You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chseqr.c 34 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. static integer c__12 = 12;
  490. static integer c__2 = 2;
  491. static integer c__49 = 49;
  492. /* > \brief \b CHSEQR */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CHSEQR + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chseqr.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chseqr.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chseqr.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, */
  511. /* WORK, LWORK, INFO ) */
  512. /* INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N */
  513. /* CHARACTER COMPZ, JOB */
  514. /* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CHSEQR computes the eigenvalues of a Hessenberg matrix H */
  521. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  522. /* > H = Z T Z**H, where T is an upper triangular matrix (the */
  523. /* > Schur form), and Z is the unitary matrix of Schur vectors. */
  524. /* > */
  525. /* > Optionally Z may be postmultiplied into an input unitary */
  526. /* > matrix Q so that this routine can give the Schur factorization */
  527. /* > of a matrix A which has been reduced to the Hessenberg form H */
  528. /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] JOB */
  533. /* > \verbatim */
  534. /* > JOB is CHARACTER*1 */
  535. /* > = 'E': compute eigenvalues only; */
  536. /* > = 'S': compute eigenvalues and the Schur form T. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] COMPZ */
  540. /* > \verbatim */
  541. /* > COMPZ is CHARACTER*1 */
  542. /* > = 'N': no Schur vectors are computed; */
  543. /* > = 'I': Z is initialized to the unit matrix and the matrix Z */
  544. /* > of Schur vectors of H is returned; */
  545. /* > = 'V': Z must contain an unitary matrix Q on entry, and */
  546. /* > the product Q*Z is returned. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] N */
  550. /* > \verbatim */
  551. /* > N is INTEGER */
  552. /* > The order of the matrix H. N >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] ILO */
  556. /* > \verbatim */
  557. /* > ILO is INTEGER */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] IHI */
  561. /* > \verbatim */
  562. /* > IHI is INTEGER */
  563. /* > */
  564. /* > It is assumed that H is already upper triangular in rows */
  565. /* > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
  566. /* > set by a previous call to CGEBAL, and then passed to ZGEHRD */
  567. /* > when the matrix output by CGEBAL is reduced to Hessenberg */
  568. /* > form. Otherwise ILO and IHI should be set to 1 and N */
  569. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  570. /* > If N = 0, then ILO = 1 and IHI = 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] H */
  574. /* > \verbatim */
  575. /* > H is COMPLEX array, dimension (LDH,N) */
  576. /* > On entry, the upper Hessenberg matrix H. */
  577. /* > On exit, if INFO = 0 and JOB = 'S', H contains the upper */
  578. /* > triangular matrix T from the Schur decomposition (the */
  579. /* > Schur form). If INFO = 0 and JOB = 'E', the contents of */
  580. /* > H are unspecified on exit. (The output value of H when */
  581. /* > INFO > 0 is given under the description of INFO below.) */
  582. /* > */
  583. /* > Unlike earlier versions of CHSEQR, this subroutine may */
  584. /* > explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 */
  585. /* > or j = IHI+1, IHI+2, ... N. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDH */
  589. /* > \verbatim */
  590. /* > LDH is INTEGER */
  591. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] W */
  595. /* > \verbatim */
  596. /* > W is COMPLEX array, dimension (N) */
  597. /* > The computed eigenvalues. If JOB = 'S', the eigenvalues are */
  598. /* > stored in the same order as on the diagonal of the Schur */
  599. /* > form returned in H, with W(i) = H(i,i). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] Z */
  603. /* > \verbatim */
  604. /* > Z is COMPLEX array, dimension (LDZ,N) */
  605. /* > If COMPZ = 'N', Z is not referenced. */
  606. /* > If COMPZ = 'I', on entry Z need not be set and on exit, */
  607. /* > if INFO = 0, Z contains the unitary matrix Z of the Schur */
  608. /* > vectors of H. If COMPZ = 'V', on entry Z must contain an */
  609. /* > N-by-N matrix Q, which is assumed to be equal to the unit */
  610. /* > matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, */
  611. /* > if INFO = 0, Z contains Q*Z. */
  612. /* > Normally Q is the unitary matrix generated by CUNGHR */
  613. /* > after the call to CGEHRD which formed the Hessenberg matrix */
  614. /* > H. (The output value of Z when INFO > 0 is given under */
  615. /* > the description of INFO below.) */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LDZ */
  619. /* > \verbatim */
  620. /* > LDZ is INTEGER */
  621. /* > The leading dimension of the array Z. if COMPZ = 'I' or */
  622. /* > COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] WORK */
  626. /* > \verbatim */
  627. /* > WORK is COMPLEX array, dimension (LWORK) */
  628. /* > On exit, if INFO = 0, WORK(1) returns an estimate of */
  629. /* > the optimal value for LWORK. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] LWORK */
  633. /* > \verbatim */
  634. /* > LWORK is INTEGER */
  635. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  636. /* > is sufficient and delivers very good and sometimes */
  637. /* > optimal performance. However, LWORK as large as 11*N */
  638. /* > may be required for optimal performance. A workspace */
  639. /* > query is recommended to determine the optimal workspace */
  640. /* > size. */
  641. /* > */
  642. /* > If LWORK = -1, then CHSEQR does a workspace query. */
  643. /* > In this case, CHSEQR checks the input parameters and */
  644. /* > estimates the optimal workspace size for the given */
  645. /* > values of N, ILO and IHI. The estimate is returned */
  646. /* > in WORK(1). No error message related to LWORK is */
  647. /* > issued by XERBLA. Neither H nor Z are accessed. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] INFO */
  651. /* > \verbatim */
  652. /* > INFO is INTEGER */
  653. /* > = 0: successful exit */
  654. /* > < 0: if INFO = -i, the i-th argument had an illegal */
  655. /* > value */
  656. /* > > 0: if INFO = i, CHSEQR failed to compute all of */
  657. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of W */
  658. /* > contain those eigenvalues which have been */
  659. /* > successfully computed. (Failures are rare.) */
  660. /* > */
  661. /* > If INFO > 0 and JOB = 'E', then on exit, the */
  662. /* > remaining unconverged eigenvalues are the eigen- */
  663. /* > values of the upper Hessenberg matrix rows and */
  664. /* > columns ILO through INFO of the final, output */
  665. /* > value of H. */
  666. /* > */
  667. /* > If INFO > 0 and JOB = 'S', then on exit */
  668. /* > */
  669. /* > (*) (initial value of H)*U = U*(final value of H) */
  670. /* > */
  671. /* > where U is a unitary matrix. The final */
  672. /* > value of H is upper Hessenberg and triangular in */
  673. /* > rows and columns INFO+1 through IHI. */
  674. /* > */
  675. /* > If INFO > 0 and COMPZ = 'V', then on exit */
  676. /* > */
  677. /* > (final value of Z) = (initial value of Z)*U */
  678. /* > */
  679. /* > where U is the unitary matrix in (*) (regard- */
  680. /* > less of the value of JOB.) */
  681. /* > */
  682. /* > If INFO > 0 and COMPZ = 'I', then on exit */
  683. /* > (final value of Z) = U */
  684. /* > where U is the unitary matrix in (*) (regard- */
  685. /* > less of the value of JOB.) */
  686. /* > */
  687. /* > If INFO > 0 and COMPZ = 'N', then Z is not */
  688. /* > accessed. */
  689. /* > \endverbatim */
  690. /* Authors: */
  691. /* ======== */
  692. /* > \author Univ. of Tennessee */
  693. /* > \author Univ. of California Berkeley */
  694. /* > \author Univ. of Colorado Denver */
  695. /* > \author NAG Ltd. */
  696. /* > \date December 2016 */
  697. /* > \ingroup complexOTHERcomputational */
  698. /* > \par Contributors: */
  699. /* ================== */
  700. /* > */
  701. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  702. /* > University of Kansas, USA */
  703. /* > \par Further Details: */
  704. /* ===================== */
  705. /* > */
  706. /* > \verbatim */
  707. /* > */
  708. /* > Default values supplied by */
  709. /* > ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). */
  710. /* > It is suggested that these defaults be adjusted in order */
  711. /* > to attain best performance in each particular */
  712. /* > computational environment. */
  713. /* > */
  714. /* > ISPEC=12: The CLAHQR vs CLAQR0 crossover point. */
  715. /* > Default: 75. (Must be at least 11.) */
  716. /* > */
  717. /* > ISPEC=13: Recommended deflation window size. */
  718. /* > This depends on ILO, IHI and NS. NS is the */
  719. /* > number of simultaneous shifts returned */
  720. /* > by ILAENV(ISPEC=15). (See ISPEC=15 below.) */
  721. /* > The default for (IHI-ILO+1) <= 500 is NS. */
  722. /* > The default for (IHI-ILO+1) > 500 is 3*NS/2. */
  723. /* > */
  724. /* > ISPEC=14: Nibble crossover point. (See IPARMQ for */
  725. /* > details.) Default: 14% of deflation window */
  726. /* > size. */
  727. /* > */
  728. /* > ISPEC=15: Number of simultaneous shifts in a multishift */
  729. /* > QR iteration. */
  730. /* > */
  731. /* > If IHI-ILO+1 is ... */
  732. /* > */
  733. /* > greater than ...but less ... the */
  734. /* > or equal to ... than default is */
  735. /* > */
  736. /* > 1 30 NS = 2(+) */
  737. /* > 30 60 NS = 4(+) */
  738. /* > 60 150 NS = 10(+) */
  739. /* > 150 590 NS = ** */
  740. /* > 590 3000 NS = 64 */
  741. /* > 3000 6000 NS = 128 */
  742. /* > 6000 infinity NS = 256 */
  743. /* > */
  744. /* > (+) By default some or all matrices of this order */
  745. /* > are passed to the implicit double shift routine */
  746. /* > CLAHQR and this parameter is ignored. See */
  747. /* > ISPEC=12 above and comments in IPARMQ for */
  748. /* > details. */
  749. /* > */
  750. /* > (**) The asterisks (**) indicate an ad-hoc */
  751. /* > function of N increasing from 10 to 64. */
  752. /* > */
  753. /* > ISPEC=16: Select structured matrix multiply. */
  754. /* > If the number of simultaneous shifts (specified */
  755. /* > by ISPEC=15) is less than 14, then the default */
  756. /* > for ISPEC=16 is 0. Otherwise the default for */
  757. /* > ISPEC=16 is 2. */
  758. /* > \endverbatim */
  759. /* > \par References: */
  760. /* ================ */
  761. /* > */
  762. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  763. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  764. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  765. /* > 929--947, 2002. */
  766. /* > \n */
  767. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  768. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  769. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  770. /* ===================================================================== */
  771. /* Subroutine */ int chseqr_(char *job, char *compz, integer *n, integer *ilo,
  772. integer *ihi, complex *h__, integer *ldh, complex *w, complex *z__,
  773. integer *ldz, complex *work, integer *lwork, integer *info)
  774. {
  775. /* System generated locals */
  776. address a__1[2];
  777. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2];
  778. real r__1, r__2, r__3;
  779. complex q__1;
  780. char ch__1[2];
  781. /* Local variables */
  782. integer kbot, nmin;
  783. extern logical lsame_(char *, char *);
  784. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  785. complex *, integer *);
  786. logical initz;
  787. complex workl[49];
  788. logical wantt, wantz;
  789. extern /* Subroutine */ int claqr0_(logical *, logical *, integer *,
  790. integer *, integer *, complex *, integer *, complex *, integer *,
  791. integer *, complex *, integer *, complex *, integer *, integer *);
  792. complex hl[2401] /* was [49][49] */;
  793. extern /* Subroutine */ int clahqr_(logical *, logical *, integer *,
  794. integer *, integer *, complex *, integer *, complex *, integer *,
  795. integer *, complex *, integer *, integer *), clacpy_(char *,
  796. integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex
  797. *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
  798. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  799. integer *, integer *, ftnlen, ftnlen);
  800. logical lquery;
  801. /* -- LAPACK computational routine (version 3.7.0) -- */
  802. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  803. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  804. /* December 2016 */
  805. /* ===================================================================== */
  806. /* ==== Matrices of order NTINY or smaller must be processed by */
  807. /* . CLAHQR because of insufficient subdiagonal scratch space. */
  808. /* . (This is a hard limit.) ==== */
  809. /* ==== NL allocates some local workspace to help small matrices */
  810. /* . through a rare CLAHQR failure. NL > NTINY = 15 is */
  811. /* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom- */
  812. /* . mended. (The default value of NMIN is 75.) Using NL = 49 */
  813. /* . allows up to six simultaneous shifts and a 16-by-16 */
  814. /* . deflation window. ==== */
  815. /* ==== Decode and check the input parameters. ==== */
  816. /* Parameter adjustments */
  817. h_dim1 = *ldh;
  818. h_offset = 1 + h_dim1 * 1;
  819. h__ -= h_offset;
  820. --w;
  821. z_dim1 = *ldz;
  822. z_offset = 1 + z_dim1 * 1;
  823. z__ -= z_offset;
  824. --work;
  825. /* Function Body */
  826. wantt = lsame_(job, "S");
  827. initz = lsame_(compz, "I");
  828. wantz = initz || lsame_(compz, "V");
  829. r__1 = (real) f2cmax(1,*n);
  830. q__1.r = r__1, q__1.i = 0.f;
  831. work[1].r = q__1.r, work[1].i = q__1.i;
  832. lquery = *lwork == -1;
  833. *info = 0;
  834. if (! lsame_(job, "E") && ! wantt) {
  835. *info = -1;
  836. } else if (! lsame_(compz, "N") && ! wantz) {
  837. *info = -2;
  838. } else if (*n < 0) {
  839. *info = -3;
  840. } else if (*ilo < 1 || *ilo > f2cmax(1,*n)) {
  841. *info = -4;
  842. } else if (*ihi < f2cmin(*ilo,*n) || *ihi > *n) {
  843. *info = -5;
  844. } else if (*ldh < f2cmax(1,*n)) {
  845. *info = -7;
  846. } else if (*ldz < 1 || wantz && *ldz < f2cmax(1,*n)) {
  847. *info = -10;
  848. } else if (*lwork < f2cmax(1,*n) && ! lquery) {
  849. *info = -12;
  850. }
  851. if (*info != 0) {
  852. /* ==== Quick return in case of invalid argument. ==== */
  853. i__1 = -(*info);
  854. xerbla_("CHSEQR", &i__1, (ftnlen)6);
  855. return 0;
  856. } else if (*n == 0) {
  857. /* ==== Quick return in case N = 0; nothing to do. ==== */
  858. return 0;
  859. } else if (lquery) {
  860. /* ==== Quick return in case of a workspace query ==== */
  861. claqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1], ilo,
  862. ihi, &z__[z_offset], ldz, &work[1], lwork, info);
  863. /* ==== Ensure reported workspace size is backward-compatible with */
  864. /* . previous LAPACK versions. ==== */
  865. /* Computing MAX */
  866. r__2 = work[1].r, r__3 = (real) f2cmax(1,*n);
  867. r__1 = f2cmax(r__2,r__3);
  868. q__1.r = r__1, q__1.i = 0.f;
  869. work[1].r = q__1.r, work[1].i = q__1.i;
  870. return 0;
  871. } else {
  872. /* ==== copy eigenvalues isolated by CGEBAL ==== */
  873. if (*ilo > 1) {
  874. i__1 = *ilo - 1;
  875. i__2 = *ldh + 1;
  876. ccopy_(&i__1, &h__[h_offset], &i__2, &w[1], &c__1);
  877. }
  878. if (*ihi < *n) {
  879. i__1 = *n - *ihi;
  880. i__2 = *ldh + 1;
  881. ccopy_(&i__1, &h__[*ihi + 1 + (*ihi + 1) * h_dim1], &i__2, &w[*
  882. ihi + 1], &c__1);
  883. }
  884. /* ==== Initialize Z, if requested ==== */
  885. if (initz) {
  886. claset_("A", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
  887. }
  888. /* ==== Quick return if possible ==== */
  889. if (*ilo == *ihi) {
  890. i__1 = *ilo;
  891. i__2 = *ilo + *ilo * h_dim1;
  892. w[i__1].r = h__[i__2].r, w[i__1].i = h__[i__2].i;
  893. return 0;
  894. }
  895. /* ==== CLAHQR/CLAQR0 crossover point ==== */
  896. /* Writing concatenation */
  897. i__3[0] = 1, a__1[0] = job;
  898. i__3[1] = 1, a__1[1] = compz;
  899. s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
  900. nmin = ilaenv_(&c__12, "CHSEQR", ch__1, n, ilo, ihi, lwork, (ftnlen)6,
  901. (ftnlen)2);
  902. nmin = f2cmax(15,nmin);
  903. /* ==== CLAQR0 for big matrices; CLAHQR for small ones ==== */
  904. if (*n > nmin) {
  905. claqr0_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
  906. ilo, ihi, &z__[z_offset], ldz, &work[1], lwork, info);
  907. } else {
  908. /* ==== Small matrix ==== */
  909. clahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
  910. ilo, ihi, &z__[z_offset], ldz, info);
  911. if (*info > 0) {
  912. /* ==== A rare CLAHQR failure! CLAQR0 sometimes succeeds */
  913. /* . when CLAHQR fails. ==== */
  914. kbot = *info;
  915. if (*n >= 49) {
  916. /* ==== Larger matrices have enough subdiagonal scratch */
  917. /* . space to call CLAQR0 directly. ==== */
  918. claqr0_(&wantt, &wantz, n, ilo, &kbot, &h__[h_offset],
  919. ldh, &w[1], ilo, ihi, &z__[z_offset], ldz, &work[
  920. 1], lwork, info);
  921. } else {
  922. /* ==== Tiny matrices don't have enough subdiagonal */
  923. /* . scratch space to benefit from CLAQR0. Hence, */
  924. /* . tiny matrices must be copied into a larger */
  925. /* . array before calling CLAQR0. ==== */
  926. clacpy_("A", n, n, &h__[h_offset], ldh, hl, &c__49);
  927. i__1 = *n + 1 + *n * 49 - 50;
  928. hl[i__1].r = 0.f, hl[i__1].i = 0.f;
  929. i__1 = 49 - *n;
  930. claset_("A", &c__49, &i__1, &c_b1, &c_b1, &hl[(*n + 1) *
  931. 49 - 49], &c__49);
  932. claqr0_(&wantt, &wantz, &c__49, ilo, &kbot, hl, &c__49, &
  933. w[1], ilo, ihi, &z__[z_offset], ldz, workl, &
  934. c__49, info);
  935. if (wantt || *info != 0) {
  936. clacpy_("A", n, n, hl, &c__49, &h__[h_offset], ldh);
  937. }
  938. }
  939. }
  940. }
  941. /* ==== Clear out the trash, if necessary. ==== */
  942. if ((wantt || *info != 0) && *n > 2) {
  943. i__1 = *n - 2;
  944. i__2 = *n - 2;
  945. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &h__[h_dim1 + 3], ldh);
  946. }
  947. /* ==== Ensure reported workspace size is backward-compatible with */
  948. /* . previous LAPACK versions. ==== */
  949. /* Computing MAX */
  950. r__2 = (real) f2cmax(1,*n), r__3 = work[1].r;
  951. r__1 = f2cmax(r__2,r__3);
  952. q__1.r = r__1, q__1.i = 0.f;
  953. work[1].r = q__1.r, work[1].i = q__1.i;
  954. }
  955. /* ==== End of CHSEQR ==== */
  956. return 0;
  957. } /* chseqr_ */