You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cstein.c 29 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__2 = 2;
  487. static integer c__1 = 1;
  488. static integer c_n1 = -1;
  489. /* > \brief \b CSTEIN */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CSTEIN + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstein.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstein.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstein.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, */
  508. /* IWORK, IFAIL, INFO ) */
  509. /* INTEGER INFO, LDZ, M, N */
  510. /* INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ), */
  511. /* $ IWORK( * ) */
  512. /* REAL D( * ), E( * ), W( * ), WORK( * ) */
  513. /* COMPLEX Z( LDZ, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CSTEIN computes the eigenvectors of a real symmetric tridiagonal */
  520. /* > matrix T corresponding to specified eigenvalues, using inverse */
  521. /* > iteration. */
  522. /* > */
  523. /* > The maximum number of iterations allowed for each eigenvector is */
  524. /* > specified by an internal parameter MAXITS (currently set to 5). */
  525. /* > */
  526. /* > Although the eigenvectors are real, they are stored in a complex */
  527. /* > array, which may be passed to CUNMTR or CUPMTR for back */
  528. /* > transformation to the eigenvectors of a complex Hermitian matrix */
  529. /* > which was reduced to tridiagonal form. */
  530. /* > */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] N */
  535. /* > \verbatim */
  536. /* > N is INTEGER */
  537. /* > The order of the matrix. N >= 0. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] D */
  541. /* > \verbatim */
  542. /* > D is REAL array, dimension (N) */
  543. /* > The n diagonal elements of the tridiagonal matrix T. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] E */
  547. /* > \verbatim */
  548. /* > E is REAL array, dimension (N-1) */
  549. /* > The (n-1) subdiagonal elements of the tridiagonal matrix */
  550. /* > T, stored in elements 1 to N-1. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] M */
  554. /* > \verbatim */
  555. /* > M is INTEGER */
  556. /* > The number of eigenvectors to be found. 0 <= M <= N. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] W */
  560. /* > \verbatim */
  561. /* > W is REAL array, dimension (N) */
  562. /* > The first M elements of W contain the eigenvalues for */
  563. /* > which eigenvectors are to be computed. The eigenvalues */
  564. /* > should be grouped by split-off block and ordered from */
  565. /* > smallest to largest within the block. ( The output array */
  566. /* > W from SSTEBZ with ORDER = 'B' is expected here. ) */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] IBLOCK */
  570. /* > \verbatim */
  571. /* > IBLOCK is INTEGER array, dimension (N) */
  572. /* > The submatrix indices associated with the corresponding */
  573. /* > eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
  574. /* > the first submatrix from the top, =2 if W(i) belongs to */
  575. /* > the second submatrix, etc. ( The output array IBLOCK */
  576. /* > from SSTEBZ is expected here. ) */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] ISPLIT */
  580. /* > \verbatim */
  581. /* > ISPLIT is INTEGER array, dimension (N) */
  582. /* > The splitting points, at which T breaks up into submatrices. */
  583. /* > The first submatrix consists of rows/columns 1 to */
  584. /* > ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
  585. /* > through ISPLIT( 2 ), etc. */
  586. /* > ( The output array ISPLIT from SSTEBZ is expected here. ) */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] Z */
  590. /* > \verbatim */
  591. /* > Z is COMPLEX array, dimension (LDZ, M) */
  592. /* > The computed eigenvectors. The eigenvector associated */
  593. /* > with the eigenvalue W(i) is stored in the i-th column of */
  594. /* > Z. Any vector which fails to converge is set to its current */
  595. /* > iterate after MAXITS iterations. */
  596. /* > The imaginary parts of the eigenvectors are set to zero. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDZ */
  600. /* > \verbatim */
  601. /* > LDZ is INTEGER */
  602. /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] WORK */
  606. /* > \verbatim */
  607. /* > WORK is REAL array, dimension (5*N) */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] IWORK */
  611. /* > \verbatim */
  612. /* > IWORK is INTEGER array, dimension (N) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] IFAIL */
  616. /* > \verbatim */
  617. /* > IFAIL is INTEGER array, dimension (M) */
  618. /* > On normal exit, all elements of IFAIL are zero. */
  619. /* > If one or more eigenvectors fail to converge after */
  620. /* > MAXITS iterations, then their indices are stored in */
  621. /* > array IFAIL. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  629. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  630. /* > in MAXITS iterations. Their indices are stored in */
  631. /* > array IFAIL. */
  632. /* > \endverbatim */
  633. /* > \par Internal Parameters: */
  634. /* ========================= */
  635. /* > */
  636. /* > \verbatim */
  637. /* > MAXITS INTEGER, default = 5 */
  638. /* > The maximum number of iterations performed. */
  639. /* > */
  640. /* > EXTRA INTEGER, default = 2 */
  641. /* > The number of iterations performed after norm growth */
  642. /* > criterion is satisfied, should be at least 1. */
  643. /* > \endverbatim */
  644. /* Authors: */
  645. /* ======== */
  646. /* > \author Univ. of Tennessee */
  647. /* > \author Univ. of California Berkeley */
  648. /* > \author Univ. of Colorado Denver */
  649. /* > \author NAG Ltd. */
  650. /* > \date December 2016 */
  651. /* > \ingroup complexOTHERcomputational */
  652. /* ===================================================================== */
  653. /* Subroutine */ int cstein_(integer *n, real *d__, real *e, integer *m, real
  654. *w, integer *iblock, integer *isplit, complex *z__, integer *ldz,
  655. real *work, integer *iwork, integer *ifail, integer *info)
  656. {
  657. /* System generated locals */
  658. integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  659. real r__1, r__2, r__3, r__4, r__5;
  660. complex q__1;
  661. /* Local variables */
  662. integer jblk, nblk, jmax;
  663. extern real snrm2_(integer *, real *, integer *);
  664. integer i__, j, iseed[4], gpind, iinfo;
  665. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  666. integer b1, j1;
  667. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  668. integer *);
  669. real ortol;
  670. integer indrv1, indrv2, indrv3, indrv4, indrv5, bn, jr;
  671. real xj;
  672. extern real slamch_(char *);
  673. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slagtf_(
  674. integer *, real *, real *, real *, real *, real *, real *,
  675. integer *, integer *);
  676. integer nrmchk;
  677. extern integer isamax_(integer *, real *, integer *);
  678. extern /* Subroutine */ int slagts_(integer *, integer *, real *, real *,
  679. real *, real *, integer *, real *, real *, integer *);
  680. integer blksiz;
  681. real onenrm, pertol;
  682. extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real
  683. *);
  684. real stpcrt, scl, eps, ctr, sep, nrm, tol;
  685. integer its;
  686. real xjm, eps1;
  687. /* -- LAPACK computational routine (version 3.7.0) -- */
  688. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  689. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  690. /* December 2016 */
  691. /* ===================================================================== */
  692. /* Test the input parameters. */
  693. /* Parameter adjustments */
  694. --d__;
  695. --e;
  696. --w;
  697. --iblock;
  698. --isplit;
  699. z_dim1 = *ldz;
  700. z_offset = 1 + z_dim1 * 1;
  701. z__ -= z_offset;
  702. --work;
  703. --iwork;
  704. --ifail;
  705. /* Function Body */
  706. *info = 0;
  707. i__1 = *m;
  708. for (i__ = 1; i__ <= i__1; ++i__) {
  709. ifail[i__] = 0;
  710. /* L10: */
  711. }
  712. if (*n < 0) {
  713. *info = -1;
  714. } else if (*m < 0 || *m > *n) {
  715. *info = -4;
  716. } else if (*ldz < f2cmax(1,*n)) {
  717. *info = -9;
  718. } else {
  719. i__1 = *m;
  720. for (j = 2; j <= i__1; ++j) {
  721. if (iblock[j] < iblock[j - 1]) {
  722. *info = -6;
  723. goto L30;
  724. }
  725. if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
  726. *info = -5;
  727. goto L30;
  728. }
  729. /* L20: */
  730. }
  731. L30:
  732. ;
  733. }
  734. if (*info != 0) {
  735. i__1 = -(*info);
  736. xerbla_("CSTEIN", &i__1, (ftnlen)6);
  737. return 0;
  738. }
  739. /* Quick return if possible */
  740. if (*n == 0 || *m == 0) {
  741. return 0;
  742. } else if (*n == 1) {
  743. i__1 = z_dim1 + 1;
  744. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  745. return 0;
  746. }
  747. /* Get machine constants. */
  748. eps = slamch_("Precision");
  749. /* Initialize seed for random number generator SLARNV. */
  750. for (i__ = 1; i__ <= 4; ++i__) {
  751. iseed[i__ - 1] = 1;
  752. /* L40: */
  753. }
  754. /* Initialize pointers. */
  755. indrv1 = 0;
  756. indrv2 = indrv1 + *n;
  757. indrv3 = indrv2 + *n;
  758. indrv4 = indrv3 + *n;
  759. indrv5 = indrv4 + *n;
  760. /* Compute eigenvectors of matrix blocks. */
  761. j1 = 1;
  762. i__1 = iblock[*m];
  763. for (nblk = 1; nblk <= i__1; ++nblk) {
  764. /* Find starting and ending indices of block nblk. */
  765. if (nblk == 1) {
  766. b1 = 1;
  767. } else {
  768. b1 = isplit[nblk - 1] + 1;
  769. }
  770. bn = isplit[nblk];
  771. blksiz = bn - b1 + 1;
  772. if (blksiz == 1) {
  773. goto L60;
  774. }
  775. gpind = j1;
  776. /* Compute reorthogonalization criterion and stopping criterion. */
  777. onenrm = (r__1 = d__[b1], abs(r__1)) + (r__2 = e[b1], abs(r__2));
  778. /* Computing MAX */
  779. r__3 = onenrm, r__4 = (r__1 = d__[bn], abs(r__1)) + (r__2 = e[bn - 1],
  780. abs(r__2));
  781. onenrm = f2cmax(r__3,r__4);
  782. i__2 = bn - 1;
  783. for (i__ = b1 + 1; i__ <= i__2; ++i__) {
  784. /* Computing MAX */
  785. r__4 = onenrm, r__5 = (r__1 = d__[i__], abs(r__1)) + (r__2 = e[
  786. i__ - 1], abs(r__2)) + (r__3 = e[i__], abs(r__3));
  787. onenrm = f2cmax(r__4,r__5);
  788. /* L50: */
  789. }
  790. ortol = onenrm * .001f;
  791. stpcrt = sqrt(.1f / blksiz);
  792. /* Loop through eigenvalues of block nblk. */
  793. L60:
  794. jblk = 0;
  795. i__2 = *m;
  796. for (j = j1; j <= i__2; ++j) {
  797. if (iblock[j] != nblk) {
  798. j1 = j;
  799. goto L180;
  800. }
  801. ++jblk;
  802. xj = w[j];
  803. /* Skip all the work if the block size is one. */
  804. if (blksiz == 1) {
  805. work[indrv1 + 1] = 1.f;
  806. goto L140;
  807. }
  808. /* If eigenvalues j and j-1 are too close, add a relatively */
  809. /* small perturbation. */
  810. if (jblk > 1) {
  811. eps1 = (r__1 = eps * xj, abs(r__1));
  812. pertol = eps1 * 10.f;
  813. sep = xj - xjm;
  814. if (sep < pertol) {
  815. xj = xjm + pertol;
  816. }
  817. }
  818. its = 0;
  819. nrmchk = 0;
  820. /* Get random starting vector. */
  821. slarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
  822. /* Copy the matrix T so it won't be destroyed in factorization. */
  823. scopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
  824. i__3 = blksiz - 1;
  825. scopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
  826. i__3 = blksiz - 1;
  827. scopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
  828. /* Compute LU factors with partial pivoting ( PT = LU ) */
  829. tol = 0.f;
  830. slagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
  831. indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
  832. /* Update iteration count. */
  833. L70:
  834. ++its;
  835. if (its > 5) {
  836. goto L120;
  837. }
  838. /* Normalize and scale the righthand side vector Pb. */
  839. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  840. /* Computing MAX */
  841. r__3 = eps, r__4 = (r__1 = work[indrv4 + blksiz], abs(r__1));
  842. scl = blksiz * onenrm * f2cmax(r__3,r__4) / (r__2 = work[indrv1 +
  843. jmax], abs(r__2));
  844. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  845. /* Solve the system LU = Pb. */
  846. slagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
  847. work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
  848. indrv1 + 1], &tol, &iinfo);
  849. /* Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
  850. /* close enough. */
  851. if (jblk == 1) {
  852. goto L110;
  853. }
  854. if ((r__1 = xj - xjm, abs(r__1)) > ortol) {
  855. gpind = j;
  856. }
  857. if (gpind != j) {
  858. i__3 = j - 1;
  859. for (i__ = gpind; i__ <= i__3; ++i__) {
  860. ctr = 0.f;
  861. i__4 = blksiz;
  862. for (jr = 1; jr <= i__4; ++jr) {
  863. i__5 = b1 - 1 + jr + i__ * z_dim1;
  864. ctr += work[indrv1 + jr] * z__[i__5].r;
  865. /* L80: */
  866. }
  867. i__4 = blksiz;
  868. for (jr = 1; jr <= i__4; ++jr) {
  869. i__5 = b1 - 1 + jr + i__ * z_dim1;
  870. work[indrv1 + jr] -= ctr * z__[i__5].r;
  871. /* L90: */
  872. }
  873. /* L100: */
  874. }
  875. }
  876. /* Check the infinity norm of the iterate. */
  877. L110:
  878. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  879. nrm = (r__1 = work[indrv1 + jmax], abs(r__1));
  880. /* Continue for additional iterations after norm reaches */
  881. /* stopping criterion. */
  882. if (nrm < stpcrt) {
  883. goto L70;
  884. }
  885. ++nrmchk;
  886. if (nrmchk < 3) {
  887. goto L70;
  888. }
  889. goto L130;
  890. /* If stopping criterion was not satisfied, update info and */
  891. /* store eigenvector number in array ifail. */
  892. L120:
  893. ++(*info);
  894. ifail[*info] = j;
  895. /* Accept iterate as jth eigenvector. */
  896. L130:
  897. scl = 1.f / snrm2_(&blksiz, &work[indrv1 + 1], &c__1);
  898. jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
  899. if (work[indrv1 + jmax] < 0.f) {
  900. scl = -scl;
  901. }
  902. sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
  903. L140:
  904. i__3 = *n;
  905. for (i__ = 1; i__ <= i__3; ++i__) {
  906. i__4 = i__ + j * z_dim1;
  907. z__[i__4].r = 0.f, z__[i__4].i = 0.f;
  908. /* L150: */
  909. }
  910. i__3 = blksiz;
  911. for (i__ = 1; i__ <= i__3; ++i__) {
  912. i__4 = b1 + i__ - 1 + j * z_dim1;
  913. i__5 = indrv1 + i__;
  914. q__1.r = work[i__5], q__1.i = 0.f;
  915. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  916. /* L160: */
  917. }
  918. /* Save the shift to check eigenvalue spacing at next */
  919. /* iteration. */
  920. xjm = xj;
  921. /* L170: */
  922. }
  923. L180:
  924. ;
  925. }
  926. return 0;
  927. /* End of CSTEIN */
  928. } /* cstein_ */