ! lquery) {
  774. *info = -13;
  775. }
  776. if (*info == 0) {
  777. hous[1] = (doublereal) lhmin;
  778. work[1] = (doublereal) lwmin;
  779. }
  780. if (*info != 0) {
  781. i__1 = -(*info);
  782. xerbla_("DSYTRD_SB2ST", &i__1, (ftnlen)12);
  783. return 0;
  784. } else if (lquery) {
  785. return 0;
  786. }
  787. /* Quick return if possible */
  788. if (*n == 0) {
  789. hous[1] = 1.;
  790. work[1] = 1.;
  791. return 0;
  792. }
  793. /* Determine pointer position */
  794. ldv = *kd + ib;
  795. sizetau = *n << 1;
  796. sidev = *n << 1;
  797. indtau = 1;
  798. indv = indtau + sizetau;
  799. lda = (*kd << 1) + 1;
  800. sizea = lda * *n;
  801. inda = 1;
  802. indw = inda + sizea;
  803. nthreads = 1;
  804. tid = 0;
  805. if (upper) {
  806. apos = inda + *kd;
  807. awpos = inda;
  808. dpos = apos + *kd;
  809. ofdpos = dpos - 1;
  810. abdpos = *kd + 1;
  811. abofdpos = *kd;
  812. } else {
  813. apos = inda;
  814. awpos = inda + *kd + 1;
  815. dpos = apos;
  816. ofdpos = dpos + 1;
  817. abdpos = 1;
  818. abofdpos = 2;
  819. }
  820. /* Case KD=0: */
  821. /* The matrix is diagonal. We just copy it (convert to "real" for */
  822. /* real because D is double and the imaginary part should be 0) */
  823. /* and store it in D. A sequential code here is better or */
  824. /* in a parallel environment it might need two cores for D and E */
  825. if (*kd == 0) {
  826. i__1 = *n;
  827. for (i__ = 1; i__ <= i__1; ++i__) {
  828. d__[i__] = ab[abdpos + i__ * ab_dim1];
  829. /* L30: */
  830. }
  831. i__1 = *n - 1;
  832. for (i__ = 1; i__ <= i__1; ++i__) {
  833. e[i__] = 0.;
  834. /* L40: */
  835. }
  836. hous[1] = 1.;
  837. work[1] = 1.;
  838. return 0;
  839. }
  840. /* Case KD=1: */
  841. /* The matrix is already Tridiagonal. We have to make diagonal */
  842. /* and offdiagonal elements real, and store them in D and E. */
  843. /* For that, for real precision just copy the diag and offdiag */
  844. /* to D and E while for the COMPLEX case the bulge chasing is */
  845. /* performed to convert the hermetian tridiagonal to symmetric */
  846. /* tridiagonal. A simpler coversion formula might be used, but then */
  847. /* updating the Q matrix will be required and based if Q is generated */
  848. /* or not this might complicate the story. */
  849. if (*kd == 1) {
  850. i__1 = *n;
  851. for (i__ = 1; i__ <= i__1; ++i__) {
  852. d__[i__] = ab[abdpos + i__ * ab_dim1];
  853. /* L50: */
  854. }
  855. if (upper) {
  856. i__1 = *n - 1;
  857. for (i__ = 1; i__ <= i__1; ++i__) {
  858. e[i__] = ab[abofdpos + (i__ + 1) * ab_dim1];
  859. /* L60: */
  860. }
  861. } else {
  862. i__1 = *n - 1;
  863. for (i__ = 1; i__ <= i__1; ++i__) {
  864. e[i__] = ab[abofdpos + i__ * ab_dim1];
  865. /* L70: */
  866. }
  867. }
  868. hous[1] = 1.;
  869. work[1] = 1.;
  870. return 0;
  871. }
  872. /* Main code start here. */
  873. /* Reduce the symmetric band of A to a tridiagonal matrix. */
  874. thgrsiz = *n;
  875. grsiz = 1;
  876. shift = 3;
  877. r__1 = (real) (*n) / (real) (*kd) + .5f;
  878. nbtiles = r_int(&r__1);
  879. r__1 = (real) shift / (real) grsiz + .5f;
  880. stepercol = r_int(&r__1);
  881. r__1 = (real) (*n - 1) / (real) thgrsiz + .5f;
  882. thgrnb = r_int(&r__1);
  883. i__1 = *kd + 1;
  884. dlacpy_("A", &i__1, n, &ab[ab_offset], ldab, &work[apos], &lda)
  885. ;
  886. dlaset_("A", kd, n, &c_b26, &c_b26, &work[awpos], &lda);
  887. /* openMP parallelisation start here */
  888. /* main bulge chasing loop */
  889. i__1 = thgrnb;
  890. for (thgrid = 1; thgrid <= i__1; ++thgrid) {
  891. stt = (thgrid - 1) * thgrsiz + 1;
  892. /* Computing MIN */
  893. i__2 = stt + thgrsiz - 1, i__3 = *n - 1;
  894. thed = f2cmin(i__2,i__3);
  895. i__2 = *n - 1;
  896. for (i__ = stt; i__ <= i__2; ++i__) {
  897. ed = f2cmin(i__,thed);
  898. if (stt > ed) {
  899. myexit_();
  900. }
  901. i__3 = stepercol;
  902. for (m = 1; m <= i__3; ++m) {
  903. st = stt;
  904. i__4 = ed;
  905. for (sweepid = st; sweepid <= i__4; ++sweepid) {
  906. i__5 = grsiz;
  907. for (k = 1; k <= i__5; ++k) {
  908. myid = (i__ - sweepid) * (stepercol * grsiz) + (m - 1)
  909. * grsiz + k;
  910. if (myid == 1) {
  911. ttype = 1;
  912. } else {
  913. ttype = myid % 2 + 2;
  914. }
  915. if (ttype == 2) {
  916. colpt = myid / 2 * *kd + sweepid;
  917. stind = colpt - *kd + 1;
  918. edind = f2cmin(colpt,*n);
  919. blklastind = colpt;
  920. } else {
  921. colpt = (myid + 1) / 2 * *kd + sweepid;
  922. stind = colpt - *kd + 1;
  923. edind = f2cmin(colpt,*n);
  924. if (stind >= edind - 1 && edind == *n) {
  925. blklastind = *n;
  926. } else {
  927. blklastind = 0;
  928. }
  929. }
  930. /* Call the kernel */
  931. dsb2st_kernels_(uplo, &wantq, &ttype, &stind, &edind,
  932. &sweepid, n, kd, &ib, &work[inda], &lda, &
  933. hous[indv], &hous[indtau], &ldv, &work[indw +
  934. tid * *kd]);
  935. if (blklastind >= *n - 1) {
  936. ++stt;
  937. myexit_();
  938. }
  939. /* L140: */
  940. }
  941. /* L130: */
  942. }
  943. /* L120: */
  944. }
  945. /* L110: */
  946. }
  947. /* L100: */
  948. }
  949. /* Copy the diagonal from A to D. Note that D is REAL thus only */
  950. /* the Real part is needed, the imaginary part should be zero. */
  951. i__1 = *n;
  952. for (i__ = 1; i__ <= i__1; ++i__) {
  953. d__[i__] = work[dpos + (i__ - 1) * lda];
  954. /* L150: */
  955. }
  956. /* Copy the off diagonal from A to E. Note that E is REAL thus only */
  957. /* the Real part is needed, the imaginary part should be zero. */
  958. if (upper) {
  959. i__1 = *n - 1;
  960. for (i__ = 1; i__ <= i__1; ++i__) {
  961. e[i__] = work[ofdpos + i__ * lda];
  962. /* L160: */
  963. }
  964. } else {
  965. i__1 = *n - 1;
  966. for (i__ = 1; i__ <= i__1; ++i__) {
  967. e[i__] = work[ofdpos + (i__ - 1) * lda];
  968. /* L170: */
  969. }
  970. }
  971. hous[1] = (doublereal) lhmin;
  972. work[1] = (doublereal) lwmin;
  973. return 0;
  974. /* End of DSYTRD_SB2ST */
  975. } /* dsytrd_sb2st__ */