|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__4 = 4;
- static doublereal c_b26 = 0.;
-
- /* > \brief \b DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DSYTRD_SB2ST + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd_
- sb2st.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd_
- sb2st.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd_
- sb2st.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, */
- /* D, E, HOUS, LHOUS, WORK, LWORK, INFO ) */
-
- /* #if defined(_OPENMP) */
- /* use omp_lib */
- /* #endif */
-
- /* IMPLICIT NONE */
-
- /* CHARACTER STAGE1, UPLO, VECT */
- /* INTEGER N, KD, IB, LDAB, LHOUS, LWORK, INFO */
- /* DOUBLE PRECISION D( * ), E( * ) */
- /* DOUBLE PRECISION AB( LDAB, * ), HOUS( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric */
- /* > tridiagonal form T by a orthogonal similarity transformation: */
- /* > Q**T * A * Q = T. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] STAGE1 */
- /* > \verbatim */
- /* > STAGE1 is CHARACTER*1 */
- /* > = 'N': "No": to mention that the stage 1 of the reduction */
- /* > from dense to band using the dsytrd_sy2sb routine */
- /* > was not called before this routine to reproduce AB. */
- /* > In other term this routine is called as standalone. */
- /* > = 'Y': "Yes": to mention that the stage 1 of the */
- /* > reduction from dense to band using the dsytrd_sy2sb */
- /* > routine has been called to produce AB (e.g., AB is */
- /* > the output of dsytrd_sy2sb. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VECT */
- /* > \verbatim */
- /* > VECT is CHARACTER*1 */
- /* > = 'N': No need for the Housholder representation, */
- /* > and thus LHOUS is of size f2cmax(1, 4*N); */
- /* > = 'V': the Householder representation is needed to */
- /* > either generate or to apply Q later on, */
- /* > then LHOUS is to be queried and computed. */
- /* > (NOT AVAILABLE IN THIS RELEASE). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KD */
- /* > \verbatim */
- /* > KD is INTEGER */
- /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AB */
- /* > \verbatim */
- /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
- /* > On entry, the upper or lower triangle of the symmetric band */
- /* > matrix A, stored in the first KD+1 rows of the array. The */
- /* > j-th column of A is stored in the j-th column of the array AB */
- /* > as follows: */
- /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
- /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
- /* > On exit, the diagonal elements of AB are overwritten by the */
- /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
- /* > elements on the first superdiagonal (if UPLO = 'U') or the */
- /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
- /* > off-diagonal elements of T; the rest of AB is overwritten by */
- /* > values generated during the reduction. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAB */
- /* > \verbatim */
- /* > LDAB is INTEGER */
- /* > The leading dimension of the array AB. LDAB >= KD+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > The diagonal elements of the tridiagonal matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (N-1) */
- /* > The off-diagonal elements of the tridiagonal matrix T: */
- /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] HOUS */
- /* > \verbatim */
- /* > HOUS is DOUBLE PRECISION array, dimension LHOUS, that */
- /* > store the Householder representation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LHOUS */
- /* > \verbatim */
- /* > LHOUS is INTEGER */
- /* > The dimension of the array HOUS. LHOUS = MAX(1, dimension) */
- /* > If LWORK = -1, or LHOUS=-1, */
- /* > then a query is assumed; the routine */
- /* > only calculates the optimal size of the HOUS array, returns */
- /* > this value as the first entry of the HOUS array, and no error */
- /* > message related to LHOUS is issued by XERBLA. */
- /* > LHOUS = MAX(1, dimension) where */
- /* > dimension = 4*N if VECT='N' */
- /* > not available now if VECT='H' */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK = MAX(1, dimension) */
- /* > If LWORK = -1, or LHOUS=-1, */
- /* > then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > LWORK = MAX(1, dimension) where */
- /* > dimension = (2KD+1)*N + KD*NTHREADS */
- /* > where KD is the blocking size of the reduction, */
- /* > FACTOPTNB is the blocking used by the QR or LQ */
- /* > algorithm, usually FACTOPTNB=128 is a good choice */
- /* > NTHREADS is the number of threads used when */
- /* > openMP compilation is enabled, otherwise =1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup real16OTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Implemented by Azzam Haidar. */
- /* > */
- /* > All details are available on technical report, SC11, SC13 papers. */
- /* > */
- /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
- /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
- /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
- /* > of 2011 International Conference for High Performance Computing, */
- /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
- /* > Article 8 , 11 pages. */
- /* > http://doi.acm.org/10.1145/2063384.2063394 */
- /* > */
- /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
- /* > An improved parallel singular value algorithm and its implementation */
- /* > for multicore hardware, In Proceedings of 2013 International Conference */
- /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
- /* > Denver, Colorado, USA, 2013. */
- /* > Article 90, 12 pages. */
- /* > http://doi.acm.org/10.1145/2503210.2503292 */
- /* > */
- /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
- /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
- /* > calculations based on fine-grained memory aware tasks. */
- /* > International Journal of High Performance Computing Applications. */
- /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
- /* > http://hpc.sagepub.com/content/28/2/196 */
- /* > */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int dsytrd_sb2st_(char *stage1, char *vect, char *uplo,
- integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *
- d__, doublereal *e, doublereal *hous, integer *lhous, doublereal *
- work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
- real r__1;
-
- /* Local variables */
- integer inda;
- extern integer ilaenv2stage_(integer *, char *, char *, integer *,
- integer *, integer *, integer *);
- integer thed, indv, myid, indw, apos, dpos, abofdpos, nthreads, i__, k, m,
- edind, debug;
- extern logical lsame_(char *, char *);
- integer lhmin, sidev, sizea, shift, stind, colpt, lwmin, awpos;
- logical wantq, upper;
- integer grsiz, ttype, stepercol, ed, ib, st, abdpos;
- extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), xerbla_(char *, integer *, ftnlen);
- integer thgrid;
- extern /* Subroutine */ int dsb2st_kernels_(char *, logical *, integer *,
- integer *, integer *, integer *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- integer thgrnb, indtau, ofdpos, blklastind;
- extern /* Subroutine */ int mecago_();
- logical lquery, afters1;
- integer lda, tid, ldv, stt, sweepid, nbtiles, sizetau, thgrsiz;
-
-
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Determine the minimal workspace size required. */
- /* Test the input parameters */
-
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1 * 1;
- ab -= ab_offset;
- --d__;
- --e;
- --hous;
- --work;
-
- /* Function Body */
- debug = 0;
- *info = 0;
- afters1 = lsame_(stage1, "Y");
- wantq = lsame_(vect, "V");
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1 || *lhous == -1;
-
- /* Determine the block size, the workspace size and the hous size. */
-
- ib = ilaenv2stage_(&c__2, "DSYTRD_SB2ST", vect, n, kd, &c_n1, &c_n1);
- lhmin = ilaenv2stage_(&c__3, "DSYTRD_SB2ST", vect, n, kd, &ib, &c_n1);
- lwmin = ilaenv2stage_(&c__4, "DSYTRD_SB2ST", vect, n, kd, &ib, &c_n1);
-
- if (! afters1 && ! lsame_(stage1, "N")) {
- *info = -1;
- } else if (! lsame_(vect, "N")) {
- *info = -2;
- } else if (! upper && ! lsame_(uplo, "L")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*kd < 0) {
- *info = -5;
- } else if (*ldab < *kd + 1) {
- *info = -7;
- } else if (*lhous < lhmin && ! lquery) {
- *info = -11;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -13;
- }
-
- if (*info == 0) {
- hous[1] = (doublereal) lhmin;
- work[1] = (doublereal) lwmin;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYTRD_SB2ST", &i__1, (ftnlen)12);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- hous[1] = 1.;
- work[1] = 1.;
- return 0;
- }
-
- /* Determine pointer position */
-
- ldv = *kd + ib;
- sizetau = *n << 1;
- sidev = *n << 1;
- indtau = 1;
- indv = indtau + sizetau;
- lda = (*kd << 1) + 1;
- sizea = lda * *n;
- inda = 1;
- indw = inda + sizea;
- nthreads = 1;
- tid = 0;
-
- if (upper) {
- apos = inda + *kd;
- awpos = inda;
- dpos = apos + *kd;
- ofdpos = dpos - 1;
- abdpos = *kd + 1;
- abofdpos = *kd;
- } else {
- apos = inda;
- awpos = inda + *kd + 1;
- dpos = apos;
- ofdpos = dpos + 1;
- abdpos = 1;
- abofdpos = 2;
- }
-
- /* Case KD=0: */
- /* The matrix is diagonal. We just copy it (convert to "real" for */
- /* real because D is double and the imaginary part should be 0) */
- /* and store it in D. A sequential code here is better or */
- /* in a parallel environment it might need two cores for D and E */
-
- if (*kd == 0) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[abdpos + i__ * ab_dim1];
- /* L30: */
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.;
- /* L40: */
- }
-
- hous[1] = 1.;
- work[1] = 1.;
- return 0;
- }
-
- /* Case KD=1: */
- /* The matrix is already Tridiagonal. We have to make diagonal */
- /* and offdiagonal elements real, and store them in D and E. */
- /* For that, for real precision just copy the diag and offdiag */
- /* to D and E while for the COMPLEX case the bulge chasing is */
- /* performed to convert the hermetian tridiagonal to symmetric */
- /* tridiagonal. A simpler coversion formula might be used, but then */
- /* updating the Q matrix will be required and based if Q is generated */
- /* or not this might complicate the story. */
-
- if (*kd == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[abdpos + i__ * ab_dim1];
- /* L50: */
- }
-
- if (upper) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[abofdpos + (i__ + 1) * ab_dim1];
- /* L60: */
- }
- } else {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[abofdpos + i__ * ab_dim1];
- /* L70: */
- }
- }
-
- hous[1] = 1.;
- work[1] = 1.;
- return 0;
- }
-
- /* Main code start here. */
- /* Reduce the symmetric band of A to a tridiagonal matrix. */
-
- thgrsiz = *n;
- grsiz = 1;
- shift = 3;
- r__1 = (real) (*n) / (real) (*kd) + .5f;
- nbtiles = r_int(&r__1);
- r__1 = (real) shift / (real) grsiz + .5f;
- stepercol = r_int(&r__1);
- r__1 = (real) (*n - 1) / (real) thgrsiz + .5f;
- thgrnb = r_int(&r__1);
-
- i__1 = *kd + 1;
- dlacpy_("A", &i__1, n, &ab[ab_offset], ldab, &work[apos], &lda)
- ;
- dlaset_("A", kd, n, &c_b26, &c_b26, &work[awpos], &lda);
-
-
- /* openMP parallelisation start here */
-
-
- /* main bulge chasing loop */
-
- i__1 = thgrnb;
- for (thgrid = 1; thgrid <= i__1; ++thgrid) {
- stt = (thgrid - 1) * thgrsiz + 1;
- /* Computing MIN */
- i__2 = stt + thgrsiz - 1, i__3 = *n - 1;
- thed = f2cmin(i__2,i__3);
- i__2 = *n - 1;
- for (i__ = stt; i__ <= i__2; ++i__) {
- ed = f2cmin(i__,thed);
- if (stt > ed) {
- myexit_();
- }
- i__3 = stepercol;
- for (m = 1; m <= i__3; ++m) {
- st = stt;
- i__4 = ed;
- for (sweepid = st; sweepid <= i__4; ++sweepid) {
- i__5 = grsiz;
- for (k = 1; k <= i__5; ++k) {
- myid = (i__ - sweepid) * (stepercol * grsiz) + (m - 1)
- * grsiz + k;
- if (myid == 1) {
- ttype = 1;
- } else {
- ttype = myid % 2 + 2;
- }
- if (ttype == 2) {
- colpt = myid / 2 * *kd + sweepid;
- stind = colpt - *kd + 1;
- edind = f2cmin(colpt,*n);
- blklastind = colpt;
- } else {
- colpt = (myid + 1) / 2 * *kd + sweepid;
- stind = colpt - *kd + 1;
- edind = f2cmin(colpt,*n);
- if (stind >= edind - 1 && edind == *n) {
- blklastind = *n;
- } else {
- blklastind = 0;
- }
- }
-
- /* Call the kernel */
-
- dsb2st_kernels_(uplo, &wantq, &ttype, &stind, &edind,
- &sweepid, n, kd, &ib, &work[inda], &lda, &
- hous[indv], &hous[indtau], &ldv, &work[indw +
- tid * *kd]);
- if (blklastind >= *n - 1) {
- ++stt;
- myexit_();
- }
- /* L140: */
- }
- /* L130: */
- }
- /* L120: */
- }
- /* L110: */
- }
- /* L100: */
- }
-
-
- /* Copy the diagonal from A to D. Note that D is REAL thus only */
- /* the Real part is needed, the imaginary part should be zero. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = work[dpos + (i__ - 1) * lda];
- /* L150: */
- }
-
- /* Copy the off diagonal from A to E. Note that E is REAL thus only */
- /* the Real part is needed, the imaginary part should be zero. */
-
- if (upper) {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = work[ofdpos + i__ * lda];
- /* L160: */
- }
- } else {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = work[ofdpos + (i__ - 1) * lda];
- /* L170: */
- }
- }
-
- hous[1] = (doublereal) lhmin;
- work[1] = (doublereal) lwmin;
- return 0;
-
- /* End of DSYTRD_SB2ST */
-
- } /* dsytrd_sb2st__ */
-
|