You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgebal.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* -- translated by f2c (version 20000121).
  490. You must link the resulting object file with the libraries:
  491. -lf2c -lm (in that order)
  492. */
  493. /* Table of constant values */
  494. static integer c__1 = 1;
  495. /* > \brief \b CGEBAL */
  496. /* =========== DOCUMENTATION =========== */
  497. /* Online html documentation available at */
  498. /* http://www.netlib.org/lapack/explore-html/ */
  499. /* > \htmlonly */
  500. /* > Download CGEBAL + dependencies */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebal.
  502. f"> */
  503. /* > [TGZ]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebal.
  505. f"> */
  506. /* > [ZIP]</a> */
  507. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebal.
  508. f"> */
  509. /* > [TXT]</a> */
  510. /* > \endhtmlonly */
  511. /* Definition: */
  512. /* =========== */
  513. /* SUBROUTINE CGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) */
  514. /* CHARACTER JOB */
  515. /* INTEGER IHI, ILO, INFO, LDA, N */
  516. /* REAL SCALE( * ) */
  517. /* COMPLEX A( LDA, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CGEBAL balances a general complex matrix A. This involves, first, */
  524. /* > permuting A by a similarity transformation to isolate eigenvalues */
  525. /* > in the first 1 to ILO-1 and last IHI+1 to N elements on the */
  526. /* > diagonal; and second, applying a diagonal similarity transformation */
  527. /* > to rows and columns ILO to IHI to make the rows and columns as */
  528. /* > close in norm as possible. Both steps are optional. */
  529. /* > */
  530. /* > Balancing may reduce the 1-norm of the matrix, and improve the */
  531. /* > accuracy of the computed eigenvalues and/or eigenvectors. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] JOB */
  536. /* > \verbatim */
  537. /* > JOB is CHARACTER*1 */
  538. /* > Specifies the operations to be performed on A: */
  539. /* > = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
  540. /* > for i = 1,...,N; */
  541. /* > = 'P': permute only; */
  542. /* > = 'S': scale only; */
  543. /* > = 'B': both permute and scale. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] A */
  553. /* > \verbatim */
  554. /* > A is COMPLEX array, dimension (LDA,N) */
  555. /* > On entry, the input matrix A. */
  556. /* > On exit, A is overwritten by the balanced matrix. */
  557. /* > If JOB = 'N', A is not referenced. */
  558. /* > See Further Details. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] LDA */
  562. /* > \verbatim */
  563. /* > LDA is INTEGER */
  564. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] ILO */
  568. /* > \verbatim */
  569. /* > ILO is INTEGER */
  570. /* > \endverbatim */
  571. /* > \param[out] IHI */
  572. /* > \verbatim */
  573. /* > IHI is INTEGER */
  574. /* > ILO and IHI are set to integers such that on exit */
  575. /* > A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
  576. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] SCALE */
  580. /* > \verbatim */
  581. /* > SCALE is REAL array, dimension (N) */
  582. /* > Details of the permutations and scaling factors applied to */
  583. /* > A. If P(j) is the index of the row and column interchanged */
  584. /* > with row and column j and D(j) is the scaling factor */
  585. /* > applied to row and column j, then */
  586. /* > SCALE(j) = P(j) for j = 1,...,ILO-1 */
  587. /* > = D(j) for j = ILO,...,IHI */
  588. /* > = P(j) for j = IHI+1,...,N. */
  589. /* > The order in which the interchanges are made is N to IHI+1, */
  590. /* > then 1 to ILO-1. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] INFO */
  594. /* > \verbatim */
  595. /* > INFO is INTEGER */
  596. /* > = 0: successful exit. */
  597. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  598. /* > \endverbatim */
  599. /* Authors: */
  600. /* ======== */
  601. /* > \author Univ. of Tennessee */
  602. /* > \author Univ. of California Berkeley */
  603. /* > \author Univ. of Colorado Denver */
  604. /* > \author NAG Ltd. */
  605. /* > \date December 2016 */
  606. /* > \ingroup complexGEcomputational */
  607. /* > \par Further Details: */
  608. /* ===================== */
  609. /* > */
  610. /* > \verbatim */
  611. /* > */
  612. /* > The permutations consist of row and column interchanges which put */
  613. /* > the matrix in the form */
  614. /* > */
  615. /* > ( T1 X Y ) */
  616. /* > P A P = ( 0 B Z ) */
  617. /* > ( 0 0 T2 ) */
  618. /* > */
  619. /* > where T1 and T2 are upper triangular matrices whose eigenvalues lie */
  620. /* > along the diagonal. The column indices ILO and IHI mark the starting */
  621. /* > and ending columns of the submatrix B. Balancing consists of applying */
  622. /* > a diagonal similarity transformation inv(D) * B * D to make the */
  623. /* > 1-norms of each row of B and its corresponding column nearly equal. */
  624. /* > The output matrix is */
  625. /* > */
  626. /* > ( T1 X*D Y ) */
  627. /* > ( 0 inv(D)*B*D inv(D)*Z ). */
  628. /* > ( 0 0 T2 ) */
  629. /* > */
  630. /* > Information about the permutations P and the diagonal matrix D is */
  631. /* > returned in the vector SCALE. */
  632. /* > */
  633. /* > This subroutine is based on the EISPACK routine CBAL. */
  634. /* > */
  635. /* > Modified by Tzu-Yi Chen, Computer Science Division, University of */
  636. /* > California at Berkeley, USA */
  637. /* > \endverbatim */
  638. /* > */
  639. /* ===================================================================== */
  640. /* Subroutine */ int cgebal_(char *job, integer *n, complex *a, integer *lda,
  641. integer *ilo, integer *ihi, real *scale, integer *info)
  642. {
  643. /* System generated locals */
  644. integer a_dim1, a_offset, i__1, i__2, i__3;
  645. real r__1, r__2;
  646. /* Local variables */
  647. integer iexc;
  648. real c__, f, g;
  649. integer i__, j, k, l, m;
  650. real r__, s;
  651. extern logical lsame_(char *, char *);
  652. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  653. complex *, integer *);
  654. real sfmin1, sfmin2, sfmax1, sfmax2, ca;
  655. extern real scnrm2_(integer *, complex *, integer *);
  656. real ra;
  657. extern integer icamax_(integer *, complex *, integer *);
  658. extern real slamch_(char *);
  659. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  660. *), xerbla_(char *, integer *, ftnlen);
  661. extern logical sisnan_(real *);
  662. logical noconv;
  663. integer ica, ira;
  664. /* -- LAPACK computational routine (version 3.7.0) -- */
  665. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  666. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  667. /* December 2016 */
  668. /* ===================================================================== */
  669. /* Test the input parameters */
  670. /* Parameter adjustments */
  671. a_dim1 = *lda;
  672. a_offset = 1 + a_dim1 * 1;
  673. a -= a_offset;
  674. --scale;
  675. /* Function Body */
  676. *info = 0;
  677. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  678. && ! lsame_(job, "B")) {
  679. *info = -1;
  680. } else if (*n < 0) {
  681. *info = -2;
  682. } else if (*lda < f2cmax(1,*n)) {
  683. *info = -4;
  684. }
  685. if (*info != 0) {
  686. i__1 = -(*info);
  687. xerbla_("CGEBAL", &i__1, (ftnlen)6);
  688. return 0;
  689. }
  690. k = 1;
  691. l = *n;
  692. if (*n == 0) {
  693. goto L210;
  694. }
  695. if (lsame_(job, "N")) {
  696. i__1 = *n;
  697. for (i__ = 1; i__ <= i__1; ++i__) {
  698. scale[i__] = 1.f;
  699. /* L10: */
  700. }
  701. goto L210;
  702. }
  703. if (lsame_(job, "S")) {
  704. goto L120;
  705. }
  706. /* Permutation to isolate eigenvalues if possible */
  707. goto L50;
  708. /* Row and column exchange. */
  709. L20:
  710. scale[m] = (real) j;
  711. if (j == m) {
  712. goto L30;
  713. }
  714. cswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  715. i__1 = *n - k + 1;
  716. cswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  717. L30:
  718. switch (iexc) {
  719. case 1: goto L40;
  720. case 2: goto L80;
  721. }
  722. /* Search for rows isolating an eigenvalue and push them down. */
  723. L40:
  724. if (l == 1) {
  725. goto L210;
  726. }
  727. --l;
  728. L50:
  729. for (j = l; j >= 1; --j) {
  730. i__1 = l;
  731. for (i__ = 1; i__ <= i__1; ++i__) {
  732. if (i__ == j) {
  733. goto L60;
  734. }
  735. i__2 = j + i__ * a_dim1;
  736. if (a[i__2].r != 0.f || r_imag(&a[j + i__ * a_dim1]) != 0.f) {
  737. goto L70;
  738. }
  739. L60:
  740. ;
  741. }
  742. m = l;
  743. iexc = 1;
  744. goto L20;
  745. L70:
  746. ;
  747. }
  748. goto L90;
  749. /* Search for columns isolating an eigenvalue and push them left. */
  750. L80:
  751. ++k;
  752. L90:
  753. i__1 = l;
  754. for (j = k; j <= i__1; ++j) {
  755. i__2 = l;
  756. for (i__ = k; i__ <= i__2; ++i__) {
  757. if (i__ == j) {
  758. goto L100;
  759. }
  760. i__3 = i__ + j * a_dim1;
  761. if (a[i__3].r != 0.f || r_imag(&a[i__ + j * a_dim1]) != 0.f) {
  762. goto L110;
  763. }
  764. L100:
  765. ;
  766. }
  767. m = k;
  768. iexc = 2;
  769. goto L20;
  770. L110:
  771. ;
  772. }
  773. L120:
  774. i__1 = l;
  775. for (i__ = k; i__ <= i__1; ++i__) {
  776. scale[i__] = 1.f;
  777. /* L130: */
  778. }
  779. if (lsame_(job, "P")) {
  780. goto L210;
  781. }
  782. /* Balance the submatrix in rows K to L. */
  783. /* Iterative loop for norm reduction */
  784. sfmin1 = slamch_("S") / slamch_("P");
  785. sfmax1 = 1.f / sfmin1;
  786. sfmin2 = sfmin1 * 2.f;
  787. sfmax2 = 1.f / sfmin2;
  788. L140:
  789. noconv = FALSE_;
  790. i__1 = l;
  791. for (i__ = k; i__ <= i__1; ++i__) {
  792. i__2 = l - k + 1;
  793. c__ = scnrm2_(&i__2, &a[k + i__ * a_dim1], &c__1);
  794. i__2 = l - k + 1;
  795. r__ = scnrm2_(&i__2, &a[i__ + k * a_dim1], lda);
  796. ica = icamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
  797. ca = c_abs(&a[ica + i__ * a_dim1]);
  798. i__2 = *n - k + 1;
  799. ira = icamax_(&i__2, &a[i__ + k * a_dim1], lda);
  800. ra = c_abs(&a[i__ + (ira + k - 1) * a_dim1]);
  801. /* Guard against zero C or R due to underflow. */
  802. if (c__ == 0.f || r__ == 0.f) {
  803. goto L200;
  804. }
  805. g = r__ / 2.f;
  806. f = 1.f;
  807. s = c__ + r__;
  808. L160:
  809. /* Computing MAX */
  810. r__1 = f2cmax(f,c__);
  811. /* Computing MIN */
  812. r__2 = f2cmin(r__,g);
  813. if (c__ >= g || f2cmax(r__1,ca) >= sfmax2 || f2cmin(r__2,ra) <= sfmin2) {
  814. goto L170;
  815. }
  816. r__1 = c__ + f + ca + r__ + g + ra;
  817. if (sisnan_(&r__1)) {
  818. /* Exit if NaN to avoid infinite loop */
  819. *info = -3;
  820. i__2 = -(*info);
  821. xerbla_("CGEBAL", &i__2, (ftnlen)6);
  822. return 0;
  823. }
  824. f *= 2.f;
  825. c__ *= 2.f;
  826. ca *= 2.f;
  827. r__ /= 2.f;
  828. g /= 2.f;
  829. ra /= 2.f;
  830. goto L160;
  831. L170:
  832. g = c__ / 2.f;
  833. L180:
  834. /* Computing MIN */
  835. r__1 = f2cmin(f,c__), r__1 = f2cmin(r__1,g);
  836. if (g < r__ || f2cmax(r__,ra) >= sfmax2 || f2cmin(r__1,ca) <= sfmin2) {
  837. goto L190;
  838. }
  839. f /= 2.f;
  840. c__ /= 2.f;
  841. g /= 2.f;
  842. ca /= 2.f;
  843. r__ *= 2.f;
  844. ra *= 2.f;
  845. goto L180;
  846. /* Now balance. */
  847. L190:
  848. if (c__ + r__ >= s * .95f) {
  849. goto L200;
  850. }
  851. if (f < 1.f && scale[i__] < 1.f) {
  852. if (f * scale[i__] <= sfmin1) {
  853. goto L200;
  854. }
  855. }
  856. if (f > 1.f && scale[i__] > 1.f) {
  857. if (scale[i__] >= sfmax1 / f) {
  858. goto L200;
  859. }
  860. }
  861. g = 1.f / f;
  862. scale[i__] *= f;
  863. noconv = TRUE_;
  864. i__2 = *n - k + 1;
  865. csscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
  866. csscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
  867. L200:
  868. ;
  869. }
  870. if (noconv) {
  871. goto L140;
  872. }
  873. L210:
  874. *ilo = k;
  875. *ihi = l;
  876. return 0;
  877. /* End of CGEBAL */
  878. } /* cgebal_ */