You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ilaenv.c 37 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b174 = 0.f;
  488. static real c_b175 = 1.f;
  489. static integer c__0 = 0;
  490. /* > \brief \b ILAENV */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ILAENV + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */
  509. /* CHARACTER*( * ) NAME, OPTS */
  510. /* INTEGER ISPEC, N1, N2, N3, N4 */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ILAENV is called from the LAPACK routines to choose problem-dependent */
  517. /* > parameters for the local environment. See ISPEC for a description of */
  518. /* > the parameters. */
  519. /* > */
  520. /* > ILAENV returns an INTEGER */
  521. /* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */
  522. /* > if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value. */
  523. /* > */
  524. /* > This version provides a set of parameters which should give good, */
  525. /* > but not optimal, performance on many of the currently available */
  526. /* > computers. Users are encouraged to modify this subroutine to set */
  527. /* > the tuning parameters for their particular machine using the option */
  528. /* > and problem size information in the arguments. */
  529. /* > */
  530. /* > This routine will not function correctly if it is converted to all */
  531. /* > lower case. Converting it to all upper case is allowed. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] ISPEC */
  536. /* > \verbatim */
  537. /* > ISPEC is INTEGER */
  538. /* > Specifies the parameter to be returned as the value of */
  539. /* > ILAENV. */
  540. /* > = 1: the optimal blocksize; if this value is 1, an unblocked */
  541. /* > algorithm will give the best performance. */
  542. /* > = 2: the minimum block size for which the block routine */
  543. /* > should be used; if the usable block size is less than */
  544. /* > this value, an unblocked routine should be used. */
  545. /* > = 3: the crossover point (in a block routine, for N less */
  546. /* > than this value, an unblocked routine should be used) */
  547. /* > = 4: the number of shifts, used in the nonsymmetric */
  548. /* > eigenvalue routines (DEPRECATED) */
  549. /* > = 5: the minimum column dimension for blocking to be used; */
  550. /* > rectangular blocks must have dimension at least k by m, */
  551. /* > where k is given by ILAENV(2,...) and m by ILAENV(5,...) */
  552. /* > = 6: the crossover point for the SVD (when reducing an m by n */
  553. /* > matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */
  554. /* > this value, a QR factorization is used first to reduce */
  555. /* > the matrix to a triangular form.) */
  556. /* > = 7: the number of processors */
  557. /* > = 8: the crossover point for the multishift QR method */
  558. /* > for nonsymmetric eigenvalue problems (DEPRECATED) */
  559. /* > = 9: maximum size of the subproblems at the bottom of the */
  560. /* > computation tree in the divide-and-conquer algorithm */
  561. /* > (used by xGELSD and xGESDD) */
  562. /* > =10: ieee NaN arithmetic can be trusted not to trap */
  563. /* > =11: infinity arithmetic can be trusted not to trap */
  564. /* > 12 <= ISPEC <= 16: */
  565. /* > xHSEQR or related subroutines, */
  566. /* > see IPARMQ for detailed explanation */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] NAME */
  570. /* > \verbatim */
  571. /* > NAME is CHARACTER*(*) */
  572. /* > The name of the calling subroutine, in either upper case or */
  573. /* > lower case. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] OPTS */
  577. /* > \verbatim */
  578. /* > OPTS is CHARACTER*(*) */
  579. /* > The character options to the subroutine NAME, concatenated */
  580. /* > into a single character string. For example, UPLO = 'U', */
  581. /* > TRANS = 'T', and DIAG = 'N' for a triangular routine would */
  582. /* > be specified as OPTS = 'UTN'. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] N1 */
  586. /* > \verbatim */
  587. /* > N1 is INTEGER */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] N2 */
  591. /* > \verbatim */
  592. /* > N2 is INTEGER */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] N3 */
  596. /* > \verbatim */
  597. /* > N3 is INTEGER */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] N4 */
  601. /* > \verbatim */
  602. /* > N4 is INTEGER */
  603. /* > Problem dimensions for the subroutine NAME; these may not all */
  604. /* > be required. */
  605. /* > \endverbatim */
  606. /* Authors: */
  607. /* ======== */
  608. /* > \author Univ. of Tennessee */
  609. /* > \author Univ. of California Berkeley */
  610. /* > \author Univ. of Colorado Denver */
  611. /* > \author NAG Ltd. */
  612. /* > \date November 2019 */
  613. /* > \ingroup OTHERauxiliary */
  614. /* > \par Further Details: */
  615. /* ===================== */
  616. /* > */
  617. /* > \verbatim */
  618. /* > */
  619. /* > The following conventions have been used when calling ILAENV from the */
  620. /* > LAPACK routines: */
  621. /* > 1) OPTS is a concatenation of all of the character options to */
  622. /* > subroutine NAME, in the same order that they appear in the */
  623. /* > argument list for NAME, even if they are not used in determining */
  624. /* > the value of the parameter specified by ISPEC. */
  625. /* > 2) The problem dimensions N1, N2, N3, N4 are specified in the order */
  626. /* > that they appear in the argument list for NAME. N1 is used */
  627. /* > first, N2 second, and so on, and unused problem dimensions are */
  628. /* > passed a value of -1. */
  629. /* > 3) The parameter value returned by ILAENV is checked for validity in */
  630. /* > the calling subroutine. For example, ILAENV is used to retrieve */
  631. /* > the optimal blocksize for STRTRI as follows: */
  632. /* > */
  633. /* > NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */
  634. /* > IF( NB.LE.1 ) NB = MAX( 1, N ) */
  635. /* > \endverbatim */
  636. /* > */
  637. /* ===================================================================== */
  638. integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1,
  639. integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen
  640. opts_len)
  641. {
  642. /* System generated locals */
  643. integer ret_val;
  644. /* Local variables */
  645. logical twostage;
  646. integer i__;
  647. logical cname;
  648. integer nbmin;
  649. logical sname;
  650. char c1[1], c2[2], c3[3], c4[2];
  651. integer ic, nb;
  652. extern integer ieeeck_(integer *, real *, real *);
  653. integer iz, nx;
  654. char subnam[16];
  655. extern integer iparmq_(integer *, char *, char *, integer *, integer *,
  656. integer *, integer *);
  657. /* -- LAPACK auxiliary routine (version 3.9.0) -- */
  658. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  659. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  660. /* November 2019 */
  661. /* ===================================================================== */
  662. switch (*ispec) {
  663. case 1: goto L10;
  664. case 2: goto L10;
  665. case 3: goto L10;
  666. case 4: goto L80;
  667. case 5: goto L90;
  668. case 6: goto L100;
  669. case 7: goto L110;
  670. case 8: goto L120;
  671. case 9: goto L130;
  672. case 10: goto L140;
  673. case 11: goto L150;
  674. case 12: goto L160;
  675. case 13: goto L160;
  676. case 14: goto L160;
  677. case 15: goto L160;
  678. case 16: goto L160;
  679. }
  680. /* Invalid value for ISPEC */
  681. ret_val = -1;
  682. return ret_val;
  683. L10:
  684. /* Convert NAME to upper case if the first character is lower case. */
  685. ret_val = 1;
  686. s_copy(subnam, name__, (ftnlen)16, name_len);
  687. ic = *(unsigned char *)subnam;
  688. iz = 'Z';
  689. if (iz == 90 || iz == 122) {
  690. /* ASCII character set */
  691. if (ic >= 97 && ic <= 122) {
  692. *(unsigned char *)subnam = (char) (ic - 32);
  693. for (i__ = 2; i__ <= 6; ++i__) {
  694. ic = *(unsigned char *)&subnam[i__ - 1];
  695. if (ic >= 97 && ic <= 122) {
  696. *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
  697. }
  698. /* L20: */
  699. }
  700. }
  701. } else if (iz == 233 || iz == 169) {
  702. /* EBCDIC character set */
  703. if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 &&
  704. ic <= 169) {
  705. *(unsigned char *)subnam = (char) (ic + 64);
  706. for (i__ = 2; i__ <= 6; ++i__) {
  707. ic = *(unsigned char *)&subnam[i__ - 1];
  708. if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >=
  709. 162 && ic <= 169) {
  710. *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
  711. }
  712. /* L30: */
  713. }
  714. }
  715. } else if (iz == 218 || iz == 250) {
  716. /* Prime machines: ASCII+128 */
  717. if (ic >= 225 && ic <= 250) {
  718. *(unsigned char *)subnam = (char) (ic - 32);
  719. for (i__ = 2; i__ <= 6; ++i__) {
  720. ic = *(unsigned char *)&subnam[i__ - 1];
  721. if (ic >= 225 && ic <= 250) {
  722. *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
  723. }
  724. /* L40: */
  725. }
  726. }
  727. }
  728. *(unsigned char *)c1 = *(unsigned char *)subnam;
  729. sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D';
  730. cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z';
  731. if (! (cname || sname)) {
  732. return ret_val;
  733. }
  734. s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2);
  735. s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3);
  736. s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2);
  737. twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[
  738. 10] == '2';
  739. switch (*ispec) {
  740. case 1: goto L50;
  741. case 2: goto L60;
  742. case 3: goto L70;
  743. }
  744. L50:
  745. /* ISPEC = 1: block size */
  746. /* In these examples, separate code is provided for setting NB for */
  747. /* real and complex. We assume that NB will take the same value in */
  748. /* single or double precision. */
  749. nb = 1;
  750. if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) {
  751. /* This is for *LAORHR_GETRFNP routine */
  752. if (sname) {
  753. nb = 32;
  754. } else {
  755. nb = 32;
  756. }
  757. } else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
  758. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  759. if (sname) {
  760. nb = 64;
  761. } else {
  762. nb = 64;
  763. }
  764. } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3,
  765. "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)
  766. 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3)
  767. == 0) {
  768. if (sname) {
  769. nb = 32;
  770. } else {
  771. nb = 32;
  772. }
  773. } else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) {
  774. if (*n3 == 1) {
  775. if (sname) {
  776. /* M*N */
  777. if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
  778. nb = *n1;
  779. } else {
  780. nb = 32768 / *n2;
  781. }
  782. } else {
  783. if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
  784. nb = *n1;
  785. } else {
  786. nb = 32768 / *n2;
  787. }
  788. }
  789. } else {
  790. if (sname) {
  791. nb = 1;
  792. } else {
  793. nb = 1;
  794. }
  795. }
  796. } else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) {
  797. if (*n3 == 2) {
  798. if (sname) {
  799. /* M*N */
  800. if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
  801. nb = *n1;
  802. } else {
  803. nb = 32768 / *n2;
  804. }
  805. } else {
  806. if (*n1 * *n2 <= 131072 || *n1 <= 8192) {
  807. nb = *n1;
  808. } else {
  809. nb = 32768 / *n2;
  810. }
  811. }
  812. } else {
  813. if (sname) {
  814. nb = 1;
  815. } else {
  816. nb = 1;
  817. }
  818. }
  819. } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
  820. if (sname) {
  821. nb = 32;
  822. } else {
  823. nb = 32;
  824. }
  825. } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
  826. if (sname) {
  827. nb = 32;
  828. } else {
  829. nb = 32;
  830. }
  831. } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
  832. if (sname) {
  833. nb = 64;
  834. } else {
  835. nb = 64;
  836. }
  837. }
  838. } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) {
  839. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  840. if (sname) {
  841. nb = 64;
  842. } else {
  843. nb = 64;
  844. }
  845. }
  846. } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
  847. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  848. if (sname) {
  849. if (twostage) {
  850. nb = 192;
  851. } else {
  852. nb = 64;
  853. }
  854. } else {
  855. if (twostage) {
  856. nb = 192;
  857. } else {
  858. nb = 64;
  859. }
  860. }
  861. } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  862. nb = 32;
  863. } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
  864. nb = 64;
  865. }
  866. } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
  867. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  868. if (twostage) {
  869. nb = 192;
  870. } else {
  871. nb = 64;
  872. }
  873. } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  874. nb = 32;
  875. } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) {
  876. nb = 64;
  877. }
  878. } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
  879. if (*(unsigned char *)c3 == 'G') {
  880. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  881. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  882. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  883. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  884. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  885. ftnlen)2, (ftnlen)2) == 0) {
  886. nb = 32;
  887. }
  888. } else if (*(unsigned char *)c3 == 'M') {
  889. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  890. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  891. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  892. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  893. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  894. ftnlen)2, (ftnlen)2) == 0) {
  895. nb = 32;
  896. }
  897. }
  898. } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
  899. if (*(unsigned char *)c3 == 'G') {
  900. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  901. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  902. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  903. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  904. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  905. ftnlen)2, (ftnlen)2) == 0) {
  906. nb = 32;
  907. }
  908. } else if (*(unsigned char *)c3 == 'M') {
  909. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  910. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  911. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  912. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  913. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  914. ftnlen)2, (ftnlen)2) == 0) {
  915. nb = 32;
  916. }
  917. }
  918. } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) {
  919. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  920. if (sname) {
  921. if (*n4 <= 64) {
  922. nb = 1;
  923. } else {
  924. nb = 32;
  925. }
  926. } else {
  927. if (*n4 <= 64) {
  928. nb = 1;
  929. } else {
  930. nb = 32;
  931. }
  932. }
  933. }
  934. } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) {
  935. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  936. if (sname) {
  937. if (*n2 <= 64) {
  938. nb = 1;
  939. } else {
  940. nb = 32;
  941. }
  942. } else {
  943. if (*n2 <= 64) {
  944. nb = 1;
  945. } else {
  946. nb = 32;
  947. }
  948. }
  949. }
  950. } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) {
  951. if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
  952. if (sname) {
  953. nb = 64;
  954. } else {
  955. nb = 64;
  956. }
  957. } else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) {
  958. if (sname) {
  959. nb = 64;
  960. } else {
  961. nb = 64;
  962. }
  963. }
  964. } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) {
  965. if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) {
  966. if (sname) {
  967. nb = 64;
  968. } else {
  969. nb = 64;
  970. }
  971. }
  972. } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) {
  973. if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) {
  974. nb = 1;
  975. }
  976. } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
  977. nb = 32;
  978. if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
  979. if (sname) {
  980. nb = 32;
  981. } else {
  982. nb = 32;
  983. }
  984. }
  985. }
  986. ret_val = nb;
  987. return ret_val;
  988. L60:
  989. /* ISPEC = 2: minimum block size */
  990. nbmin = 2;
  991. if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
  992. if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
  993. ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
  994. ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
  995. {
  996. if (sname) {
  997. nbmin = 2;
  998. } else {
  999. nbmin = 2;
  1000. }
  1001. } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
  1002. if (sname) {
  1003. nbmin = 2;
  1004. } else {
  1005. nbmin = 2;
  1006. }
  1007. } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
  1008. if (sname) {
  1009. nbmin = 2;
  1010. } else {
  1011. nbmin = 2;
  1012. }
  1013. } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) {
  1014. if (sname) {
  1015. nbmin = 2;
  1016. } else {
  1017. nbmin = 2;
  1018. }
  1019. }
  1020. } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
  1021. if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) {
  1022. if (sname) {
  1023. nbmin = 8;
  1024. } else {
  1025. nbmin = 8;
  1026. }
  1027. } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  1028. nbmin = 2;
  1029. }
  1030. } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
  1031. if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  1032. nbmin = 2;
  1033. }
  1034. } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
  1035. if (*(unsigned char *)c3 == 'G') {
  1036. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1037. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1038. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1039. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1040. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1041. ftnlen)2, (ftnlen)2) == 0) {
  1042. nbmin = 2;
  1043. }
  1044. } else if (*(unsigned char *)c3 == 'M') {
  1045. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1046. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1047. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1048. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1049. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1050. ftnlen)2, (ftnlen)2) == 0) {
  1051. nbmin = 2;
  1052. }
  1053. }
  1054. } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
  1055. if (*(unsigned char *)c3 == 'G') {
  1056. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1057. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1058. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1059. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1060. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1061. ftnlen)2, (ftnlen)2) == 0) {
  1062. nbmin = 2;
  1063. }
  1064. } else if (*(unsigned char *)c3 == 'M') {
  1065. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1066. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1067. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1068. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1069. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1070. ftnlen)2, (ftnlen)2) == 0) {
  1071. nbmin = 2;
  1072. }
  1073. }
  1074. } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
  1075. nbmin = 2;
  1076. if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
  1077. nbmin = 2;
  1078. }
  1079. }
  1080. ret_val = nbmin;
  1081. return ret_val;
  1082. L70:
  1083. /* ISPEC = 3: crossover point */
  1084. nx = 0;
  1085. if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) {
  1086. if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (
  1087. ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, (
  1088. ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0)
  1089. {
  1090. if (sname) {
  1091. nx = 128;
  1092. } else {
  1093. nx = 128;
  1094. }
  1095. } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) {
  1096. if (sname) {
  1097. nx = 128;
  1098. } else {
  1099. nx = 128;
  1100. }
  1101. } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) {
  1102. if (sname) {
  1103. nx = 128;
  1104. } else {
  1105. nx = 128;
  1106. }
  1107. }
  1108. } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) {
  1109. if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  1110. nx = 32;
  1111. }
  1112. } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) {
  1113. if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) {
  1114. nx = 32;
  1115. }
  1116. } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) {
  1117. if (*(unsigned char *)c3 == 'G') {
  1118. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1119. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1120. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1121. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1122. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1123. ftnlen)2, (ftnlen)2) == 0) {
  1124. nx = 128;
  1125. }
  1126. }
  1127. } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) {
  1128. if (*(unsigned char *)c3 == 'G') {
  1129. if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ",
  1130. (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, (
  1131. ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) ==
  1132. 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(
  1133. c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", (
  1134. ftnlen)2, (ftnlen)2) == 0) {
  1135. nx = 128;
  1136. }
  1137. }
  1138. } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) {
  1139. nx = 128;
  1140. if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) {
  1141. nx = 128;
  1142. }
  1143. }
  1144. ret_val = nx;
  1145. return ret_val;
  1146. L80:
  1147. /* ISPEC = 4: number of shifts (used by xHSEQR) */
  1148. ret_val = 6;
  1149. return ret_val;
  1150. L90:
  1151. /* ISPEC = 5: minimum column dimension (not used) */
  1152. ret_val = 2;
  1153. return ret_val;
  1154. L100:
  1155. /* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */
  1156. ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f);
  1157. return ret_val;
  1158. L110:
  1159. /* ISPEC = 7: number of processors (not used) */
  1160. ret_val = 1;
  1161. return ret_val;
  1162. L120:
  1163. /* ISPEC = 8: crossover point for multishift (used by xHSEQR) */
  1164. ret_val = 50;
  1165. return ret_val;
  1166. L130:
  1167. /* ISPEC = 9: maximum size of the subproblems at the bottom of the */
  1168. /* computation tree in the divide-and-conquer algorithm */
  1169. /* (used by xGELSD and xGESDD) */
  1170. ret_val = 25;
  1171. return ret_val;
  1172. L140:
  1173. /* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap */
  1174. /* ILAENV = 0 */
  1175. ret_val = 1;
  1176. if (ret_val == 1) {
  1177. ret_val = ieeeck_(&c__1, &c_b174, &c_b175);
  1178. }
  1179. return ret_val;
  1180. L150:
  1181. /* ISPEC = 11: infinity arithmetic can be trusted not to trap */
  1182. /* ILAENV = 0 */
  1183. ret_val = 1;
  1184. if (ret_val == 1) {
  1185. ret_val = ieeeck_(&c__0, &c_b174, &c_b175);
  1186. }
  1187. return ret_val;
  1188. L160:
  1189. /* 12 <= ISPEC <= 16: xHSEQR or related subroutines. */
  1190. ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4)
  1191. ;
  1192. return ret_val;
  1193. /* End of ILAENV */
  1194. } /* ilaenv_ */