You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggbal.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b36 = 10.f;
  488. static real c_b72 = .5f;
  489. /* > \brief \b CGGBAL */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CGGBAL + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggbal.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggbal.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggbal.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
  508. /* RSCALE, WORK, INFO ) */
  509. /* CHARACTER JOB */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
  511. /* REAL LSCALE( * ), RSCALE( * ), WORK( * ) */
  512. /* COMPLEX A( LDA, * ), B( LDB, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CGGBAL balances a pair of general complex matrices (A,B). This */
  519. /* > involves, first, permuting A and B by similarity transformations to */
  520. /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
  521. /* > elements on the diagonal; and second, applying a diagonal similarity */
  522. /* > transformation to rows and columns ILO to IHI to make the rows */
  523. /* > and columns as close in norm as possible. Both steps are optional. */
  524. /* > */
  525. /* > Balancing may reduce the 1-norm of the matrices, and improve the */
  526. /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
  527. /* > generalized eigenvalue problem A*x = lambda*B*x. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] JOB */
  532. /* > \verbatim */
  533. /* > JOB is CHARACTER*1 */
  534. /* > Specifies the operations to be performed on A and B: */
  535. /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
  536. /* > and RSCALE(I) = 1.0 for i=1,...,N; */
  537. /* > = 'P': permute only; */
  538. /* > = 'S': scale only; */
  539. /* > = 'B': both permute and scale. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is COMPLEX array, dimension (LDA,N) */
  551. /* > On entry, the input matrix A. */
  552. /* > On exit, A is overwritten by the balanced matrix. */
  553. /* > If JOB = 'N', A is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDA */
  557. /* > \verbatim */
  558. /* > LDA is INTEGER */
  559. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] B */
  563. /* > \verbatim */
  564. /* > B is COMPLEX array, dimension (LDB,N) */
  565. /* > On entry, the input matrix B. */
  566. /* > On exit, B is overwritten by the balanced matrix. */
  567. /* > If JOB = 'N', B is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] ILO */
  577. /* > \verbatim */
  578. /* > ILO is INTEGER */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] IHI */
  582. /* > \verbatim */
  583. /* > IHI is INTEGER */
  584. /* > ILO and IHI are set to integers such that on exit */
  585. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  586. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  587. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] LSCALE */
  591. /* > \verbatim */
  592. /* > LSCALE is REAL array, dimension (N) */
  593. /* > Details of the permutations and scaling factors applied */
  594. /* > to the left side of A and B. If P(j) is the index of the */
  595. /* > row interchanged with row j, and D(j) is the scaling factor */
  596. /* > applied to row j, then */
  597. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  598. /* > = D(j) for J = ILO,...,IHI */
  599. /* > = P(j) for J = IHI+1,...,N. */
  600. /* > The order in which the interchanges are made is N to IHI+1, */
  601. /* > then 1 to ILO-1. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] RSCALE */
  605. /* > \verbatim */
  606. /* > RSCALE is REAL array, dimension (N) */
  607. /* > Details of the permutations and scaling factors applied */
  608. /* > to the right side of A and B. If P(j) is the index of the */
  609. /* > column interchanged with column j, and D(j) is the scaling */
  610. /* > factor applied to column j, then */
  611. /* > RSCALE(j) = P(j) for J = 1,...,ILO-1 */
  612. /* > = D(j) for J = ILO,...,IHI */
  613. /* > = P(j) for J = IHI+1,...,N. */
  614. /* > The order in which the interchanges are made is N to IHI+1, */
  615. /* > then 1 to ILO-1. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is REAL array, dimension (lwork) */
  621. /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
  622. /* > at least 1 when JOB = 'N' or 'P'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup complexGBcomputational */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
  645. /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* ===================================================================== */
  649. /* Subroutine */ int cggbal_(char *job, integer *n, complex *a, integer *lda,
  650. complex *b, integer *ldb, integer *ilo, integer *ihi, real *lscale,
  651. real *rscale, real *work, integer *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  655. real r__1, r__2, r__3;
  656. /* Local variables */
  657. integer lcab;
  658. real beta, coef;
  659. integer irab, lrab;
  660. real basl, cmax;
  661. extern real sdot_(integer *, real *, integer *, real *, integer *);
  662. real coef2, coef5;
  663. integer i__, j, k, l, m;
  664. real gamma, t, alpha;
  665. extern logical lsame_(char *, char *);
  666. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  667. real sfmin;
  668. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  669. complex *, integer *);
  670. real sfmax;
  671. integer iflow, kount;
  672. extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
  673. real *, integer *);
  674. integer jc;
  675. real ta, tb, tc;
  676. integer ir, it;
  677. real ew;
  678. integer nr;
  679. real pgamma;
  680. extern integer icamax_(integer *, complex *, integer *);
  681. extern real slamch_(char *);
  682. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  683. *), xerbla_(char *, integer *, ftnlen);
  684. integer lsfmin, lsfmax, ip1, jp1, lm1;
  685. real cab, rab, ewc, cor, sum;
  686. integer nrp2, icab;
  687. /* -- LAPACK computational routine (version 3.7.0) -- */
  688. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  689. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  690. /* December 2016 */
  691. /* ===================================================================== */
  692. /* Test the input parameters */
  693. /* Parameter adjustments */
  694. a_dim1 = *lda;
  695. a_offset = 1 + a_dim1 * 1;
  696. a -= a_offset;
  697. b_dim1 = *ldb;
  698. b_offset = 1 + b_dim1 * 1;
  699. b -= b_offset;
  700. --lscale;
  701. --rscale;
  702. --work;
  703. /* Function Body */
  704. *info = 0;
  705. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  706. && ! lsame_(job, "B")) {
  707. *info = -1;
  708. } else if (*n < 0) {
  709. *info = -2;
  710. } else if (*lda < f2cmax(1,*n)) {
  711. *info = -4;
  712. } else if (*ldb < f2cmax(1,*n)) {
  713. *info = -6;
  714. }
  715. if (*info != 0) {
  716. i__1 = -(*info);
  717. xerbla_("CGGBAL", &i__1, (ftnlen)6);
  718. return 0;
  719. }
  720. /* Quick return if possible */
  721. if (*n == 0) {
  722. *ilo = 1;
  723. *ihi = *n;
  724. return 0;
  725. }
  726. if (*n == 1) {
  727. *ilo = 1;
  728. *ihi = *n;
  729. lscale[1] = 1.f;
  730. rscale[1] = 1.f;
  731. return 0;
  732. }
  733. if (lsame_(job, "N")) {
  734. *ilo = 1;
  735. *ihi = *n;
  736. i__1 = *n;
  737. for (i__ = 1; i__ <= i__1; ++i__) {
  738. lscale[i__] = 1.f;
  739. rscale[i__] = 1.f;
  740. /* L10: */
  741. }
  742. return 0;
  743. }
  744. k = 1;
  745. l = *n;
  746. if (lsame_(job, "S")) {
  747. goto L190;
  748. }
  749. goto L30;
  750. /* Permute the matrices A and B to isolate the eigenvalues. */
  751. /* Find row with one nonzero in columns 1 through L */
  752. L20:
  753. l = lm1;
  754. if (l != 1) {
  755. goto L30;
  756. }
  757. rscale[1] = 1.f;
  758. lscale[1] = 1.f;
  759. goto L190;
  760. L30:
  761. lm1 = l - 1;
  762. for (i__ = l; i__ >= 1; --i__) {
  763. i__1 = lm1;
  764. for (j = 1; j <= i__1; ++j) {
  765. jp1 = j + 1;
  766. i__2 = i__ + j * a_dim1;
  767. i__3 = i__ + j * b_dim1;
  768. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  769. b[i__3].i != 0.f)) {
  770. goto L50;
  771. }
  772. /* L40: */
  773. }
  774. j = l;
  775. goto L70;
  776. L50:
  777. i__1 = l;
  778. for (j = jp1; j <= i__1; ++j) {
  779. i__2 = i__ + j * a_dim1;
  780. i__3 = i__ + j * b_dim1;
  781. if (a[i__2].r != 0.f || a[i__2].i != 0.f || (b[i__3].r != 0.f ||
  782. b[i__3].i != 0.f)) {
  783. goto L80;
  784. }
  785. /* L60: */
  786. }
  787. j = jp1 - 1;
  788. L70:
  789. m = l;
  790. iflow = 1;
  791. goto L160;
  792. L80:
  793. ;
  794. }
  795. goto L100;
  796. /* Find column with one nonzero in rows K through N */
  797. L90:
  798. ++k;
  799. L100:
  800. i__1 = l;
  801. for (j = k; j <= i__1; ++j) {
  802. i__2 = lm1;
  803. for (i__ = k; i__ <= i__2; ++i__) {
  804. ip1 = i__ + 1;
  805. i__3 = i__ + j * a_dim1;
  806. i__4 = i__ + j * b_dim1;
  807. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  808. b[i__4].i != 0.f)) {
  809. goto L120;
  810. }
  811. /* L110: */
  812. }
  813. i__ = l;
  814. goto L140;
  815. L120:
  816. i__2 = l;
  817. for (i__ = ip1; i__ <= i__2; ++i__) {
  818. i__3 = i__ + j * a_dim1;
  819. i__4 = i__ + j * b_dim1;
  820. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r != 0.f ||
  821. b[i__4].i != 0.f)) {
  822. goto L150;
  823. }
  824. /* L130: */
  825. }
  826. i__ = ip1 - 1;
  827. L140:
  828. m = k;
  829. iflow = 2;
  830. goto L160;
  831. L150:
  832. ;
  833. }
  834. goto L190;
  835. /* Permute rows M and I */
  836. L160:
  837. lscale[m] = (real) i__;
  838. if (i__ == m) {
  839. goto L170;
  840. }
  841. i__1 = *n - k + 1;
  842. cswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  843. i__1 = *n - k + 1;
  844. cswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
  845. /* Permute columns M and J */
  846. L170:
  847. rscale[m] = (real) j;
  848. if (j == m) {
  849. goto L180;
  850. }
  851. cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  852. cswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
  853. L180:
  854. switch (iflow) {
  855. case 1: goto L20;
  856. case 2: goto L90;
  857. }
  858. L190:
  859. *ilo = k;
  860. *ihi = l;
  861. if (lsame_(job, "P")) {
  862. i__1 = *ihi;
  863. for (i__ = *ilo; i__ <= i__1; ++i__) {
  864. lscale[i__] = 1.f;
  865. rscale[i__] = 1.f;
  866. /* L195: */
  867. }
  868. return 0;
  869. }
  870. if (*ilo == *ihi) {
  871. return 0;
  872. }
  873. /* Balance the submatrix in rows ILO to IHI. */
  874. nr = *ihi - *ilo + 1;
  875. i__1 = *ihi;
  876. for (i__ = *ilo; i__ <= i__1; ++i__) {
  877. rscale[i__] = 0.f;
  878. lscale[i__] = 0.f;
  879. work[i__] = 0.f;
  880. work[i__ + *n] = 0.f;
  881. work[i__ + (*n << 1)] = 0.f;
  882. work[i__ + *n * 3] = 0.f;
  883. work[i__ + (*n << 2)] = 0.f;
  884. work[i__ + *n * 5] = 0.f;
  885. /* L200: */
  886. }
  887. /* Compute right side vector in resulting linear equations */
  888. basl = r_lg10(&c_b36);
  889. i__1 = *ihi;
  890. for (i__ = *ilo; i__ <= i__1; ++i__) {
  891. i__2 = *ihi;
  892. for (j = *ilo; j <= i__2; ++j) {
  893. i__3 = i__ + j * a_dim1;
  894. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  895. ta = 0.f;
  896. goto L210;
  897. }
  898. i__3 = i__ + j * a_dim1;
  899. r__3 = (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[i__ + j *
  900. a_dim1]), abs(r__2));
  901. ta = r_lg10(&r__3) / basl;
  902. L210:
  903. i__3 = i__ + j * b_dim1;
  904. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  905. tb = 0.f;
  906. goto L220;
  907. }
  908. i__3 = i__ + j * b_dim1;
  909. r__3 = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__ + j *
  910. b_dim1]), abs(r__2));
  911. tb = r_lg10(&r__3) / basl;
  912. L220:
  913. work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
  914. work[j + *n * 5] = work[j + *n * 5] - ta - tb;
  915. /* L230: */
  916. }
  917. /* L240: */
  918. }
  919. coef = 1.f / (real) (nr << 1);
  920. coef2 = coef * coef;
  921. coef5 = coef2 * .5f;
  922. nrp2 = nr + 2;
  923. beta = 0.f;
  924. it = 1;
  925. /* Start generalized conjugate gradient iteration */
  926. L250:
  927. gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
  928. , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
  929. n * 5], &c__1);
  930. ew = 0.f;
  931. ewc = 0.f;
  932. i__1 = *ihi;
  933. for (i__ = *ilo; i__ <= i__1; ++i__) {
  934. ew += work[i__ + (*n << 2)];
  935. ewc += work[i__ + *n * 5];
  936. /* L260: */
  937. }
  938. /* Computing 2nd power */
  939. r__1 = ew;
  940. /* Computing 2nd power */
  941. r__2 = ewc;
  942. /* Computing 2nd power */
  943. r__3 = ew - ewc;
  944. gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
  945. r__3 * r__3);
  946. if (gamma == 0.f) {
  947. goto L350;
  948. }
  949. if (it != 1) {
  950. beta = gamma / pgamma;
  951. }
  952. t = coef5 * (ewc - ew * 3.f);
  953. tc = coef5 * (ew - ewc * 3.f);
  954. sscal_(&nr, &beta, &work[*ilo], &c__1);
  955. sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
  956. saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
  957. c__1);
  958. saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
  959. i__1 = *ihi;
  960. for (i__ = *ilo; i__ <= i__1; ++i__) {
  961. work[i__] += tc;
  962. work[i__ + *n] += t;
  963. /* L270: */
  964. }
  965. /* Apply matrix to vector */
  966. i__1 = *ihi;
  967. for (i__ = *ilo; i__ <= i__1; ++i__) {
  968. kount = 0;
  969. sum = 0.f;
  970. i__2 = *ihi;
  971. for (j = *ilo; j <= i__2; ++j) {
  972. i__3 = i__ + j * a_dim1;
  973. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  974. goto L280;
  975. }
  976. ++kount;
  977. sum += work[j];
  978. L280:
  979. i__3 = i__ + j * b_dim1;
  980. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  981. goto L290;
  982. }
  983. ++kount;
  984. sum += work[j];
  985. L290:
  986. ;
  987. }
  988. work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
  989. /* L300: */
  990. }
  991. i__1 = *ihi;
  992. for (j = *ilo; j <= i__1; ++j) {
  993. kount = 0;
  994. sum = 0.f;
  995. i__2 = *ihi;
  996. for (i__ = *ilo; i__ <= i__2; ++i__) {
  997. i__3 = i__ + j * a_dim1;
  998. if (a[i__3].r == 0.f && a[i__3].i == 0.f) {
  999. goto L310;
  1000. }
  1001. ++kount;
  1002. sum += work[i__ + *n];
  1003. L310:
  1004. i__3 = i__ + j * b_dim1;
  1005. if (b[i__3].r == 0.f && b[i__3].i == 0.f) {
  1006. goto L320;
  1007. }
  1008. ++kount;
  1009. sum += work[i__ + *n];
  1010. L320:
  1011. ;
  1012. }
  1013. work[j + *n * 3] = (real) kount * work[j] + sum;
  1014. /* L330: */
  1015. }
  1016. sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
  1017. + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
  1018. alpha = gamma / sum;
  1019. /* Determine correction to current iteration */
  1020. cmax = 0.f;
  1021. i__1 = *ihi;
  1022. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1023. cor = alpha * work[i__ + *n];
  1024. if (abs(cor) > cmax) {
  1025. cmax = abs(cor);
  1026. }
  1027. lscale[i__] += cor;
  1028. cor = alpha * work[i__];
  1029. if (abs(cor) > cmax) {
  1030. cmax = abs(cor);
  1031. }
  1032. rscale[i__] += cor;
  1033. /* L340: */
  1034. }
  1035. if (cmax < .5f) {
  1036. goto L350;
  1037. }
  1038. r__1 = -alpha;
  1039. saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
  1040. , &c__1);
  1041. r__1 = -alpha;
  1042. saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
  1043. c__1);
  1044. pgamma = gamma;
  1045. ++it;
  1046. if (it <= nrp2) {
  1047. goto L250;
  1048. }
  1049. /* End generalized conjugate gradient iteration */
  1050. L350:
  1051. sfmin = slamch_("S");
  1052. sfmax = 1.f / sfmin;
  1053. lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
  1054. lsfmax = (integer) (r_lg10(&sfmax) / basl);
  1055. i__1 = *ihi;
  1056. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1057. i__2 = *n - *ilo + 1;
  1058. irab = icamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
  1059. rab = c_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
  1060. i__2 = *n - *ilo + 1;
  1061. irab = icamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
  1062. /* Computing MAX */
  1063. r__1 = rab, r__2 = c_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
  1064. rab = f2cmax(r__1,r__2);
  1065. r__1 = rab + sfmin;
  1066. lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1067. ir = lscale[i__] + r_sign(&c_b72, &lscale[i__]);
  1068. /* Computing MIN */
  1069. i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
  1070. ir = f2cmin(i__2,i__3);
  1071. lscale[i__] = pow_ri(&c_b36, &ir);
  1072. icab = icamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
  1073. cab = c_abs(&a[icab + i__ * a_dim1]);
  1074. icab = icamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
  1075. /* Computing MAX */
  1076. r__1 = cab, r__2 = c_abs(&b[icab + i__ * b_dim1]);
  1077. cab = f2cmax(r__1,r__2);
  1078. r__1 = cab + sfmin;
  1079. lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1080. jc = rscale[i__] + r_sign(&c_b72, &rscale[i__]);
  1081. /* Computing MIN */
  1082. i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
  1083. jc = f2cmin(i__2,i__3);
  1084. rscale[i__] = pow_ri(&c_b36, &jc);
  1085. /* L360: */
  1086. }
  1087. /* Row scaling of matrices A and B */
  1088. i__1 = *ihi;
  1089. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1090. i__2 = *n - *ilo + 1;
  1091. csscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
  1092. i__2 = *n - *ilo + 1;
  1093. csscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
  1094. /* L370: */
  1095. }
  1096. /* Column scaling of matrices A and B */
  1097. i__1 = *ihi;
  1098. for (j = *ilo; j <= i__1; ++j) {
  1099. csscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
  1100. csscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
  1101. /* L380: */
  1102. }
  1103. return 0;
  1104. /* End of CGGBAL */
  1105. } /* cggbal_ */