|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__4 = 4;
- static logical c_false = FALSE_;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- static integer c__3 = 3;
-
- /* > \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica
- l form, by an orthogonal similarity transformation. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLAEXC + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaexc.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaexc.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaexc.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, */
- /* INFO ) */
-
- /* LOGICAL WANTQ */
- /* INTEGER INFO, J1, LDQ, LDT, N, N1, N2 */
- /* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in */
- /* > an upper quasi-triangular matrix T by an orthogonal similarity */
- /* > transformation. */
- /* > */
- /* > T must be in Schur canonical form, that is, block upper triangular */
- /* > with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block */
- /* > has its diagonal elemnts equal and its off-diagonal elements of */
- /* > opposite sign. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTQ */
- /* > \verbatim */
- /* > WANTQ is LOGICAL */
- /* > = .TRUE. : accumulate the transformation in the matrix Q; */
- /* > = .FALSE.: do not accumulate the transformation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] T */
- /* > \verbatim */
- /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
- /* > On entry, the upper quasi-triangular matrix T, in Schur */
- /* > canonical form. */
- /* > On exit, the updated matrix T, again in Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
- /* > On entry, if WANTQ is .TRUE., the orthogonal matrix Q. */
- /* > On exit, if WANTQ is .TRUE., the updated matrix Q. */
- /* > If WANTQ is .FALSE., Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] J1 */
- /* > \verbatim */
- /* > J1 is INTEGER */
- /* > The index of the first row of the first block T11. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N1 */
- /* > \verbatim */
- /* > N1 is INTEGER */
- /* > The order of the first block T11. N1 = 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N2 */
- /* > \verbatim */
- /* > N2 is INTEGER */
- /* > The order of the second block T22. N2 = 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > = 1: the transformed matrix T would be too far from Schur */
- /* > form; the blocks are not swapped and T and Q are */
- /* > unchanged. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void dlaexc_(logical *wantq, integer *n, doublereal *t,
- integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1,
- integer *n2, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, t_dim1, t_offset, i__1;
- doublereal d__1, d__2, d__3;
-
- /* Local variables */
- integer ierr;
- doublereal temp;
- extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- doublereal d__[16] /* was [4][4] */;
- integer k;
- doublereal u[3], scale, x[4] /* was [2][2] */, dnorm;
- integer j2, j3, j4;
- doublereal xnorm, u1[3], u2[3];
- extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *), dlasy2_(
- logical *, logical *, integer *, integer *, integer *, doublereal
- *, integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- integer nd;
- doublereal cs, t11, t22;
- extern doublereal dlamch_(char *);
- doublereal t33;
- extern doublereal dlange_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *);
- extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- doublereal sn;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), dlarfx_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *);
- doublereal thresh, smlnum, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n == 0 || *n1 == 0 || *n2 == 0) {
- return;
- }
- if (*j1 + *n1 > *n) {
- return;
- }
-
- j2 = *j1 + 1;
- j3 = *j1 + 2;
- j4 = *j1 + 3;
-
- if (*n1 == 1 && *n2 == 1) {
-
- /* Swap two 1-by-1 blocks. */
-
- t11 = t[*j1 + *j1 * t_dim1];
- t22 = t[j2 + j2 * t_dim1];
-
- /* Determine the transformation to perform the interchange. */
-
- d__1 = t22 - t11;
- dlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp);
-
- /* Apply transformation to the matrix T. */
-
- if (j3 <= *n) {
- i__1 = *n - *j1 - 1;
- drot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1],
- ldt, &cs, &sn);
- }
- i__1 = *j1 - 1;
- drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1,
- &cs, &sn);
-
- t[*j1 + *j1 * t_dim1] = t22;
- t[j2 + j2 * t_dim1] = t11;
-
- if (*wantq) {
-
- /* Accumulate transformation in the matrix Q. */
-
- drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1,
- &cs, &sn);
- }
-
- } else {
-
- /* Swapping involves at least one 2-by-2 block. */
-
- /* Copy the diagonal block of order N1+N2 to the local array D */
- /* and compute its norm. */
-
- nd = *n1 + *n2;
- dlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4);
- dnorm = dlange_("Max", &nd, &nd, d__, &c__4, &work[1]);
-
- /* Compute machine-dependent threshold for test for accepting */
- /* swap. */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- /* Computing MAX */
- d__1 = eps * 10. * dnorm;
- thresh = f2cmax(d__1,smlnum);
-
- /* Solve T11*X - X*T22 = scale*T12 for X. */
-
- dlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 +
- (*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, &
- scale, x, &c__2, &xnorm, &ierr);
-
- /* Swap the adjacent diagonal blocks. */
-
- k = *n1 + *n1 + *n2 - 3;
- switch (k) {
- case 1: goto L10;
- case 2: goto L20;
- case 3: goto L30;
- }
-
- L10:
-
- /* N1 = 1, N2 = 2: generate elementary reflector H so that: */
-
- /* ( scale, X11, X12 ) H = ( 0, 0, * ) */
-
- u[0] = scale;
- u[1] = x[0];
- u[2] = x[2];
- dlarfg_(&c__3, &u[2], u, &c__1, &tau);
- u[2] = 1.;
- t11 = t[*j1 + *j1 * t_dim1];
-
- /* Perform swap provisionally on diagonal block in D. */
-
- dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
- dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
-
- /* Test whether to reject swap. */
-
- /* Computing MAX */
- d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = f2cmax(d__2,d__3), d__3 =
- (d__1 = d__[10] - t11, abs(d__1));
- if (f2cmax(d__2,d__3) > thresh) {
- goto L50;
- }
-
- /* Accept swap: apply transformation to the entire matrix T. */
-
- i__1 = *n - *j1 + 1;
- dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, &
- work[1]);
- dlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
-
- t[j3 + *j1 * t_dim1] = 0.;
- t[j3 + j2 * t_dim1] = 0.;
- t[j3 + j3 * t_dim1] = t11;
-
- if (*wantq) {
-
- /* Accumulate transformation in the matrix Q. */
-
- dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
- 1]);
- }
- goto L40;
-
- L20:
-
- /* N1 = 2, N2 = 1: generate elementary reflector H so that: */
-
- /* H ( -X11 ) = ( * ) */
- /* ( -X21 ) = ( 0 ) */
- /* ( scale ) = ( 0 ) */
-
- u[0] = -x[0];
- u[1] = -x[1];
- u[2] = scale;
- dlarfg_(&c__3, u, &u[1], &c__1, &tau);
- u[0] = 1.;
- t33 = t[j3 + j3 * t_dim1];
-
- /* Perform swap provisionally on diagonal block in D. */
-
- dlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
- dlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
-
- /* Test whether to reject swap. */
-
- /* Computing MAX */
- d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = f2cmax(d__2,d__3), d__3 =
- (d__1 = d__[0] - t33, abs(d__1));
- if (f2cmax(d__2,d__3) > thresh) {
- goto L50;
- }
-
- /* Accept swap: apply transformation to the entire matrix T. */
-
- dlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
- i__1 = *n - *j1;
- dlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[
- 1]);
-
- t[*j1 + *j1 * t_dim1] = t33;
- t[j2 + *j1 * t_dim1] = 0.;
- t[j3 + *j1 * t_dim1] = 0.;
-
- if (*wantq) {
-
- /* Accumulate transformation in the matrix Q. */
-
- dlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
- 1]);
- }
- goto L40;
-
- L30:
-
- /* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so */
- /* that: */
-
- /* H(2) H(1) ( -X11 -X12 ) = ( * * ) */
- /* ( -X21 -X22 ) ( 0 * ) */
- /* ( scale 0 ) ( 0 0 ) */
- /* ( 0 scale ) ( 0 0 ) */
-
- u1[0] = -x[0];
- u1[1] = -x[1];
- u1[2] = scale;
- dlarfg_(&c__3, u1, &u1[1], &c__1, &tau1);
- u1[0] = 1.;
-
- temp = -tau1 * (x[2] + u1[1] * x[3]);
- u2[0] = -temp * u1[1] - x[3];
- u2[1] = -temp * u1[2];
- u2[2] = scale;
- dlarfg_(&c__3, u2, &u2[1], &c__1, &tau2);
- u2[0] = 1.;
-
- /* Perform swap provisionally on diagonal block in D. */
-
- dlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1])
- ;
- dlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1])
- ;
- dlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]);
- dlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]);
-
- /* Test whether to reject swap. */
-
- /* Computing MAX */
- d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = f2cmax(d__1,d__2), d__2 =
- abs(d__[3]), d__1 = f2cmax(d__1,d__2), d__2 = abs(d__[7]);
- if (f2cmax(d__1,d__2) > thresh) {
- goto L50;
- }
-
- /* Accept swap: apply transformation to the entire matrix T. */
-
- i__1 = *n - *j1 + 1;
- dlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, &
- work[1]);
- dlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[
- 1]);
- i__1 = *n - *j1 + 1;
- dlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, &
- work[1]);
- dlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1]
- );
-
- t[j3 + *j1 * t_dim1] = 0.;
- t[j3 + j2 * t_dim1] = 0.;
- t[j4 + *j1 * t_dim1] = 0.;
- t[j4 + j2 * t_dim1] = 0.;
-
- if (*wantq) {
-
- /* Accumulate transformation in the matrix Q. */
-
- dlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, &
- work[1]);
- dlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[
- 1]);
- }
-
- L40:
-
- if (*n2 == 2) {
-
- /* Standardize new 2-by-2 block T11 */
-
- dlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + *
- j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, &
- wi2, &cs, &sn);
- i__1 = *n - *j1 - 1;
- drot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2)
- * t_dim1], ldt, &cs, &sn);
- i__1 = *j1 - 1;
- drot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &
- c__1, &cs, &sn);
- if (*wantq) {
- drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &
- c__1, &cs, &sn);
- }
- }
-
- if (*n1 == 2) {
-
- /* Standardize new 2-by-2 block T22 */
-
- j3 = *j1 + *n2;
- j4 = j3 + 1;
- dlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 *
- t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, &
- cs, &sn);
- if (j3 + 2 <= *n) {
- i__1 = *n - j3 - 1;
- drot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2)
- * t_dim1], ldt, &cs, &sn);
- }
- i__1 = j3 - 1;
- drot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], &
- c__1, &cs, &sn);
- if (*wantq) {
- drot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], &
- c__1, &cs, &sn);
- }
- }
-
- }
- return;
-
- /* Exit with INFO = 1 if swap was rejected. */
-
- L50:
- *info = 1;
- return;
-
- /* End of DLAEXC */
-
- } /* dlaexc_ */
-
|