You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slag2.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as nece
  486. ssary to avoid over-/underflow. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download SLAG2 + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slag2.f
  493. "> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slag2.f
  496. "> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slag2.f
  499. "> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, */
  505. /* WR2, WI ) */
  506. /* INTEGER LDA, LDB */
  507. /* REAL SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 */
  508. /* REAL A( LDA, * ), B( LDB, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
  515. /* > problem A - w B, with scaling as necessary to avoid over-/underflow. */
  516. /* > */
  517. /* > The scaling factor "s" results in a modified eigenvalue equation */
  518. /* > */
  519. /* > s A - w B */
  520. /* > */
  521. /* > where s is a non-negative scaling factor chosen so that w, w B, */
  522. /* > and s A do not overflow and, if possible, do not underflow, either. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] A */
  527. /* > \verbatim */
  528. /* > A is REAL array, dimension (LDA, 2) */
  529. /* > On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
  530. /* > is less than 1/SAFMIN. Entries less than */
  531. /* > sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] LDA */
  535. /* > \verbatim */
  536. /* > LDA is INTEGER */
  537. /* > The leading dimension of the array A. LDA >= 2. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] B */
  541. /* > \verbatim */
  542. /* > B is REAL array, dimension (LDB, 2) */
  543. /* > On entry, the 2 x 2 upper triangular matrix B. It is */
  544. /* > assumed that the one-norm of B is less than 1/SAFMIN. The */
  545. /* > diagonals should be at least sqrt(SAFMIN) times the largest */
  546. /* > element of B (in absolute value); if a diagonal is smaller */
  547. /* > than that, then +/- sqrt(SAFMIN) will be used instead of */
  548. /* > that diagonal. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] LDB */
  552. /* > \verbatim */
  553. /* > LDB is INTEGER */
  554. /* > The leading dimension of the array B. LDB >= 2. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] SAFMIN */
  558. /* > \verbatim */
  559. /* > SAFMIN is REAL */
  560. /* > The smallest positive number s.t. 1/SAFMIN does not */
  561. /* > overflow. (This should always be SLAMCH('S') -- it is an */
  562. /* > argument in order to avoid having to call SLAMCH frequently.) */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] SCALE1 */
  566. /* > \verbatim */
  567. /* > SCALE1 is REAL */
  568. /* > A scaling factor used to avoid over-/underflow in the */
  569. /* > eigenvalue equation which defines the first eigenvalue. If */
  570. /* > the eigenvalues are complex, then the eigenvalues are */
  571. /* > ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
  572. /* > exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
  573. /* > will always be positive. If the eigenvalues are real, then */
  574. /* > the first (real) eigenvalue is WR1 / SCALE1 , but this may */
  575. /* > overflow or underflow, and in fact, SCALE1 may be zero or */
  576. /* > less than the underflow threshold if the exact eigenvalue */
  577. /* > is sufficiently large. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] SCALE2 */
  581. /* > \verbatim */
  582. /* > SCALE2 is REAL */
  583. /* > A scaling factor used to avoid over-/underflow in the */
  584. /* > eigenvalue equation which defines the second eigenvalue. If */
  585. /* > the eigenvalues are complex, then SCALE2=SCALE1. If the */
  586. /* > eigenvalues are real, then the second (real) eigenvalue is */
  587. /* > WR2 / SCALE2 , but this may overflow or underflow, and in */
  588. /* > fact, SCALE2 may be zero or less than the underflow */
  589. /* > threshold if the exact eigenvalue is sufficiently large. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] WR1 */
  593. /* > \verbatim */
  594. /* > WR1 is REAL */
  595. /* > If the eigenvalue is real, then WR1 is SCALE1 times the */
  596. /* > eigenvalue closest to the (2,2) element of A B**(-1). If the */
  597. /* > eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
  598. /* > part of the eigenvalues. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] WR2 */
  602. /* > \verbatim */
  603. /* > WR2 is REAL */
  604. /* > If the eigenvalue is real, then WR2 is SCALE2 times the */
  605. /* > other eigenvalue. If the eigenvalue is complex, then */
  606. /* > WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] WI */
  610. /* > \verbatim */
  611. /* > WI is REAL */
  612. /* > If the eigenvalue is real, then WI is zero. If the */
  613. /* > eigenvalue is complex, then WI is SCALE1 times the imaginary */
  614. /* > part of the eigenvalues. WI will always be non-negative. */
  615. /* > \endverbatim */
  616. /* Authors: */
  617. /* ======== */
  618. /* > \author Univ. of Tennessee */
  619. /* > \author Univ. of California Berkeley */
  620. /* > \author Univ. of Colorado Denver */
  621. /* > \author NAG Ltd. */
  622. /* > \date June 2016 */
  623. /* > \ingroup realOTHERauxiliary */
  624. /* ===================================================================== */
  625. /* Subroutine */ void slag2_(real *a, integer *lda, real *b, integer *ldb,
  626. real *safmin, real *scale1, real *scale2, real *wr1, real *wr2, real *
  627. wi)
  628. {
  629. /* System generated locals */
  630. integer a_dim1, a_offset, b_dim1, b_offset;
  631. real r__1, r__2, r__3, r__4, r__5, r__6;
  632. /* Local variables */
  633. real diff, bmin, wbig, wabs, wdet, r__, binv11, binv22, discr, anorm,
  634. bnorm, bsize, shift, c1, c2, c3, c4, c5, rtmin, rtmax, wsize, s1,
  635. s2, a11, a12, a21, a22, b11, b12, b22, ascale, bscale, pp, qq, ss,
  636. wscale, safmax, wsmall, as11, as12, as22, sum, abi22;
  637. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  638. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  639. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  640. /* June 2016 */
  641. /* ===================================================================== */
  642. /* Parameter adjustments */
  643. a_dim1 = *lda;
  644. a_offset = 1 + a_dim1 * 1;
  645. a -= a_offset;
  646. b_dim1 = *ldb;
  647. b_offset = 1 + b_dim1 * 1;
  648. b -= b_offset;
  649. /* Function Body */
  650. rtmin = sqrt(*safmin);
  651. rtmax = 1.f / rtmin;
  652. safmax = 1.f / *safmin;
  653. /* Scale A */
  654. /* Computing MAX */
  655. r__5 = (r__1 = a[a_dim1 + 1], abs(r__1)) + (r__2 = a[a_dim1 + 2], abs(
  656. r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], abs(r__3)) + (r__4 =
  657. a[(a_dim1 << 1) + 2], abs(r__4)), r__5 = f2cmax(r__5,r__6);
  658. anorm = f2cmax(r__5,*safmin);
  659. ascale = 1.f / anorm;
  660. a11 = ascale * a[a_dim1 + 1];
  661. a21 = ascale * a[a_dim1 + 2];
  662. a12 = ascale * a[(a_dim1 << 1) + 1];
  663. a22 = ascale * a[(a_dim1 << 1) + 2];
  664. /* Perturb B if necessary to insure non-singularity */
  665. b11 = b[b_dim1 + 1];
  666. b12 = b[(b_dim1 << 1) + 1];
  667. b22 = b[(b_dim1 << 1) + 2];
  668. /* Computing MAX */
  669. r__1 = abs(b11), r__2 = abs(b12), r__1 = f2cmax(r__1,r__2), r__2 = abs(b22),
  670. r__1 = f2cmax(r__1,r__2);
  671. bmin = rtmin * f2cmax(r__1,rtmin);
  672. if (abs(b11) < bmin) {
  673. b11 = r_sign(&bmin, &b11);
  674. }
  675. if (abs(b22) < bmin) {
  676. b22 = r_sign(&bmin, &b22);
  677. }
  678. /* Scale B */
  679. /* Computing MAX */
  680. r__1 = abs(b11), r__2 = abs(b12) + abs(b22), r__1 = f2cmax(r__1,r__2);
  681. bnorm = f2cmax(r__1,*safmin);
  682. /* Computing MAX */
  683. r__1 = abs(b11), r__2 = abs(b22);
  684. bsize = f2cmax(r__1,r__2);
  685. bscale = 1.f / bsize;
  686. b11 *= bscale;
  687. b12 *= bscale;
  688. b22 *= bscale;
  689. /* Compute larger eigenvalue by method described by C. van Loan */
  690. /* ( AS is A shifted by -SHIFT*B ) */
  691. binv11 = 1.f / b11;
  692. binv22 = 1.f / b22;
  693. s1 = a11 * binv11;
  694. s2 = a22 * binv22;
  695. if (abs(s1) <= abs(s2)) {
  696. as12 = a12 - s1 * b12;
  697. as22 = a22 - s1 * b22;
  698. ss = a21 * (binv11 * binv22);
  699. abi22 = as22 * binv22 - ss * b12;
  700. pp = abi22 * .5f;
  701. shift = s1;
  702. } else {
  703. as12 = a12 - s2 * b12;
  704. as11 = a11 - s2 * b11;
  705. ss = a21 * (binv11 * binv22);
  706. abi22 = -ss * b12;
  707. pp = (as11 * binv11 + abi22) * .5f;
  708. shift = s2;
  709. }
  710. qq = ss * as12;
  711. if ((r__1 = pp * rtmin, abs(r__1)) >= 1.f) {
  712. /* Computing 2nd power */
  713. r__1 = rtmin * pp;
  714. discr = r__1 * r__1 + qq * *safmin;
  715. r__ = sqrt((abs(discr))) * rtmax;
  716. } else {
  717. /* Computing 2nd power */
  718. r__1 = pp;
  719. if (r__1 * r__1 + abs(qq) <= *safmin) {
  720. /* Computing 2nd power */
  721. r__1 = rtmax * pp;
  722. discr = r__1 * r__1 + qq * safmax;
  723. r__ = sqrt((abs(discr))) * rtmin;
  724. } else {
  725. /* Computing 2nd power */
  726. r__1 = pp;
  727. discr = r__1 * r__1 + qq;
  728. r__ = sqrt((abs(discr)));
  729. }
  730. }
  731. /* Note: the test of R in the following IF is to cover the case when */
  732. /* DISCR is small and negative and is flushed to zero during */
  733. /* the calculation of R. On machines which have a consistent */
  734. /* flush-to-zero threshold and handle numbers above that */
  735. /* threshold correctly, it would not be necessary. */
  736. if (discr >= 0.f || r__ == 0.f) {
  737. sum = pp + r_sign(&r__, &pp);
  738. diff = pp - r_sign(&r__, &pp);
  739. wbig = shift + sum;
  740. /* Compute smaller eigenvalue */
  741. wsmall = shift + diff;
  742. /* Computing MAX */
  743. r__1 = abs(wsmall);
  744. if (abs(wbig) * .5f > f2cmax(r__1,*safmin)) {
  745. wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
  746. wsmall = wdet / wbig;
  747. }
  748. /* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
  749. /* for WR1. */
  750. if (pp > abi22) {
  751. *wr1 = f2cmin(wbig,wsmall);
  752. *wr2 = f2cmax(wbig,wsmall);
  753. } else {
  754. *wr1 = f2cmax(wbig,wsmall);
  755. *wr2 = f2cmin(wbig,wsmall);
  756. }
  757. *wi = 0.f;
  758. } else {
  759. /* Complex eigenvalues */
  760. *wr1 = shift + pp;
  761. *wr2 = *wr1;
  762. *wi = r__;
  763. }
  764. /* Further scaling to avoid underflow and overflow in computing */
  765. /* SCALE1 and overflow in computing w*B. */
  766. /* This scale factor (WSCALE) is bounded from above using C1 and C2, */
  767. /* and from below using C3 and C4. */
  768. /* C1 implements the condition s A must never overflow. */
  769. /* C2 implements the condition w B must never overflow. */
  770. /* C3, with C2, */
  771. /* implement the condition that s A - w B must never overflow. */
  772. /* C4 implements the condition s should not underflow. */
  773. /* C5 implements the condition f2cmax(s,|w|) should be at least 2. */
  774. c1 = bsize * (*safmin * f2cmax(1.f,ascale));
  775. c2 = *safmin * f2cmax(1.f,bnorm);
  776. c3 = bsize * *safmin;
  777. if (ascale <= 1.f && bsize <= 1.f) {
  778. /* Computing MIN */
  779. r__1 = 1.f, r__2 = ascale / *safmin * bsize;
  780. c4 = f2cmin(r__1,r__2);
  781. } else {
  782. c4 = 1.f;
  783. }
  784. if (ascale <= 1.f || bsize <= 1.f) {
  785. /* Computing MIN */
  786. r__1 = 1.f, r__2 = ascale * bsize;
  787. c5 = f2cmin(r__1,r__2);
  788. } else {
  789. c5 = 1.f;
  790. }
  791. /* Scale first eigenvalue */
  792. wabs = abs(*wr1) + abs(*wi);
  793. /* Computing MAX */
  794. /* Computing MIN */
  795. r__3 = c4, r__4 = f2cmax(wabs,c5) * .5f;
  796. r__1 = f2cmax(*safmin,c1), r__2 = (wabs * c2 + c3) * 1.0000100000000001f,
  797. r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,r__4);
  798. wsize = f2cmax(r__1,r__2);
  799. if (wsize != 1.f) {
  800. wscale = 1.f / wsize;
  801. if (wsize > 1.f) {
  802. *scale1 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  803. } else {
  804. *scale1 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  805. }
  806. *wr1 *= wscale;
  807. if (*wi != 0.f) {
  808. *wi *= wscale;
  809. *wr2 = *wr1;
  810. *scale2 = *scale1;
  811. }
  812. } else {
  813. *scale1 = ascale * bsize;
  814. *scale2 = *scale1;
  815. }
  816. /* Scale second eigenvalue (if real) */
  817. if (*wi == 0.f) {
  818. /* Computing MAX */
  819. /* Computing MIN */
  820. /* Computing MAX */
  821. r__5 = abs(*wr2);
  822. r__3 = c4, r__4 = f2cmax(r__5,c5) * .5f;
  823. r__1 = f2cmax(*safmin,c1), r__2 = (abs(*wr2) * c2 + c3) *
  824. 1.0000100000000001f, r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,
  825. r__4);
  826. wsize = f2cmax(r__1,r__2);
  827. if (wsize != 1.f) {
  828. wscale = 1.f / wsize;
  829. if (wsize > 1.f) {
  830. *scale2 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
  831. } else {
  832. *scale2 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
  833. }
  834. *wr2 *= wscale;
  835. } else {
  836. *scale2 = ascale * bsize;
  837. }
  838. }
  839. /* End of SLAG2 */
  840. return;
  841. } /* slag2_ */