You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggev3.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. static doublereal c_b38 = 0.;
  490. static doublereal c_b39 = 1.;
  491. /* > \brief <b> DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  492. rices (blocked algorithm)</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DGGEV3 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev3.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev3.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev3.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, */
  511. /* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, */
  512. /* $ INFO ) */
  513. /* CHARACTER JOBVL, JOBVR */
  514. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  515. /* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  516. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  517. /* $ VR( LDVR, * ), WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  524. /* > the generalized eigenvalues, and optionally, the left and/or right */
  525. /* > generalized eigenvectors. */
  526. /* > */
  527. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  528. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  529. /* > singular. It is usually represented as the pair (alpha,beta), as */
  530. /* > there is a reasonable interpretation for beta=0, and even for both */
  531. /* > being zero. */
  532. /* > */
  533. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  534. /* > of (A,B) satisfies */
  535. /* > */
  536. /* > A * v(j) = lambda(j) * B * v(j). */
  537. /* > */
  538. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  539. /* > of (A,B) satisfies */
  540. /* > */
  541. /* > u(j)**H * A = lambda(j) * u(j)**H * B . */
  542. /* > */
  543. /* > where u(j)**H is the conjugate-transpose of u(j). */
  544. /* > */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBVL */
  549. /* > \verbatim */
  550. /* > JOBVL is CHARACTER*1 */
  551. /* > = 'N': do not compute the left generalized eigenvectors; */
  552. /* > = 'V': compute the left generalized eigenvectors. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBVR */
  556. /* > \verbatim */
  557. /* > JOBVR is CHARACTER*1 */
  558. /* > = 'N': do not compute the right generalized eigenvectors; */
  559. /* > = 'V': compute the right generalized eigenvectors. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] A */
  569. /* > \verbatim */
  570. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  571. /* > On entry, the matrix A in the pair (A,B). */
  572. /* > On exit, A has been overwritten. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LDA */
  576. /* > \verbatim */
  577. /* > LDA is INTEGER */
  578. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] B */
  582. /* > \verbatim */
  583. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  584. /* > On entry, the matrix B in the pair (A,B). */
  585. /* > On exit, B has been overwritten. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDB */
  589. /* > \verbatim */
  590. /* > LDB is INTEGER */
  591. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] ALPHAR */
  595. /* > \verbatim */
  596. /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] ALPHAI */
  600. /* > \verbatim */
  601. /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] BETA */
  605. /* > \verbatim */
  606. /* > BETA is DOUBLE PRECISION array, dimension (N) */
  607. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  608. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  609. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  610. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  611. /* > ALPHAI(j+1) negative. */
  612. /* > */
  613. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  614. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  615. /* > Thus, the user should avoid naively computing the ratio */
  616. /* > alpha/beta. However, ALPHAR and ALPHAI will be always less */
  617. /* > than and usually comparable with norm(A) in magnitude, and */
  618. /* > BETA always less than and usually comparable with norm(B). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] VL */
  622. /* > \verbatim */
  623. /* > VL is DOUBLE PRECISION array, dimension (LDVL,N) */
  624. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  625. /* > after another in the columns of VL, in the same order as */
  626. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  627. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  628. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  629. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  630. /* > Each eigenvector is scaled so the largest component has */
  631. /* > abs(real part)+abs(imag. part)=1. */
  632. /* > Not referenced if JOBVL = 'N'. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDVL */
  636. /* > \verbatim */
  637. /* > LDVL is INTEGER */
  638. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  639. /* > if JOBVL = 'V', LDVL >= N. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] VR */
  643. /* > \verbatim */
  644. /* > VR is DOUBLE PRECISION array, dimension (LDVR,N) */
  645. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  646. /* > after another in the columns of VR, in the same order as */
  647. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  648. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  649. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  650. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  651. /* > Each eigenvector is scaled so the largest component has */
  652. /* > abs(real part)+abs(imag. part)=1. */
  653. /* > Not referenced if JOBVR = 'N'. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in] LDVR */
  657. /* > \verbatim */
  658. /* > LDVR is INTEGER */
  659. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  660. /* > if JOBVR = 'V', LDVR >= N. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] WORK */
  664. /* > \verbatim */
  665. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  666. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] LWORK */
  670. /* > \verbatim */
  671. /* > LWORK is INTEGER */
  672. /* > */
  673. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  674. /* > only calculates the optimal size of the WORK array, returns */
  675. /* > this value as the first entry of the WORK array, and no error */
  676. /* > message related to LWORK is issued by XERBLA. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] INFO */
  680. /* > \verbatim */
  681. /* > INFO is INTEGER */
  682. /* > = 0: successful exit */
  683. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  684. /* > = 1,...,N: */
  685. /* > The QZ iteration failed. No eigenvectors have been */
  686. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  687. /* > should be correct for j=INFO+1,...,N. */
  688. /* > > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  689. /* > =N+2: error return from DTGEVC. */
  690. /* > \endverbatim */
  691. /* Authors: */
  692. /* ======== */
  693. /* > \author Univ. of Tennessee */
  694. /* > \author Univ. of California Berkeley */
  695. /* > \author Univ. of Colorado Denver */
  696. /* > \author NAG Ltd. */
  697. /* > \date January 2015 */
  698. /* > \ingroup doubleGEeigen */
  699. /* ===================================================================== */
  700. /* Subroutine */ int dggev3_(char *jobvl, char *jobvr, integer *n, doublereal
  701. *a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
  702. doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
  703. doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
  704. integer *info)
  705. {
  706. /* System generated locals */
  707. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  708. vr_offset, i__1, i__2;
  709. doublereal d__1, d__2, d__3, d__4;
  710. /* Local variables */
  711. doublereal anrm, bnrm;
  712. integer ierr, itau;
  713. doublereal temp;
  714. logical ilvl, ilvr;
  715. integer iwrk;
  716. extern logical lsame_(char *, char *);
  717. integer ileft, icols;
  718. extern /* Subroutine */ int dgghd3_(char *, char *, integer *, integer *,
  719. integer *, doublereal *, integer *, doublereal *, integer *,
  720. doublereal *, integer *, doublereal *, integer *, doublereal *,
  721. integer *, integer *);
  722. integer irows;
  723. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
  724. integer jc;
  725. extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *,
  726. integer *, doublereal *, doublereal *, integer *, doublereal *,
  727. integer *, integer *), dggbal_(char *, integer *,
  728. doublereal *, integer *, doublereal *, integer *, integer *,
  729. integer *, doublereal *, doublereal *, doublereal *, integer *);
  730. integer in;
  731. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  732. integer *, doublereal *, integer *, doublereal *);
  733. integer jr;
  734. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  735. doublereal *, doublereal *, integer *, integer *, doublereal *,
  736. integer *, integer *);
  737. logical ilascl, ilbscl;
  738. extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
  739. integer *, doublereal *, doublereal *, integer *, integer *),
  740. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  741. doublereal *, integer *), dlaset_(char *, integer *,
  742. integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
  743. *, integer *, doublereal *, integer *, doublereal *, integer *,
  744. doublereal *, integer *, integer *, integer *, doublereal *,
  745. integer *);
  746. logical ldumma[1];
  747. char chtemp[1];
  748. doublereal bignum;
  749. extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
  750. integer *, integer *, doublereal *, integer *, doublereal *,
  751. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  752. integer *, doublereal *, integer *, doublereal *, integer *,
  753. integer *), xerbla_(char *, integer *, ftnlen);
  754. integer ijobvl, iright, ijobvr;
  755. extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
  756. doublereal *, integer *, doublereal *, doublereal *, integer *,
  757. integer *);
  758. doublereal anrmto, bnrmto;
  759. extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
  760. integer *, doublereal *, integer *, doublereal *, doublereal *,
  761. integer *, doublereal *, integer *, integer *);
  762. doublereal smlnum;
  763. integer lwkopt;
  764. logical lquery;
  765. integer ihi, ilo;
  766. doublereal eps;
  767. logical ilv;
  768. /* -- LAPACK driver routine (version 3.6.0) -- */
  769. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  770. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  771. /* January 2015 */
  772. /* ===================================================================== */
  773. /* Decode the input arguments */
  774. /* Parameter adjustments */
  775. a_dim1 = *lda;
  776. a_offset = 1 + a_dim1 * 1;
  777. a -= a_offset;
  778. b_dim1 = *ldb;
  779. b_offset = 1 + b_dim1 * 1;
  780. b -= b_offset;
  781. --alphar;
  782. --alphai;
  783. --beta;
  784. vl_dim1 = *ldvl;
  785. vl_offset = 1 + vl_dim1 * 1;
  786. vl -= vl_offset;
  787. vr_dim1 = *ldvr;
  788. vr_offset = 1 + vr_dim1 * 1;
  789. vr -= vr_offset;
  790. --work;
  791. /* Function Body */
  792. if (lsame_(jobvl, "N")) {
  793. ijobvl = 1;
  794. ilvl = FALSE_;
  795. } else if (lsame_(jobvl, "V")) {
  796. ijobvl = 2;
  797. ilvl = TRUE_;
  798. } else {
  799. ijobvl = -1;
  800. ilvl = FALSE_;
  801. }
  802. if (lsame_(jobvr, "N")) {
  803. ijobvr = 1;
  804. ilvr = FALSE_;
  805. } else if (lsame_(jobvr, "V")) {
  806. ijobvr = 2;
  807. ilvr = TRUE_;
  808. } else {
  809. ijobvr = -1;
  810. ilvr = FALSE_;
  811. }
  812. ilv = ilvl || ilvr;
  813. /* Test the input arguments */
  814. *info = 0;
  815. lquery = *lwork == -1;
  816. if (ijobvl <= 0) {
  817. *info = -1;
  818. } else if (ijobvr <= 0) {
  819. *info = -2;
  820. } else if (*n < 0) {
  821. *info = -3;
  822. } else if (*lda < f2cmax(1,*n)) {
  823. *info = -5;
  824. } else if (*ldb < f2cmax(1,*n)) {
  825. *info = -7;
  826. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  827. *info = -12;
  828. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  829. *info = -14;
  830. } else /* if(complicated condition) */ {
  831. /* Computing MAX */
  832. i__1 = 1, i__2 = *n << 3;
  833. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  834. *info = -16;
  835. }
  836. }
  837. /* Compute workspace */
  838. if (*info == 0) {
  839. dgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  840. /* Computing MAX */
  841. i__1 = 1, i__2 = *n << 3, i__1 = f2cmax(i__1,i__2), i__2 = *n * 3 + (
  842. integer) work[1];
  843. lwkopt = f2cmax(i__1,i__2);
  844. dormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  845. lda, &work[1], &c_n1, &ierr);
  846. /* Computing MAX */
  847. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  848. lwkopt = f2cmax(i__1,i__2);
  849. if (ilvl) {
  850. dorgqr_(n, n, n, &vl[vl_offset], ldvl, &work[1], &work[1], &c_n1,
  851. &ierr);
  852. /* Computing MAX */
  853. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  854. lwkopt = f2cmax(i__1,i__2);
  855. }
  856. if (ilv) {
  857. dgghd3_(jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[b_offset]
  858. , ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[
  859. 1], &c_n1, &ierr);
  860. /* Computing MAX */
  861. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  862. lwkopt = f2cmax(i__1,i__2);
  863. dhgeqz_("S", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  864. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  865. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  866. ierr);
  867. /* Computing MAX */
  868. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  869. lwkopt = f2cmax(i__1,i__2);
  870. } else {
  871. dgghd3_("N", "N", n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  872. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1],
  873. &c_n1, &ierr);
  874. /* Computing MAX */
  875. i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
  876. lwkopt = f2cmax(i__1,i__2);
  877. dhgeqz_("E", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  878. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[
  879. vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &c_n1, &
  880. ierr);
  881. /* Computing MAX */
  882. i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
  883. lwkopt = f2cmax(i__1,i__2);
  884. }
  885. work[1] = (doublereal) lwkopt;
  886. }
  887. if (*info != 0) {
  888. i__1 = -(*info);
  889. xerbla_("DGGEV3 ", &i__1, (ftnlen)6);
  890. return 0;
  891. } else if (lquery) {
  892. return 0;
  893. }
  894. /* Quick return if possible */
  895. if (*n == 0) {
  896. return 0;
  897. }
  898. /* Get machine constants */
  899. eps = dlamch_("P");
  900. smlnum = dlamch_("S");
  901. bignum = 1. / smlnum;
  902. dlabad_(&smlnum, &bignum);
  903. smlnum = sqrt(smlnum) / eps;
  904. bignum = 1. / smlnum;
  905. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  906. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  907. ilascl = FALSE_;
  908. if (anrm > 0. && anrm < smlnum) {
  909. anrmto = smlnum;
  910. ilascl = TRUE_;
  911. } else if (anrm > bignum) {
  912. anrmto = bignum;
  913. ilascl = TRUE_;
  914. }
  915. if (ilascl) {
  916. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  917. ierr);
  918. }
  919. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  920. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  921. ilbscl = FALSE_;
  922. if (bnrm > 0. && bnrm < smlnum) {
  923. bnrmto = smlnum;
  924. ilbscl = TRUE_;
  925. } else if (bnrm > bignum) {
  926. bnrmto = bignum;
  927. ilbscl = TRUE_;
  928. }
  929. if (ilbscl) {
  930. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  931. ierr);
  932. }
  933. /* Permute the matrices A, B to isolate eigenvalues if possible */
  934. ileft = 1;
  935. iright = *n + 1;
  936. iwrk = iright + *n;
  937. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  938. ileft], &work[iright], &work[iwrk], &ierr);
  939. /* Reduce B to triangular form (QR decomposition of B) */
  940. irows = ihi + 1 - ilo;
  941. if (ilv) {
  942. icols = *n + 1 - ilo;
  943. } else {
  944. icols = irows;
  945. }
  946. itau = iwrk;
  947. iwrk = itau + irows;
  948. i__1 = *lwork + 1 - iwrk;
  949. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  950. iwrk], &i__1, &ierr);
  951. /* Apply the orthogonal transformation to matrix A */
  952. i__1 = *lwork + 1 - iwrk;
  953. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  954. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  955. ierr);
  956. /* Initialize VL */
  957. if (ilvl) {
  958. dlaset_("Full", n, n, &c_b38, &c_b39, &vl[vl_offset], ldvl)
  959. ;
  960. if (irows > 1) {
  961. i__1 = irows - 1;
  962. i__2 = irows - 1;
  963. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  964. ilo + 1 + ilo * vl_dim1], ldvl);
  965. }
  966. i__1 = *lwork + 1 - iwrk;
  967. dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  968. itau], &work[iwrk], &i__1, &ierr);
  969. }
  970. /* Initialize VR */
  971. if (ilvr) {
  972. dlaset_("Full", n, n, &c_b38, &c_b39, &vr[vr_offset], ldvr)
  973. ;
  974. }
  975. /* Reduce to generalized Hessenberg form */
  976. if (ilv) {
  977. /* Eigenvectors requested -- work on whole matrix. */
  978. i__1 = *lwork + 1 - iwrk;
  979. dgghd3_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  980. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk],
  981. &i__1, &ierr);
  982. } else {
  983. i__1 = *lwork + 1 - iwrk;
  984. dgghd3_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  985. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  986. vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  987. }
  988. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  989. /* Schur forms and Schur vectors) */
  990. iwrk = itau;
  991. if (ilv) {
  992. *(unsigned char *)chtemp = 'S';
  993. } else {
  994. *(unsigned char *)chtemp = 'E';
  995. }
  996. i__1 = *lwork + 1 - iwrk;
  997. dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  998. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  999. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  1000. if (ierr != 0) {
  1001. if (ierr > 0 && ierr <= *n) {
  1002. *info = ierr;
  1003. } else if (ierr > *n && ierr <= *n << 1) {
  1004. *info = ierr - *n;
  1005. } else {
  1006. *info = *n + 1;
  1007. }
  1008. goto L110;
  1009. }
  1010. /* Compute Eigenvectors */
  1011. if (ilv) {
  1012. if (ilvl) {
  1013. if (ilvr) {
  1014. *(unsigned char *)chtemp = 'B';
  1015. } else {
  1016. *(unsigned char *)chtemp = 'L';
  1017. }
  1018. } else {
  1019. *(unsigned char *)chtemp = 'R';
  1020. }
  1021. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  1022. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1023. iwrk], &ierr);
  1024. if (ierr != 0) {
  1025. *info = *n + 2;
  1026. goto L110;
  1027. }
  1028. /* Undo balancing on VL and VR and normalization */
  1029. if (ilvl) {
  1030. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1031. vl[vl_offset], ldvl, &ierr);
  1032. i__1 = *n;
  1033. for (jc = 1; jc <= i__1; ++jc) {
  1034. if (alphai[jc] < 0.) {
  1035. goto L50;
  1036. }
  1037. temp = 0.;
  1038. if (alphai[jc] == 0.) {
  1039. i__2 = *n;
  1040. for (jr = 1; jr <= i__2; ++jr) {
  1041. /* Computing MAX */
  1042. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
  1043. abs(d__1));
  1044. temp = f2cmax(d__2,d__3);
  1045. /* L10: */
  1046. }
  1047. } else {
  1048. i__2 = *n;
  1049. for (jr = 1; jr <= i__2; ++jr) {
  1050. /* Computing MAX */
  1051. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
  1052. abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
  1053. vl_dim1], abs(d__2));
  1054. temp = f2cmax(d__3,d__4);
  1055. /* L20: */
  1056. }
  1057. }
  1058. if (temp < smlnum) {
  1059. goto L50;
  1060. }
  1061. temp = 1. / temp;
  1062. if (alphai[jc] == 0.) {
  1063. i__2 = *n;
  1064. for (jr = 1; jr <= i__2; ++jr) {
  1065. vl[jr + jc * vl_dim1] *= temp;
  1066. /* L30: */
  1067. }
  1068. } else {
  1069. i__2 = *n;
  1070. for (jr = 1; jr <= i__2; ++jr) {
  1071. vl[jr + jc * vl_dim1] *= temp;
  1072. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1073. /* L40: */
  1074. }
  1075. }
  1076. L50:
  1077. ;
  1078. }
  1079. }
  1080. if (ilvr) {
  1081. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1082. vr[vr_offset], ldvr, &ierr);
  1083. i__1 = *n;
  1084. for (jc = 1; jc <= i__1; ++jc) {
  1085. if (alphai[jc] < 0.) {
  1086. goto L100;
  1087. }
  1088. temp = 0.;
  1089. if (alphai[jc] == 0.) {
  1090. i__2 = *n;
  1091. for (jr = 1; jr <= i__2; ++jr) {
  1092. /* Computing MAX */
  1093. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
  1094. abs(d__1));
  1095. temp = f2cmax(d__2,d__3);
  1096. /* L60: */
  1097. }
  1098. } else {
  1099. i__2 = *n;
  1100. for (jr = 1; jr <= i__2; ++jr) {
  1101. /* Computing MAX */
  1102. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
  1103. abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
  1104. vr_dim1], abs(d__2));
  1105. temp = f2cmax(d__3,d__4);
  1106. /* L70: */
  1107. }
  1108. }
  1109. if (temp < smlnum) {
  1110. goto L100;
  1111. }
  1112. temp = 1. / temp;
  1113. if (alphai[jc] == 0.) {
  1114. i__2 = *n;
  1115. for (jr = 1; jr <= i__2; ++jr) {
  1116. vr[jr + jc * vr_dim1] *= temp;
  1117. /* L80: */
  1118. }
  1119. } else {
  1120. i__2 = *n;
  1121. for (jr = 1; jr <= i__2; ++jr) {
  1122. vr[jr + jc * vr_dim1] *= temp;
  1123. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1124. /* L90: */
  1125. }
  1126. }
  1127. L100:
  1128. ;
  1129. }
  1130. }
  1131. /* End of eigenvector calculation */
  1132. }
  1133. /* Undo scaling if necessary */
  1134. L110:
  1135. if (ilascl) {
  1136. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1137. ierr);
  1138. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1139. ierr);
  1140. }
  1141. if (ilbscl) {
  1142. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1143. ierr);
  1144. }
  1145. work[1] = (doublereal) lwkopt;
  1146. return 0;
  1147. /* End of DGGEV3 */
  1148. } /* dggev3_ */