You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clalsd.c 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static integer c__1 = 1;
  486. static integer c__0 = 0;
  487. static real c_b10 = 1.f;
  488. static real c_b35 = 0.f;
  489. /* > \brief \b CLALSD uses the singular value decomposition of A to solve the least squares problem. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLALSD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  508. /* RANK, WORK, RWORK, IWORK, INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  511. /* REAL RCOND */
  512. /* INTEGER IWORK( * ) */
  513. /* REAL D( * ), E( * ), RWORK( * ) */
  514. /* COMPLEX B( LDB, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CLALSD uses the singular value decomposition of A to solve the least */
  521. /* > squares problem of finding X to minimize the Euclidean norm of each */
  522. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  523. /* > are N-by-NRHS. The solution X overwrites B. */
  524. /* > */
  525. /* > The singular values of A smaller than RCOND times the largest */
  526. /* > singular value are treated as zero in solving the least squares */
  527. /* > problem; in this case a minimum norm solution is returned. */
  528. /* > The actual singular values are returned in D in ascending order. */
  529. /* > */
  530. /* > This code makes very mild assumptions about floating point */
  531. /* > arithmetic. It will work on machines with a guard digit in */
  532. /* > add/subtract, or on those binary machines without guard digits */
  533. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  534. /* > It could conceivably fail on hexadecimal or decimal machines */
  535. /* > without guard digits, but we know of none. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] UPLO */
  540. /* > \verbatim */
  541. /* > UPLO is CHARACTER*1 */
  542. /* > = 'U': D and E define an upper bidiagonal matrix. */
  543. /* > = 'L': D and E define a lower bidiagonal matrix. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SMLSIZ */
  547. /* > \verbatim */
  548. /* > SMLSIZ is INTEGER */
  549. /* > The maximum size of the subproblems at the bottom of the */
  550. /* > computation tree. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] N */
  554. /* > \verbatim */
  555. /* > N is INTEGER */
  556. /* > The dimension of the bidiagonal matrix. N >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NRHS */
  560. /* > \verbatim */
  561. /* > NRHS is INTEGER */
  562. /* > The number of columns of B. NRHS must be at least 1. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] D */
  566. /* > \verbatim */
  567. /* > D is REAL array, dimension (N) */
  568. /* > On entry D contains the main diagonal of the bidiagonal */
  569. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] E */
  573. /* > \verbatim */
  574. /* > E is REAL array, dimension (N-1) */
  575. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] B */
  580. /* > \verbatim */
  581. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  582. /* > On input, B contains the right hand sides of the least */
  583. /* > squares problem. On output, B contains the solution X. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDB */
  587. /* > \verbatim */
  588. /* > LDB is INTEGER */
  589. /* > The leading dimension of B in the calling subprogram. */
  590. /* > LDB must be at least f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] RCOND */
  594. /* > \verbatim */
  595. /* > RCOND is REAL */
  596. /* > The singular values of A less than or equal to RCOND times */
  597. /* > the largest singular value are treated as zero in solving */
  598. /* > the least squares problem. If RCOND is negative, */
  599. /* > machine precision is used instead. */
  600. /* > For example, if diag(S)*X=B were the least squares problem, */
  601. /* > where diag(S) is a diagonal matrix of singular values, the */
  602. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  603. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  604. /* > RCOND*f2cmax(S). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] RANK */
  608. /* > \verbatim */
  609. /* > RANK is INTEGER */
  610. /* > The number of singular values of A greater than RCOND times */
  611. /* > the largest singular value. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] WORK */
  615. /* > \verbatim */
  616. /* > WORK is COMPLEX array, dimension (N * NRHS). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] RWORK */
  620. /* > \verbatim */
  621. /* > RWORK is REAL array, dimension at least */
  622. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  623. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), */
  624. /* > where */
  625. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] IWORK */
  629. /* > \verbatim */
  630. /* > IWORK is INTEGER array, dimension (3*N*NLVL + 11*N). */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] INFO */
  634. /* > \verbatim */
  635. /* > INFO is INTEGER */
  636. /* > = 0: successful exit. */
  637. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  638. /* > > 0: The algorithm failed to compute a singular value while */
  639. /* > working on the submatrix lying in rows and columns */
  640. /* > INFO/(N+1) through MOD(INFO,N+1). */
  641. /* > \endverbatim */
  642. /* Authors: */
  643. /* ======== */
  644. /* > \author Univ. of Tennessee */
  645. /* > \author Univ. of California Berkeley */
  646. /* > \author Univ. of Colorado Denver */
  647. /* > \author NAG Ltd. */
  648. /* > \date December 2016 */
  649. /* > \ingroup complexOTHERcomputational */
  650. /* > \par Contributors: */
  651. /* ================== */
  652. /* > */
  653. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  654. /* > California at Berkeley, USA \n */
  655. /* > Osni Marques, LBNL/NERSC, USA \n */
  656. /* ===================================================================== */
  657. /* Subroutine */ void clalsd_(char *uplo, integer *smlsiz, integer *n, integer
  658. *nrhs, real *d__, real *e, complex *b, integer *ldb, real *rcond,
  659. integer *rank, complex *work, real *rwork, integer *iwork, integer *
  660. info)
  661. {
  662. /* System generated locals */
  663. integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  664. real r__1;
  665. complex q__1;
  666. /* Local variables */
  667. integer difl, difr;
  668. real rcnd;
  669. integer jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow, irwu, c__, i__, j,
  670. k;
  671. real r__;
  672. integer s, u, jimag, z__, jreal;
  673. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  674. integer *, real *, real *, integer *, real *, integer *, real *,
  675. real *, integer *);
  676. integer irwib;
  677. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  678. complex *, integer *);
  679. integer poles, sizei, irwrb, nsize;
  680. extern /* Subroutine */ void csrot_(integer *, complex *, integer *,
  681. complex *, integer *, real *, real *);
  682. integer irwvt, icmpq1, icmpq2;
  683. real cs;
  684. integer bx;
  685. extern /* Subroutine */ void clalsa_(integer *, integer *, integer *,
  686. integer *, complex *, integer *, complex *, integer *, real *,
  687. integer *, real *, integer *, real *, real *, real *, real *,
  688. integer *, integer *, integer *, integer *, real *, real *, real *
  689. , real *, integer *, integer *);
  690. real sn;
  691. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  692. real *, integer *, integer *, complex *, integer *, integer *);
  693. integer st;
  694. extern real slamch_(char *);
  695. extern /* Subroutine */ void slasda_(integer *, integer *, integer *,
  696. integer *, real *, real *, real *, integer *, real *, integer *,
  697. real *, real *, real *, real *, integer *, integer *, integer *,
  698. integer *, real *, real *, real *, real *, integer *, integer *);
  699. integer vt;
  700. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  701. *, integer *, complex *, integer *), claset_(char *,
  702. integer *, integer *, complex *, complex *, complex *, integer *);
  703. extern int xerbla_(char *, integer *, ftnlen);
  704. extern void slascl_(char *,
  705. integer *, integer *, real *, real *, integer *, integer *, real *
  706. , integer *, integer *);
  707. extern integer isamax_(integer *, real *, integer *);
  708. integer givcol;
  709. extern /* Subroutine */ void slasdq_(char *, integer *, integer *, integer
  710. *, integer *, integer *, real *, real *, real *, integer *, real *
  711. , integer *, real *, integer *, real *, integer *),
  712. slaset_(char *, integer *, integer *, real *, real *, real *,
  713. integer *), slartg_(real *, real *, real *, real *, real *
  714. );
  715. real orgnrm;
  716. integer givnum;
  717. extern real slanst_(char *, integer *, real *, real *);
  718. extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
  719. integer givptr, nm1, nrwork, irwwrk, smlszp, st1;
  720. real eps;
  721. integer iwk;
  722. real tol;
  723. /* -- LAPACK computational routine (version 3.7.0) -- */
  724. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  725. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  726. /* December 2016 */
  727. /* ===================================================================== */
  728. /* Test the input parameters. */
  729. /* Parameter adjustments */
  730. --d__;
  731. --e;
  732. b_dim1 = *ldb;
  733. b_offset = 1 + b_dim1 * 1;
  734. b -= b_offset;
  735. --work;
  736. --rwork;
  737. --iwork;
  738. /* Function Body */
  739. *info = 0;
  740. if (*n < 0) {
  741. *info = -3;
  742. } else if (*nrhs < 1) {
  743. *info = -4;
  744. } else if (*ldb < 1 || *ldb < *n) {
  745. *info = -8;
  746. }
  747. if (*info != 0) {
  748. i__1 = -(*info);
  749. xerbla_("CLALSD", &i__1, (ftnlen)6);
  750. return;
  751. }
  752. eps = slamch_("Epsilon");
  753. /* Set up the tolerance. */
  754. if (*rcond <= 0.f || *rcond >= 1.f) {
  755. rcnd = eps;
  756. } else {
  757. rcnd = *rcond;
  758. }
  759. *rank = 0;
  760. /* Quick return if possible. */
  761. if (*n == 0) {
  762. return;
  763. } else if (*n == 1) {
  764. if (d__[1] == 0.f) {
  765. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  766. } else {
  767. *rank = 1;
  768. clascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[
  769. b_offset], ldb, info);
  770. d__[1] = abs(d__[1]);
  771. }
  772. return;
  773. }
  774. /* Rotate the matrix if it is lower bidiagonal. */
  775. if (*(unsigned char *)uplo == 'L') {
  776. i__1 = *n - 1;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  779. d__[i__] = r__;
  780. e[i__] = sn * d__[i__ + 1];
  781. d__[i__ + 1] = cs * d__[i__ + 1];
  782. if (*nrhs == 1) {
  783. csrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  784. c__1, &cs, &sn);
  785. } else {
  786. rwork[(i__ << 1) - 1] = cs;
  787. rwork[i__ * 2] = sn;
  788. }
  789. /* L10: */
  790. }
  791. if (*nrhs > 1) {
  792. i__1 = *nrhs;
  793. for (i__ = 1; i__ <= i__1; ++i__) {
  794. i__2 = *n - 1;
  795. for (j = 1; j <= i__2; ++j) {
  796. cs = rwork[(j << 1) - 1];
  797. sn = rwork[j * 2];
  798. csrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__
  799. * b_dim1], &c__1, &cs, &sn);
  800. /* L20: */
  801. }
  802. /* L30: */
  803. }
  804. }
  805. }
  806. /* Scale. */
  807. nm1 = *n - 1;
  808. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  809. if (orgnrm == 0.f) {
  810. claset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  811. return;
  812. }
  813. slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info);
  814. slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1,
  815. info);
  816. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  817. /* the problem with another solver. */
  818. if (*n <= *smlsiz) {
  819. irwu = 1;
  820. irwvt = irwu + *n * *n;
  821. irwwrk = irwvt + *n * *n;
  822. irwrb = irwwrk;
  823. irwib = irwrb + *n * *nrhs;
  824. irwb = irwib + *n * *nrhs;
  825. slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n);
  826. slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n);
  827. slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n,
  828. &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
  829. if (*info != 0) {
  830. return;
  831. }
  832. /* In the real version, B is passed to SLASDQ and multiplied */
  833. /* internally by Q**H. Here B is complex and that product is */
  834. /* computed below in two steps (real and imaginary parts). */
  835. j = irwb - 1;
  836. i__1 = *nrhs;
  837. for (jcol = 1; jcol <= i__1; ++jcol) {
  838. i__2 = *n;
  839. for (jrow = 1; jrow <= i__2; ++jrow) {
  840. ++j;
  841. i__3 = jrow + jcol * b_dim1;
  842. rwork[j] = b[i__3].r;
  843. /* L40: */
  844. }
  845. /* L50: */
  846. }
  847. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  848. &c_b35, &rwork[irwrb], n);
  849. j = irwb - 1;
  850. i__1 = *nrhs;
  851. for (jcol = 1; jcol <= i__1; ++jcol) {
  852. i__2 = *n;
  853. for (jrow = 1; jrow <= i__2; ++jrow) {
  854. ++j;
  855. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  856. /* L60: */
  857. }
  858. /* L70: */
  859. }
  860. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
  861. &c_b35, &rwork[irwib], n);
  862. jreal = irwrb - 1;
  863. jimag = irwib - 1;
  864. i__1 = *nrhs;
  865. for (jcol = 1; jcol <= i__1; ++jcol) {
  866. i__2 = *n;
  867. for (jrow = 1; jrow <= i__2; ++jrow) {
  868. ++jreal;
  869. ++jimag;
  870. i__3 = jrow + jcol * b_dim1;
  871. i__4 = jreal;
  872. i__5 = jimag;
  873. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  874. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  875. /* L80: */
  876. }
  877. /* L90: */
  878. }
  879. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  880. i__1 = *n;
  881. for (i__ = 1; i__ <= i__1; ++i__) {
  882. if (d__[i__] <= tol) {
  883. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  884. } else {
  885. clascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &b[
  886. i__ + b_dim1], ldb, info);
  887. ++(*rank);
  888. }
  889. /* L100: */
  890. }
  891. /* Since B is complex, the following call to SGEMM is performed */
  892. /* in two steps (real and imaginary parts). That is for V * B */
  893. /* (in the real version of the code V**H is stored in WORK). */
  894. /* CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO, */
  895. /* $ WORK( NWORK ), N ) */
  896. j = irwb - 1;
  897. i__1 = *nrhs;
  898. for (jcol = 1; jcol <= i__1; ++jcol) {
  899. i__2 = *n;
  900. for (jrow = 1; jrow <= i__2; ++jrow) {
  901. ++j;
  902. i__3 = jrow + jcol * b_dim1;
  903. rwork[j] = b[i__3].r;
  904. /* L110: */
  905. }
  906. /* L120: */
  907. }
  908. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  909. n, &c_b35, &rwork[irwrb], n);
  910. j = irwb - 1;
  911. i__1 = *nrhs;
  912. for (jcol = 1; jcol <= i__1; ++jcol) {
  913. i__2 = *n;
  914. for (jrow = 1; jrow <= i__2; ++jrow) {
  915. ++j;
  916. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  917. /* L130: */
  918. }
  919. /* L140: */
  920. }
  921. sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb],
  922. n, &c_b35, &rwork[irwib], n);
  923. jreal = irwrb - 1;
  924. jimag = irwib - 1;
  925. i__1 = *nrhs;
  926. for (jcol = 1; jcol <= i__1; ++jcol) {
  927. i__2 = *n;
  928. for (jrow = 1; jrow <= i__2; ++jrow) {
  929. ++jreal;
  930. ++jimag;
  931. i__3 = jrow + jcol * b_dim1;
  932. i__4 = jreal;
  933. i__5 = jimag;
  934. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  935. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  936. /* L150: */
  937. }
  938. /* L160: */
  939. }
  940. /* Unscale. */
  941. slascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n,
  942. info);
  943. slasrt_("D", n, &d__[1], info);
  944. clascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset],
  945. ldb, info);
  946. return;
  947. }
  948. /* Book-keeping and setting up some constants. */
  949. nlvl = (integer) (log((real) (*n) / (real) (*smlsiz + 1)) / log(2.f)) + 1;
  950. smlszp = *smlsiz + 1;
  951. u = 1;
  952. vt = *smlsiz * *n + 1;
  953. difl = vt + smlszp * *n;
  954. difr = difl + nlvl * *n;
  955. z__ = difr + (nlvl * *n << 1);
  956. c__ = z__ + nlvl * *n;
  957. s = c__ + *n;
  958. poles = s + *n;
  959. givnum = poles + (nlvl << 1) * *n;
  960. nrwork = givnum + (nlvl << 1) * *n;
  961. bx = 1;
  962. irwrb = nrwork;
  963. irwib = irwrb + *smlsiz * *nrhs;
  964. irwb = irwib + *smlsiz * *nrhs;
  965. sizei = *n + 1;
  966. k = sizei + *n;
  967. givptr = k + *n;
  968. perm = givptr + *n;
  969. givcol = perm + nlvl * *n;
  970. iwk = givcol + (nlvl * *n << 1);
  971. st = 1;
  972. sqre = 0;
  973. icmpq1 = 1;
  974. icmpq2 = 0;
  975. nsub = 0;
  976. i__1 = *n;
  977. for (i__ = 1; i__ <= i__1; ++i__) {
  978. if ((r__1 = d__[i__], abs(r__1)) < eps) {
  979. d__[i__] = r_sign(&eps, &d__[i__]);
  980. }
  981. /* L170: */
  982. }
  983. i__1 = nm1;
  984. for (i__ = 1; i__ <= i__1; ++i__) {
  985. if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
  986. ++nsub;
  987. iwork[nsub] = st;
  988. /* Subproblem found. First determine its size and then */
  989. /* apply divide and conquer on it. */
  990. if (i__ < nm1) {
  991. /* A subproblem with E(I) small for I < NM1. */
  992. nsize = i__ - st + 1;
  993. iwork[sizei + nsub - 1] = nsize;
  994. } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
  995. /* A subproblem with E(NM1) not too small but I = NM1. */
  996. nsize = *n - st + 1;
  997. iwork[sizei + nsub - 1] = nsize;
  998. } else {
  999. /* A subproblem with E(NM1) small. This implies an */
  1000. /* 1-by-1 subproblem at D(N), which is not solved */
  1001. /* explicitly. */
  1002. nsize = i__ - st + 1;
  1003. iwork[sizei + nsub - 1] = nsize;
  1004. ++nsub;
  1005. iwork[nsub] = *n;
  1006. iwork[sizei + nsub - 1] = 1;
  1007. ccopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  1008. }
  1009. st1 = st - 1;
  1010. if (nsize == 1) {
  1011. /* This is a 1-by-1 subproblem and is not solved */
  1012. /* explicitly. */
  1013. ccopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  1014. } else if (nsize <= *smlsiz) {
  1015. /* This is a small subproblem and is solved by SLASDQ. */
  1016. slaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[vt + st1],
  1017. n);
  1018. slaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[u + st1],
  1019. n);
  1020. slasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], &
  1021. e[st], &rwork[vt + st1], n, &rwork[u + st1], n, &
  1022. rwork[nrwork], &c__1, &rwork[nrwork], info)
  1023. ;
  1024. if (*info != 0) {
  1025. return;
  1026. }
  1027. /* In the real version, B is passed to SLASDQ and multiplied */
  1028. /* internally by Q**H. Here B is complex and that product is */
  1029. /* computed below in two steps (real and imaginary parts). */
  1030. j = irwb - 1;
  1031. i__2 = *nrhs;
  1032. for (jcol = 1; jcol <= i__2; ++jcol) {
  1033. i__3 = st + nsize - 1;
  1034. for (jrow = st; jrow <= i__3; ++jrow) {
  1035. ++j;
  1036. i__4 = jrow + jcol * b_dim1;
  1037. rwork[j] = b[i__4].r;
  1038. /* L180: */
  1039. }
  1040. /* L190: */
  1041. }
  1042. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1043. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &
  1044. nsize);
  1045. j = irwb - 1;
  1046. i__2 = *nrhs;
  1047. for (jcol = 1; jcol <= i__2; ++jcol) {
  1048. i__3 = st + nsize - 1;
  1049. for (jrow = st; jrow <= i__3; ++jrow) {
  1050. ++j;
  1051. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  1052. /* L200: */
  1053. }
  1054. /* L210: */
  1055. }
  1056. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1]
  1057. , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &
  1058. nsize);
  1059. jreal = irwrb - 1;
  1060. jimag = irwib - 1;
  1061. i__2 = *nrhs;
  1062. for (jcol = 1; jcol <= i__2; ++jcol) {
  1063. i__3 = st + nsize - 1;
  1064. for (jrow = st; jrow <= i__3; ++jrow) {
  1065. ++jreal;
  1066. ++jimag;
  1067. i__4 = jrow + jcol * b_dim1;
  1068. i__5 = jreal;
  1069. i__6 = jimag;
  1070. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1071. b[i__4].r = q__1.r, b[i__4].i = q__1.i;
  1072. /* L220: */
  1073. }
  1074. /* L230: */
  1075. }
  1076. clacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  1077. st1], n);
  1078. } else {
  1079. /* A large problem. Solve it using divide and conquer. */
  1080. slasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  1081. rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1],
  1082. &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ +
  1083. st1], &rwork[poles + st1], &iwork[givptr + st1], &
  1084. iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1085. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &
  1086. rwork[nrwork], &iwork[iwk], info);
  1087. if (*info != 0) {
  1088. return;
  1089. }
  1090. bxst = bx + st1;
  1091. clalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  1092. work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], &
  1093. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1]
  1094. , &rwork[z__ + st1], &rwork[poles + st1], &iwork[
  1095. givptr + st1], &iwork[givcol + st1], n, &iwork[perm +
  1096. st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[
  1097. s + st1], &rwork[nrwork], &iwork[iwk], info);
  1098. if (*info != 0) {
  1099. return;
  1100. }
  1101. }
  1102. st = i__ + 1;
  1103. }
  1104. /* L240: */
  1105. }
  1106. /* Apply the singular values and treat the tiny ones as zero. */
  1107. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  1108. i__1 = *n;
  1109. for (i__ = 1; i__ <= i__1; ++i__) {
  1110. /* Some of the elements in D can be negative because 1-by-1 */
  1111. /* subproblems were not solved explicitly. */
  1112. if ((r__1 = d__[i__], abs(r__1)) <= tol) {
  1113. claset_("A", &c__1, nrhs, &c_b1, &c_b1, &work[bx + i__ - 1], n);
  1114. } else {
  1115. ++(*rank);
  1116. clascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &work[
  1117. bx + i__ - 1], n, info);
  1118. }
  1119. d__[i__] = (r__1 = d__[i__], abs(r__1));
  1120. /* L250: */
  1121. }
  1122. /* Now apply back the right singular vectors. */
  1123. icmpq2 = 1;
  1124. i__1 = nsub;
  1125. for (i__ = 1; i__ <= i__1; ++i__) {
  1126. st = iwork[i__];
  1127. st1 = st - 1;
  1128. nsize = iwork[sizei + i__ - 1];
  1129. bxst = bx + st1;
  1130. if (nsize == 1) {
  1131. ccopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  1132. } else if (nsize <= *smlsiz) {
  1133. /* Since B and BX are complex, the following call to SGEMM */
  1134. /* is performed in two steps (real and imaginary parts). */
  1135. /* CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE, */
  1136. /* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO, */
  1137. /* $ B( ST, 1 ), LDB ) */
  1138. j = bxst - *n - 1;
  1139. jreal = irwb - 1;
  1140. i__2 = *nrhs;
  1141. for (jcol = 1; jcol <= i__2; ++jcol) {
  1142. j += *n;
  1143. i__3 = nsize;
  1144. for (jrow = 1; jrow <= i__3; ++jrow) {
  1145. ++jreal;
  1146. i__4 = j + jrow;
  1147. rwork[jreal] = work[i__4].r;
  1148. /* L260: */
  1149. }
  1150. /* L270: */
  1151. }
  1152. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1153. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &nsize);
  1154. j = bxst - *n - 1;
  1155. jimag = irwb - 1;
  1156. i__2 = *nrhs;
  1157. for (jcol = 1; jcol <= i__2; ++jcol) {
  1158. j += *n;
  1159. i__3 = nsize;
  1160. for (jrow = 1; jrow <= i__3; ++jrow) {
  1161. ++jimag;
  1162. rwork[jimag] = r_imag(&work[j + jrow]);
  1163. /* L280: */
  1164. }
  1165. /* L290: */
  1166. }
  1167. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1],
  1168. n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &nsize);
  1169. jreal = irwrb - 1;
  1170. jimag = irwib - 1;
  1171. i__2 = *nrhs;
  1172. for (jcol = 1; jcol <= i__2; ++jcol) {
  1173. i__3 = st + nsize - 1;
  1174. for (jrow = st; jrow <= i__3; ++jrow) {
  1175. ++jreal;
  1176. ++jimag;
  1177. i__4 = jrow + jcol * b_dim1;
  1178. i__5 = jreal;
  1179. i__6 = jimag;
  1180. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1181. b[i__4].r = q__1.r, b[i__4].i = q__1.i;
  1182. /* L300: */
  1183. }
  1184. /* L310: */
  1185. }
  1186. } else {
  1187. clalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  1188. b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], &
  1189. iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &
  1190. rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr +
  1191. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[
  1192. givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[
  1193. nrwork], &iwork[iwk], info);
  1194. if (*info != 0) {
  1195. return;
  1196. }
  1197. }
  1198. /* L320: */
  1199. }
  1200. /* Unscale and sort the singular values. */
  1201. slascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info);
  1202. slasrt_("D", n, &d__[1], info);
  1203. clascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb,
  1204. info);
  1205. return;
  1206. /* End of CLALSD */
  1207. } /* clalsd_ */