You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgst.c 80 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. /* > \brief \b CHBGST */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHBGST + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  508. /* LDX, WORK, RWORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  511. /* REAL RWORK( * ) */
  512. /* COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CHBGST reduces a complex Hermitian-definite banded generalized */
  520. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  521. /* > such that C has the same bandwidth as A. */
  522. /* > */
  523. /* > B must have been previously factorized as S**H*S by CPBSTF, using a */
  524. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  525. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  526. /* > bandwidth of A. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] VECT */
  531. /* > \verbatim */
  532. /* > VECT is CHARACTER*1 */
  533. /* > = 'N': do not form the transformation matrix X; */
  534. /* > = 'V': form X. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': Upper triangle of A is stored; */
  541. /* > = 'L': Lower triangle of A is stored. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrices A and B. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] KA */
  551. /* > \verbatim */
  552. /* > KA is INTEGER */
  553. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  554. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  561. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] AB */
  565. /* > \verbatim */
  566. /* > AB is COMPLEX array, dimension (LDAB,N) */
  567. /* > On entry, the upper or lower triangle of the Hermitian band */
  568. /* > matrix A, stored in the first ka+1 rows of the array. The */
  569. /* > j-th column of A is stored in the j-th column of the array AB */
  570. /* > as follows: */
  571. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  572. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  573. /* > */
  574. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  575. /* > format as A. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDAB */
  579. /* > \verbatim */
  580. /* > LDAB is INTEGER */
  581. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BB */
  585. /* > \verbatim */
  586. /* > BB is COMPLEX array, dimension (LDBB,N) */
  587. /* > The banded factor S from the split Cholesky factorization of */
  588. /* > B, as returned by CPBSTF, stored in the first kb+1 rows of */
  589. /* > the array. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDBB */
  593. /* > \verbatim */
  594. /* > LDBB is INTEGER */
  595. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] X */
  599. /* > \verbatim */
  600. /* > X is COMPLEX array, dimension (LDX,N) */
  601. /* > If VECT = 'V', the n-by-n matrix X. */
  602. /* > If VECT = 'N', the array X is not referenced. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDX */
  606. /* > \verbatim */
  607. /* > LDX is INTEGER */
  608. /* > The leading dimension of the array X. */
  609. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX array, dimension (N) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] RWORK */
  618. /* > \verbatim */
  619. /* > RWORK is REAL array, dimension (N) */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup complexOTHERcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ void chbgst_(char *vect, char *uplo, integer *n, integer *ka,
  638. integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb,
  639. complex *x, integer *ldx, complex *work, real *rwork, integer *info)
  640. {
  641. /* System generated locals */
  642. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  643. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  644. real r__1;
  645. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9, q__10;
  646. /* Local variables */
  647. integer inca;
  648. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  649. complex *, integer *, real *, complex *);
  650. integer i__, j, k, l, m;
  651. extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
  652. complex *, integer *, complex *, integer *, complex *, integer *);
  653. complex t;
  654. extern logical lsame_(char *, char *);
  655. extern /* Subroutine */ void cgeru_(integer *, integer *, complex *,
  656. complex *, integer *, complex *, integer *, complex *, integer *);
  657. integer i0, i1;
  658. logical upper;
  659. integer i2, j1, j2;
  660. logical wantx;
  661. extern /* Subroutine */ void clar2v_(integer *, complex *, complex *,
  662. complex *, integer *, real *, complex *, integer *);
  663. complex ra;
  664. extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
  665. integer nr, nx;
  666. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  667. *), claset_(char *, integer *, integer *, complex *, complex *,
  668. complex *, integer *), clartg_(complex *, complex *, real
  669. *, complex *, complex *);
  670. extern int xerbla_(char *, integer *, ftnlen);
  671. extern void clargv_(integer *, complex *, integer *, complex *, integer *,
  672. real *, integer *);
  673. logical update;
  674. extern /* Subroutine */ void clartv_(integer *, complex *, integer *,
  675. complex *, integer *, real *, complex *, integer *);
  676. integer ka1, kb1;
  677. complex ra1;
  678. integer j1t, j2t;
  679. real bii;
  680. integer kbt, nrt;
  681. /* -- LAPACK computational routine (version 3.7.0) -- */
  682. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  683. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  684. /* December 2016 */
  685. /* ===================================================================== */
  686. /* Test the input parameters */
  687. /* Parameter adjustments */
  688. ab_dim1 = *ldab;
  689. ab_offset = 1 + ab_dim1 * 1;
  690. ab -= ab_offset;
  691. bb_dim1 = *ldbb;
  692. bb_offset = 1 + bb_dim1 * 1;
  693. bb -= bb_offset;
  694. x_dim1 = *ldx;
  695. x_offset = 1 + x_dim1 * 1;
  696. x -= x_offset;
  697. --work;
  698. --rwork;
  699. /* Function Body */
  700. wantx = lsame_(vect, "V");
  701. upper = lsame_(uplo, "U");
  702. ka1 = *ka + 1;
  703. kb1 = *kb + 1;
  704. *info = 0;
  705. if (! wantx && ! lsame_(vect, "N")) {
  706. *info = -1;
  707. } else if (! upper && ! lsame_(uplo, "L")) {
  708. *info = -2;
  709. } else if (*n < 0) {
  710. *info = -3;
  711. } else if (*ka < 0) {
  712. *info = -4;
  713. } else if (*kb < 0 || *kb > *ka) {
  714. *info = -5;
  715. } else if (*ldab < *ka + 1) {
  716. *info = -7;
  717. } else if (*ldbb < *kb + 1) {
  718. *info = -9;
  719. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  720. *info = -11;
  721. }
  722. if (*info != 0) {
  723. i__1 = -(*info);
  724. xerbla_("CHBGST", &i__1, (ftnlen)6);
  725. return;
  726. }
  727. /* Quick return if possible */
  728. if (*n == 0) {
  729. return;
  730. }
  731. inca = *ldab * ka1;
  732. /* Initialize X to the unit matrix, if needed */
  733. if (wantx) {
  734. claset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  735. }
  736. /* Set M to the splitting point m. It must be the same value as is */
  737. /* used in CPBSTF. The chosen value allows the arrays WORK and RWORK */
  738. /* to be of dimension (N). */
  739. m = (*n + *kb) / 2;
  740. /* The routine works in two phases, corresponding to the two halves */
  741. /* of the split Cholesky factorization of B as S**H*S where */
  742. /* S = ( U ) */
  743. /* ( M L ) */
  744. /* with U upper triangular of order m, and L lower triangular of */
  745. /* order n-m. S has the same bandwidth as B. */
  746. /* S is treated as a product of elementary matrices: */
  747. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  748. /* where S(i) is determined by the i-th row of S. */
  749. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  750. /* in phase 2, it takes the values 1, 2, ... , m. */
  751. /* For each value of i, the current matrix A is updated by forming */
  752. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  753. /* the band of A. The bulge is then pushed down toward the bottom of */
  754. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  755. /* plane rotations. */
  756. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  757. /* of them are linearly independent, so annihilating a bulge requires */
  758. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  759. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  760. /* Wherever possible, rotations are generated and applied in vector */
  761. /* operations of length NR between the indices J1 and J2 (sometimes */
  762. /* replaced by modified values NRT, J1T or J2T). */
  763. /* The real cosines and complex sines of the rotations are stored in */
  764. /* the arrays RWORK and WORK, those of the 1st set in elements */
  765. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  766. /* The bulges are not formed explicitly; nonzero elements outside the */
  767. /* band are created only when they are required for generating new */
  768. /* rotations; they are stored in the array WORK, in positions where */
  769. /* they are later overwritten by the sines of the rotations which */
  770. /* annihilate them. */
  771. /* **************************** Phase 1 ***************************** */
  772. /* The logical structure of this phase is: */
  773. /* UPDATE = .TRUE. */
  774. /* DO I = N, M + 1, -1 */
  775. /* use S(i) to update A and create a new bulge */
  776. /* apply rotations to push all bulges KA positions downward */
  777. /* END DO */
  778. /* UPDATE = .FALSE. */
  779. /* DO I = M + KA + 1, N - 1 */
  780. /* apply rotations to push all bulges KA positions downward */
  781. /* END DO */
  782. /* To avoid duplicating code, the two loops are merged. */
  783. update = TRUE_;
  784. i__ = *n + 1;
  785. L10:
  786. if (update) {
  787. --i__;
  788. /* Computing MIN */
  789. i__1 = *kb, i__2 = i__ - 1;
  790. kbt = f2cmin(i__1,i__2);
  791. i0 = i__ - 1;
  792. /* Computing MIN */
  793. i__1 = *n, i__2 = i__ + *ka;
  794. i1 = f2cmin(i__1,i__2);
  795. i2 = i__ - kbt + ka1;
  796. if (i__ < m + 1) {
  797. update = FALSE_;
  798. ++i__;
  799. i0 = m;
  800. if (*ka == 0) {
  801. goto L480;
  802. }
  803. goto L10;
  804. }
  805. } else {
  806. i__ += *ka;
  807. if (i__ > *n - 1) {
  808. goto L480;
  809. }
  810. }
  811. if (upper) {
  812. /* Transform A, working with the upper triangle */
  813. if (update) {
  814. /* Form inv(S(i))**H * A * inv(S(i)) */
  815. i__1 = kb1 + i__ * bb_dim1;
  816. bii = bb[i__1].r;
  817. i__1 = ka1 + i__ * ab_dim1;
  818. i__2 = ka1 + i__ * ab_dim1;
  819. r__1 = ab[i__2].r / bii / bii;
  820. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  821. i__1 = i1;
  822. for (j = i__ + 1; j <= i__1; ++j) {
  823. i__2 = i__ - j + ka1 + j * ab_dim1;
  824. i__3 = i__ - j + ka1 + j * ab_dim1;
  825. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  826. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  827. /* L20: */
  828. }
  829. /* Computing MAX */
  830. i__1 = 1, i__2 = i__ - *ka;
  831. i__3 = i__ - 1;
  832. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  833. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  834. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  835. q__1.r = ab[i__2].r / bii, q__1.i = ab[i__2].i / bii;
  836. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  837. /* L30: */
  838. }
  839. i__3 = i__ - 1;
  840. for (k = i__ - kbt; k <= i__3; ++k) {
  841. i__1 = k;
  842. for (j = i__ - kbt; j <= i__1; ++j) {
  843. i__2 = j - k + ka1 + k * ab_dim1;
  844. i__4 = j - k + ka1 + k * ab_dim1;
  845. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  846. r_cnjg(&q__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  847. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  848. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  849. q__5.r;
  850. q__3.r = ab[i__4].r - q__4.r, q__3.i = ab[i__4].i -
  851. q__4.i;
  852. r_cnjg(&q__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  853. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  854. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  855. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  856. .r;
  857. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  858. i__7 = ka1 + i__ * ab_dim1;
  859. r__1 = ab[i__7].r;
  860. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  861. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  862. r_cnjg(&q__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  863. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  864. q__9.r * q__10.i + q__9.i * q__10.r;
  865. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  866. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  867. /* L40: */
  868. }
  869. /* Computing MAX */
  870. i__1 = 1, i__2 = i__ - *ka;
  871. i__4 = i__ - kbt - 1;
  872. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  873. i__1 = j - k + ka1 + k * ab_dim1;
  874. i__2 = j - k + ka1 + k * ab_dim1;
  875. r_cnjg(&q__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  876. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  877. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  878. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  879. .r;
  880. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  881. q__2.i;
  882. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  883. /* L50: */
  884. }
  885. /* L60: */
  886. }
  887. i__3 = i1;
  888. for (j = i__; j <= i__3; ++j) {
  889. /* Computing MAX */
  890. i__4 = j - *ka, i__1 = i__ - kbt;
  891. i__2 = i__ - 1;
  892. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  893. i__4 = k - j + ka1 + j * ab_dim1;
  894. i__1 = k - j + ka1 + j * ab_dim1;
  895. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  896. i__6 = i__ - j + ka1 + j * ab_dim1;
  897. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  898. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  899. * ab[i__6].r;
  900. q__1.r = ab[i__1].r - q__2.r, q__1.i = ab[i__1].i -
  901. q__2.i;
  902. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  903. /* L70: */
  904. }
  905. /* L80: */
  906. }
  907. if (wantx) {
  908. /* post-multiply X by inv(S(i)) */
  909. i__3 = *n - m;
  910. r__1 = 1.f / bii;
  911. csscal_(&i__3, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  912. if (kbt > 0) {
  913. i__3 = *n - m;
  914. q__1.r = -1.f, q__1.i = 0.f;
  915. cgerc_(&i__3, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  916. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  917. + 1 + (i__ - kbt) * x_dim1], ldx);
  918. }
  919. }
  920. /* store a(i,i1) in RA1 for use in next loop over K */
  921. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  922. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  923. }
  924. /* Generate and apply vectors of rotations to chase all the */
  925. /* existing bulges KA positions down toward the bottom of the */
  926. /* band */
  927. i__3 = *kb - 1;
  928. for (k = 1; k <= i__3; ++k) {
  929. if (update) {
  930. /* Determine the rotations which would annihilate the bulge */
  931. /* which has in theory just been created */
  932. if (i__ - k + *ka < *n && i__ - k > 1) {
  933. /* generate rotation to annihilate a(i,i-k+ka+1) */
  934. clartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  935. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  936. , &ra);
  937. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  938. /* band and store it in WORK(i-k) */
  939. i__2 = kb1 - k + i__ * bb_dim1;
  940. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  941. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  942. * ra1.i + q__2.i * ra1.r;
  943. t.r = q__1.r, t.i = q__1.i;
  944. i__2 = i__ - k;
  945. i__4 = i__ - k + *ka - m;
  946. q__2.r = rwork[i__4] * t.r, q__2.i = rwork[i__4] * t.i;
  947. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  948. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  949. q__3.r = q__4.r * ab[i__1].r - q__4.i * ab[i__1].i,
  950. q__3.i = q__4.r * ab[i__1].i + q__4.i * ab[i__1]
  951. .r;
  952. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  953. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  954. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  955. i__4 = i__ - k + *ka - m;
  956. q__2.r = work[i__4].r * t.r - work[i__4].i * t.i, q__2.i =
  957. work[i__4].r * t.i + work[i__4].i * t.r;
  958. i__1 = i__ - k + *ka - m;
  959. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  960. q__3.r = rwork[i__1] * ab[i__5].r, q__3.i = rwork[i__1] *
  961. ab[i__5].i;
  962. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  963. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  964. ra1.r = ra.r, ra1.i = ra.i;
  965. }
  966. }
  967. /* Computing MAX */
  968. i__2 = 1, i__4 = k - i0 + 2;
  969. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  970. nr = (*n - j2 + *ka) / ka1;
  971. j1 = j2 + (nr - 1) * ka1;
  972. if (update) {
  973. /* Computing MAX */
  974. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  975. j2t = f2cmax(i__2,i__4);
  976. } else {
  977. j2t = j2;
  978. }
  979. nrt = (*n - j2t + *ka) / ka1;
  980. i__2 = j1;
  981. i__4 = ka1;
  982. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  983. /* create nonzero element a(j-ka,j+1) outside the band */
  984. /* and store it in WORK(j-m) */
  985. i__1 = j - m;
  986. i__5 = j - m;
  987. i__6 = (j + 1) * ab_dim1 + 1;
  988. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  989. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  990. * ab[i__6].r;
  991. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  992. i__1 = (j + 1) * ab_dim1 + 1;
  993. i__5 = j - m;
  994. i__6 = (j + 1) * ab_dim1 + 1;
  995. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  996. i__6].i;
  997. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  998. /* L90: */
  999. }
  1000. /* generate rotations in 1st set to annihilate elements which */
  1001. /* have been created outside the band */
  1002. if (nrt > 0) {
  1003. clargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1004. ka1, &rwork[j2t - m], &ka1);
  1005. }
  1006. if (nr > 0) {
  1007. /* apply rotations in 1st set from the right */
  1008. i__4 = *ka - 1;
  1009. for (l = 1; l <= i__4; ++l) {
  1010. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1011. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1012. &work[j2 - m], &ka1);
  1013. /* L100: */
  1014. }
  1015. /* apply rotations in 1st set from both sides to diagonal */
  1016. /* blocks */
  1017. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1018. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1019. rwork[j2 - m], &work[j2 - m], &ka1);
  1020. clacgv_(&nr, &work[j2 - m], &ka1);
  1021. }
  1022. /* start applying rotations in 1st set from the left */
  1023. i__4 = *kb - k + 1;
  1024. for (l = *ka - 1; l >= i__4; --l) {
  1025. nrt = (*n - j2 + l) / ka1;
  1026. if (nrt > 0) {
  1027. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1028. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1029. rwork[j2 - m], &work[j2 - m], &ka1);
  1030. }
  1031. /* L110: */
  1032. }
  1033. if (wantx) {
  1034. /* post-multiply X by product of rotations in 1st set */
  1035. i__4 = j1;
  1036. i__2 = ka1;
  1037. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1038. i__1 = *n - m;
  1039. r_cnjg(&q__1, &work[j - m]);
  1040. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1041. + 1) * x_dim1], &c__1, &rwork[j - m], &q__1);
  1042. /* L120: */
  1043. }
  1044. }
  1045. /* L130: */
  1046. }
  1047. if (update) {
  1048. if (i2 <= *n && kbt > 0) {
  1049. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1050. /* band and store it in WORK(i-kbt) */
  1051. i__3 = i__ - kbt;
  1052. i__2 = kb1 - kbt + i__ * bb_dim1;
  1053. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  1054. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1055. ra1.i + q__2.i * ra1.r;
  1056. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1057. }
  1058. }
  1059. for (k = *kb; k >= 1; --k) {
  1060. if (update) {
  1061. /* Computing MAX */
  1062. i__3 = 2, i__2 = k - i0 + 1;
  1063. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1064. } else {
  1065. /* Computing MAX */
  1066. i__3 = 1, i__2 = k - i0 + 1;
  1067. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1068. }
  1069. /* finish applying rotations in 2nd set from the left */
  1070. for (l = *kb - k; l >= 1; --l) {
  1071. nrt = (*n - j2 + *ka + l) / ka1;
  1072. if (nrt > 0) {
  1073. clartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1074. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1075. - *ka], &work[j2 - *ka], &ka1);
  1076. }
  1077. /* L140: */
  1078. }
  1079. nr = (*n - j2 + *ka) / ka1;
  1080. j1 = j2 + (nr - 1) * ka1;
  1081. i__3 = j2;
  1082. i__2 = -ka1;
  1083. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1084. i__4 = j;
  1085. i__1 = j - *ka;
  1086. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1087. rwork[j] = rwork[j - *ka];
  1088. /* L150: */
  1089. }
  1090. i__2 = j1;
  1091. i__3 = ka1;
  1092. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1093. /* create nonzero element a(j-ka,j+1) outside the band */
  1094. /* and store it in WORK(j) */
  1095. i__4 = j;
  1096. i__1 = j;
  1097. i__5 = (j + 1) * ab_dim1 + 1;
  1098. q__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1099. .i, q__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1100. * ab[i__5].r;
  1101. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1102. i__4 = (j + 1) * ab_dim1 + 1;
  1103. i__1 = j;
  1104. i__5 = (j + 1) * ab_dim1 + 1;
  1105. q__1.r = rwork[i__1] * ab[i__5].r, q__1.i = rwork[i__1] * ab[
  1106. i__5].i;
  1107. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1108. /* L160: */
  1109. }
  1110. if (update) {
  1111. if (i__ - k < *n - *ka && k <= kbt) {
  1112. i__3 = i__ - k + *ka;
  1113. i__2 = i__ - k;
  1114. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1115. }
  1116. }
  1117. /* L170: */
  1118. }
  1119. for (k = *kb; k >= 1; --k) {
  1120. /* Computing MAX */
  1121. i__3 = 1, i__2 = k - i0 + 1;
  1122. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1123. nr = (*n - j2 + *ka) / ka1;
  1124. j1 = j2 + (nr - 1) * ka1;
  1125. if (nr > 0) {
  1126. /* generate rotations in 2nd set to annihilate elements */
  1127. /* which have been created outside the band */
  1128. clargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1129. rwork[j2], &ka1);
  1130. /* apply rotations in 2nd set from the right */
  1131. i__3 = *ka - 1;
  1132. for (l = 1; l <= i__3; ++l) {
  1133. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1134. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1135. work[j2], &ka1);
  1136. /* L180: */
  1137. }
  1138. /* apply rotations in 2nd set from both sides to diagonal */
  1139. /* blocks */
  1140. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1141. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1142. rwork[j2], &work[j2], &ka1);
  1143. clacgv_(&nr, &work[j2], &ka1);
  1144. }
  1145. /* start applying rotations in 2nd set from the left */
  1146. i__3 = *kb - k + 1;
  1147. for (l = *ka - 1; l >= i__3; --l) {
  1148. nrt = (*n - j2 + l) / ka1;
  1149. if (nrt > 0) {
  1150. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1151. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1152. rwork[j2], &work[j2], &ka1);
  1153. }
  1154. /* L190: */
  1155. }
  1156. if (wantx) {
  1157. /* post-multiply X by product of rotations in 2nd set */
  1158. i__3 = j1;
  1159. i__2 = ka1;
  1160. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1161. i__4 = *n - m;
  1162. r_cnjg(&q__1, &work[j]);
  1163. crot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1164. + 1) * x_dim1], &c__1, &rwork[j], &q__1);
  1165. /* L200: */
  1166. }
  1167. }
  1168. /* L210: */
  1169. }
  1170. i__2 = *kb - 1;
  1171. for (k = 1; k <= i__2; ++k) {
  1172. /* Computing MAX */
  1173. i__3 = 1, i__4 = k - i0 + 2;
  1174. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1175. /* finish applying rotations in 1st set from the left */
  1176. for (l = *kb - k; l >= 1; --l) {
  1177. nrt = (*n - j2 + l) / ka1;
  1178. if (nrt > 0) {
  1179. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1180. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1181. rwork[j2 - m], &work[j2 - m], &ka1);
  1182. }
  1183. /* L220: */
  1184. }
  1185. /* L230: */
  1186. }
  1187. if (*kb > 1) {
  1188. i__2 = j2 + *ka;
  1189. for (j = *n - 1; j >= i__2; --j) {
  1190. rwork[j - m] = rwork[j - *ka - m];
  1191. i__3 = j - m;
  1192. i__4 = j - *ka - m;
  1193. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1194. /* L240: */
  1195. }
  1196. }
  1197. } else {
  1198. /* Transform A, working with the lower triangle */
  1199. if (update) {
  1200. /* Form inv(S(i))**H * A * inv(S(i)) */
  1201. i__2 = i__ * bb_dim1 + 1;
  1202. bii = bb[i__2].r;
  1203. i__2 = i__ * ab_dim1 + 1;
  1204. i__3 = i__ * ab_dim1 + 1;
  1205. r__1 = ab[i__3].r / bii / bii;
  1206. ab[i__2].r = r__1, ab[i__2].i = 0.f;
  1207. i__2 = i1;
  1208. for (j = i__ + 1; j <= i__2; ++j) {
  1209. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1210. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1211. q__1.r = ab[i__4].r / bii, q__1.i = ab[i__4].i / bii;
  1212. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1213. /* L250: */
  1214. }
  1215. /* Computing MAX */
  1216. i__2 = 1, i__3 = i__ - *ka;
  1217. i__4 = i__ - 1;
  1218. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1219. i__2 = i__ - j + 1 + j * ab_dim1;
  1220. i__3 = i__ - j + 1 + j * ab_dim1;
  1221. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  1222. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1223. /* L260: */
  1224. }
  1225. i__4 = i__ - 1;
  1226. for (k = i__ - kbt; k <= i__4; ++k) {
  1227. i__2 = k;
  1228. for (j = i__ - kbt; j <= i__2; ++j) {
  1229. i__3 = k - j + 1 + j * ab_dim1;
  1230. i__1 = k - j + 1 + j * ab_dim1;
  1231. i__5 = i__ - j + 1 + j * bb_dim1;
  1232. r_cnjg(&q__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1233. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1234. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1235. q__5.r;
  1236. q__3.r = ab[i__1].r - q__4.r, q__3.i = ab[i__1].i -
  1237. q__4.i;
  1238. r_cnjg(&q__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1239. i__6 = i__ - j + 1 + j * ab_dim1;
  1240. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1241. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1242. .r;
  1243. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1244. i__7 = i__ * ab_dim1 + 1;
  1245. r__1 = ab[i__7].r;
  1246. i__8 = i__ - j + 1 + j * bb_dim1;
  1247. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1248. r_cnjg(&q__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1249. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1250. q__9.r * q__10.i + q__9.i * q__10.r;
  1251. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1252. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1253. /* L270: */
  1254. }
  1255. /* Computing MAX */
  1256. i__2 = 1, i__3 = i__ - *ka;
  1257. i__1 = i__ - kbt - 1;
  1258. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1259. i__2 = k - j + 1 + j * ab_dim1;
  1260. i__3 = k - j + 1 + j * ab_dim1;
  1261. r_cnjg(&q__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1262. i__5 = i__ - j + 1 + j * ab_dim1;
  1263. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1264. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1265. .r;
  1266. q__1.r = ab[i__3].r - q__2.r, q__1.i = ab[i__3].i -
  1267. q__2.i;
  1268. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1269. /* L280: */
  1270. }
  1271. /* L290: */
  1272. }
  1273. i__4 = i1;
  1274. for (j = i__; j <= i__4; ++j) {
  1275. /* Computing MAX */
  1276. i__1 = j - *ka, i__2 = i__ - kbt;
  1277. i__3 = i__ - 1;
  1278. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1279. i__1 = j - k + 1 + k * ab_dim1;
  1280. i__2 = j - k + 1 + k * ab_dim1;
  1281. i__5 = i__ - k + 1 + k * bb_dim1;
  1282. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1283. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1284. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1285. * ab[i__6].r;
  1286. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1287. q__2.i;
  1288. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1289. /* L300: */
  1290. }
  1291. /* L310: */
  1292. }
  1293. if (wantx) {
  1294. /* post-multiply X by inv(S(i)) */
  1295. i__4 = *n - m;
  1296. r__1 = 1.f / bii;
  1297. csscal_(&i__4, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1298. if (kbt > 0) {
  1299. i__4 = *n - m;
  1300. q__1.r = -1.f, q__1.i = 0.f;
  1301. i__3 = *ldbb - 1;
  1302. cgeru_(&i__4, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  1303. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1304. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1305. }
  1306. }
  1307. /* store a(i1,i) in RA1 for use in next loop over K */
  1308. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1309. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1310. }
  1311. /* Generate and apply vectors of rotations to chase all the */
  1312. /* existing bulges KA positions down toward the bottom of the */
  1313. /* band */
  1314. i__4 = *kb - 1;
  1315. for (k = 1; k <= i__4; ++k) {
  1316. if (update) {
  1317. /* Determine the rotations which would annihilate the bulge */
  1318. /* which has in theory just been created */
  1319. if (i__ - k + *ka < *n && i__ - k > 1) {
  1320. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1321. clartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1322. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1323. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1324. /* band and store it in WORK(i-k) */
  1325. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1326. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1327. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1328. * ra1.i + q__2.i * ra1.r;
  1329. t.r = q__1.r, t.i = q__1.i;
  1330. i__3 = i__ - k;
  1331. i__1 = i__ - k + *ka - m;
  1332. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1333. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  1334. i__2 = ka1 + (i__ - k) * ab_dim1;
  1335. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1336. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1337. .r;
  1338. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1339. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1340. i__3 = ka1 + (i__ - k) * ab_dim1;
  1341. i__1 = i__ - k + *ka - m;
  1342. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1343. work[i__1].r * t.i + work[i__1].i * t.r;
  1344. i__2 = i__ - k + *ka - m;
  1345. i__5 = ka1 + (i__ - k) * ab_dim1;
  1346. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1347. ab[i__5].i;
  1348. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1349. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1350. ra1.r = ra.r, ra1.i = ra.i;
  1351. }
  1352. }
  1353. /* Computing MAX */
  1354. i__3 = 1, i__1 = k - i0 + 2;
  1355. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1356. nr = (*n - j2 + *ka) / ka1;
  1357. j1 = j2 + (nr - 1) * ka1;
  1358. if (update) {
  1359. /* Computing MAX */
  1360. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1361. j2t = f2cmax(i__3,i__1);
  1362. } else {
  1363. j2t = j2;
  1364. }
  1365. nrt = (*n - j2t + *ka) / ka1;
  1366. i__3 = j1;
  1367. i__1 = ka1;
  1368. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1369. /* create nonzero element a(j+1,j-ka) outside the band */
  1370. /* and store it in WORK(j-m) */
  1371. i__2 = j - m;
  1372. i__5 = j - m;
  1373. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1374. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1375. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1376. * ab[i__6].r;
  1377. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1378. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1379. i__5 = j - m;
  1380. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1381. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1382. i__6].i;
  1383. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1384. /* L320: */
  1385. }
  1386. /* generate rotations in 1st set to annihilate elements which */
  1387. /* have been created outside the band */
  1388. if (nrt > 0) {
  1389. clargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1390. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1391. }
  1392. if (nr > 0) {
  1393. /* apply rotations in 1st set from the left */
  1394. i__1 = *ka - 1;
  1395. for (l = 1; l <= i__1; ++l) {
  1396. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1397. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1398. , &work[j2 - m], &ka1);
  1399. /* L330: */
  1400. }
  1401. /* apply rotations in 1st set from both sides to diagonal */
  1402. /* blocks */
  1403. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1404. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1405. work[j2 - m], &ka1);
  1406. clacgv_(&nr, &work[j2 - m], &ka1);
  1407. }
  1408. /* start applying rotations in 1st set from the right */
  1409. i__1 = *kb - k + 1;
  1410. for (l = *ka - 1; l >= i__1; --l) {
  1411. nrt = (*n - j2 + l) / ka1;
  1412. if (nrt > 0) {
  1413. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1414. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1415. m], &work[j2 - m], &ka1);
  1416. }
  1417. /* L340: */
  1418. }
  1419. if (wantx) {
  1420. /* post-multiply X by product of rotations in 1st set */
  1421. i__1 = j1;
  1422. i__3 = ka1;
  1423. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1424. i__2 = *n - m;
  1425. crot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1426. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1427. );
  1428. /* L350: */
  1429. }
  1430. }
  1431. /* L360: */
  1432. }
  1433. if (update) {
  1434. if (i2 <= *n && kbt > 0) {
  1435. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1436. /* band and store it in WORK(i-kbt) */
  1437. i__4 = i__ - kbt;
  1438. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1439. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1440. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1441. ra1.i + q__2.i * ra1.r;
  1442. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1443. }
  1444. }
  1445. for (k = *kb; k >= 1; --k) {
  1446. if (update) {
  1447. /* Computing MAX */
  1448. i__4 = 2, i__3 = k - i0 + 1;
  1449. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1450. } else {
  1451. /* Computing MAX */
  1452. i__4 = 1, i__3 = k - i0 + 1;
  1453. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1454. }
  1455. /* finish applying rotations in 2nd set from the right */
  1456. for (l = *kb - k; l >= 1; --l) {
  1457. nrt = (*n - j2 + *ka + l) / ka1;
  1458. if (nrt > 0) {
  1459. clartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1460. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1461. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1462. }
  1463. /* L370: */
  1464. }
  1465. nr = (*n - j2 + *ka) / ka1;
  1466. j1 = j2 + (nr - 1) * ka1;
  1467. i__4 = j2;
  1468. i__3 = -ka1;
  1469. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1470. i__1 = j;
  1471. i__2 = j - *ka;
  1472. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1473. rwork[j] = rwork[j - *ka];
  1474. /* L380: */
  1475. }
  1476. i__3 = j1;
  1477. i__4 = ka1;
  1478. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1479. /* create nonzero element a(j+1,j-ka) outside the band */
  1480. /* and store it in WORK(j) */
  1481. i__1 = j;
  1482. i__2 = j;
  1483. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1484. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1485. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1486. * ab[i__5].r;
  1487. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1488. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1489. i__2 = j;
  1490. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1491. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1492. i__5].i;
  1493. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1494. /* L390: */
  1495. }
  1496. if (update) {
  1497. if (i__ - k < *n - *ka && k <= kbt) {
  1498. i__4 = i__ - k + *ka;
  1499. i__3 = i__ - k;
  1500. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1501. }
  1502. }
  1503. /* L400: */
  1504. }
  1505. for (k = *kb; k >= 1; --k) {
  1506. /* Computing MAX */
  1507. i__4 = 1, i__3 = k - i0 + 1;
  1508. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1509. nr = (*n - j2 + *ka) / ka1;
  1510. j1 = j2 + (nr - 1) * ka1;
  1511. if (nr > 0) {
  1512. /* generate rotations in 2nd set to annihilate elements */
  1513. /* which have been created outside the band */
  1514. clargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1515. , &ka1, &rwork[j2], &ka1);
  1516. /* apply rotations in 2nd set from the left */
  1517. i__4 = *ka - 1;
  1518. for (l = 1; l <= i__4; ++l) {
  1519. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1520. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1521. work[j2], &ka1);
  1522. /* L410: */
  1523. }
  1524. /* apply rotations in 2nd set from both sides to diagonal */
  1525. /* blocks */
  1526. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1527. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1528. j2], &ka1);
  1529. clacgv_(&nr, &work[j2], &ka1);
  1530. }
  1531. /* start applying rotations in 2nd set from the right */
  1532. i__4 = *kb - k + 1;
  1533. for (l = *ka - 1; l >= i__4; --l) {
  1534. nrt = (*n - j2 + l) / ka1;
  1535. if (nrt > 0) {
  1536. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1537. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1538. &work[j2], &ka1);
  1539. }
  1540. /* L420: */
  1541. }
  1542. if (wantx) {
  1543. /* post-multiply X by product of rotations in 2nd set */
  1544. i__4 = j1;
  1545. i__3 = ka1;
  1546. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1547. i__1 = *n - m;
  1548. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1549. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1550. /* L430: */
  1551. }
  1552. }
  1553. /* L440: */
  1554. }
  1555. i__3 = *kb - 1;
  1556. for (k = 1; k <= i__3; ++k) {
  1557. /* Computing MAX */
  1558. i__4 = 1, i__1 = k - i0 + 2;
  1559. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1560. /* finish applying rotations in 1st set from the right */
  1561. for (l = *kb - k; l >= 1; --l) {
  1562. nrt = (*n - j2 + l) / ka1;
  1563. if (nrt > 0) {
  1564. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1565. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1566. m], &work[j2 - m], &ka1);
  1567. }
  1568. /* L450: */
  1569. }
  1570. /* L460: */
  1571. }
  1572. if (*kb > 1) {
  1573. i__3 = j2 + *ka;
  1574. for (j = *n - 1; j >= i__3; --j) {
  1575. rwork[j - m] = rwork[j - *ka - m];
  1576. i__4 = j - m;
  1577. i__1 = j - *ka - m;
  1578. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1579. /* L470: */
  1580. }
  1581. }
  1582. }
  1583. goto L10;
  1584. L480:
  1585. /* **************************** Phase 2 ***************************** */
  1586. /* The logical structure of this phase is: */
  1587. /* UPDATE = .TRUE. */
  1588. /* DO I = 1, M */
  1589. /* use S(i) to update A and create a new bulge */
  1590. /* apply rotations to push all bulges KA positions upward */
  1591. /* END DO */
  1592. /* UPDATE = .FALSE. */
  1593. /* DO I = M - KA - 1, 2, -1 */
  1594. /* apply rotations to push all bulges KA positions upward */
  1595. /* END DO */
  1596. /* To avoid duplicating code, the two loops are merged. */
  1597. update = TRUE_;
  1598. i__ = 0;
  1599. L490:
  1600. if (update) {
  1601. ++i__;
  1602. /* Computing MIN */
  1603. i__3 = *kb, i__4 = m - i__;
  1604. kbt = f2cmin(i__3,i__4);
  1605. i0 = i__ + 1;
  1606. /* Computing MAX */
  1607. i__3 = 1, i__4 = i__ - *ka;
  1608. i1 = f2cmax(i__3,i__4);
  1609. i2 = i__ + kbt - ka1;
  1610. if (i__ > m) {
  1611. update = FALSE_;
  1612. --i__;
  1613. i0 = m + 1;
  1614. if (*ka == 0) {
  1615. return;
  1616. }
  1617. goto L490;
  1618. }
  1619. } else {
  1620. i__ -= *ka;
  1621. if (i__ < 2) {
  1622. return;
  1623. }
  1624. }
  1625. if (i__ < m - kbt) {
  1626. nx = m;
  1627. } else {
  1628. nx = *n;
  1629. }
  1630. if (upper) {
  1631. /* Transform A, working with the upper triangle */
  1632. if (update) {
  1633. /* Form inv(S(i))**H * A * inv(S(i)) */
  1634. i__3 = kb1 + i__ * bb_dim1;
  1635. bii = bb[i__3].r;
  1636. i__3 = ka1 + i__ * ab_dim1;
  1637. i__4 = ka1 + i__ * ab_dim1;
  1638. r__1 = ab[i__4].r / bii / bii;
  1639. ab[i__3].r = r__1, ab[i__3].i = 0.f;
  1640. i__3 = i__ - 1;
  1641. for (j = i1; j <= i__3; ++j) {
  1642. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1643. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1644. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1645. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1646. /* L500: */
  1647. }
  1648. /* Computing MIN */
  1649. i__4 = *n, i__1 = i__ + *ka;
  1650. i__3 = f2cmin(i__4,i__1);
  1651. for (j = i__ + 1; j <= i__3; ++j) {
  1652. i__4 = i__ - j + ka1 + j * ab_dim1;
  1653. i__1 = i__ - j + ka1 + j * ab_dim1;
  1654. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1655. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1656. /* L510: */
  1657. }
  1658. i__3 = i__ + kbt;
  1659. for (k = i__ + 1; k <= i__3; ++k) {
  1660. i__4 = i__ + kbt;
  1661. for (j = k; j <= i__4; ++j) {
  1662. i__1 = k - j + ka1 + j * ab_dim1;
  1663. i__2 = k - j + ka1 + j * ab_dim1;
  1664. i__5 = i__ - j + kb1 + j * bb_dim1;
  1665. r_cnjg(&q__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1666. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1667. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1668. q__5.r;
  1669. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  1670. q__4.i;
  1671. r_cnjg(&q__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1672. i__6 = i__ - j + ka1 + j * ab_dim1;
  1673. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1674. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1675. .r;
  1676. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1677. i__7 = ka1 + i__ * ab_dim1;
  1678. r__1 = ab[i__7].r;
  1679. i__8 = i__ - j + kb1 + j * bb_dim1;
  1680. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1681. r_cnjg(&q__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1682. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1683. q__9.r * q__10.i + q__9.i * q__10.r;
  1684. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1685. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1686. /* L520: */
  1687. }
  1688. /* Computing MIN */
  1689. i__1 = *n, i__2 = i__ + *ka;
  1690. i__4 = f2cmin(i__1,i__2);
  1691. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1692. i__1 = k - j + ka1 + j * ab_dim1;
  1693. i__2 = k - j + ka1 + j * ab_dim1;
  1694. r_cnjg(&q__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1695. i__5 = i__ - j + ka1 + j * ab_dim1;
  1696. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1697. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1698. .r;
  1699. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1700. q__2.i;
  1701. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1702. /* L530: */
  1703. }
  1704. /* L540: */
  1705. }
  1706. i__3 = i__;
  1707. for (j = i1; j <= i__3; ++j) {
  1708. /* Computing MIN */
  1709. i__1 = j + *ka, i__2 = i__ + kbt;
  1710. i__4 = f2cmin(i__1,i__2);
  1711. for (k = i__ + 1; k <= i__4; ++k) {
  1712. i__1 = j - k + ka1 + k * ab_dim1;
  1713. i__2 = j - k + ka1 + k * ab_dim1;
  1714. i__5 = i__ - k + kb1 + k * bb_dim1;
  1715. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1716. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1717. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1718. * ab[i__6].r;
  1719. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1720. q__2.i;
  1721. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1722. /* L550: */
  1723. }
  1724. /* L560: */
  1725. }
  1726. if (wantx) {
  1727. /* post-multiply X by inv(S(i)) */
  1728. r__1 = 1.f / bii;
  1729. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1730. if (kbt > 0) {
  1731. q__1.r = -1.f, q__1.i = 0.f;
  1732. i__3 = *ldbb - 1;
  1733. cgeru_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1734. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1735. x_dim1 + 1], ldx);
  1736. }
  1737. }
  1738. /* store a(i1,i) in RA1 for use in next loop over K */
  1739. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1740. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1741. }
  1742. /* Generate and apply vectors of rotations to chase all the */
  1743. /* existing bulges KA positions up toward the top of the band */
  1744. i__3 = *kb - 1;
  1745. for (k = 1; k <= i__3; ++k) {
  1746. if (update) {
  1747. /* Determine the rotations which would annihilate the bulge */
  1748. /* which has in theory just been created */
  1749. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1750. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1751. clartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1752. - *ka], &work[i__ + k - *ka], &ra);
  1753. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1754. /* band and store it in WORK(m-kb+i+k) */
  1755. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1756. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1757. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1758. * ra1.i + q__2.i * ra1.r;
  1759. t.r = q__1.r, t.i = q__1.i;
  1760. i__4 = m - *kb + i__ + k;
  1761. i__1 = i__ + k - *ka;
  1762. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1763. r_cnjg(&q__4, &work[i__ + k - *ka]);
  1764. i__2 = (i__ + k) * ab_dim1 + 1;
  1765. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1766. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1767. .r;
  1768. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1769. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1770. i__4 = (i__ + k) * ab_dim1 + 1;
  1771. i__1 = i__ + k - *ka;
  1772. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1773. work[i__1].r * t.i + work[i__1].i * t.r;
  1774. i__2 = i__ + k - *ka;
  1775. i__5 = (i__ + k) * ab_dim1 + 1;
  1776. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1777. ab[i__5].i;
  1778. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1779. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1780. ra1.r = ra.r, ra1.i = ra.i;
  1781. }
  1782. }
  1783. /* Computing MAX */
  1784. i__4 = 1, i__1 = k + i0 - m + 1;
  1785. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1786. nr = (j2 + *ka - 1) / ka1;
  1787. j1 = j2 - (nr - 1) * ka1;
  1788. if (update) {
  1789. /* Computing MIN */
  1790. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1791. j2t = f2cmin(i__4,i__1);
  1792. } else {
  1793. j2t = j2;
  1794. }
  1795. nrt = (j2t + *ka - 1) / ka1;
  1796. i__4 = j2t;
  1797. i__1 = ka1;
  1798. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1799. /* create nonzero element a(j-1,j+ka) outside the band */
  1800. /* and store it in WORK(j) */
  1801. i__2 = j;
  1802. i__5 = j;
  1803. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1804. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1805. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1806. * ab[i__6].r;
  1807. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1808. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1809. i__5 = j;
  1810. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1811. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1812. i__6].i;
  1813. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1814. /* L570: */
  1815. }
  1816. /* generate rotations in 1st set to annihilate elements which */
  1817. /* have been created outside the band */
  1818. if (nrt > 0) {
  1819. clargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1820. &ka1, &rwork[j1], &ka1);
  1821. }
  1822. if (nr > 0) {
  1823. /* apply rotations in 1st set from the left */
  1824. i__1 = *ka - 1;
  1825. for (l = 1; l <= i__1; ++l) {
  1826. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1827. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1828. j1], &work[j1], &ka1);
  1829. /* L580: */
  1830. }
  1831. /* apply rotations in 1st set from both sides to diagonal */
  1832. /* blocks */
  1833. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1834. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1835. &work[j1], &ka1);
  1836. clacgv_(&nr, &work[j1], &ka1);
  1837. }
  1838. /* start applying rotations in 1st set from the right */
  1839. i__1 = *kb - k + 1;
  1840. for (l = *ka - 1; l >= i__1; --l) {
  1841. nrt = (j2 + l - 1) / ka1;
  1842. j1t = j2 - (nrt - 1) * ka1;
  1843. if (nrt > 0) {
  1844. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1845. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1846. j1t], &ka1);
  1847. }
  1848. /* L590: */
  1849. }
  1850. if (wantx) {
  1851. /* post-multiply X by product of rotations in 1st set */
  1852. i__1 = j2;
  1853. i__4 = ka1;
  1854. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1855. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1856. + 1], &c__1, &rwork[j], &work[j]);
  1857. /* L600: */
  1858. }
  1859. }
  1860. /* L610: */
  1861. }
  1862. if (update) {
  1863. if (i2 > 0 && kbt > 0) {
  1864. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1865. /* band and store it in WORK(m-kb+i+kbt) */
  1866. i__3 = m - *kb + i__ + kbt;
  1867. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1868. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1869. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1870. ra1.i + q__2.i * ra1.r;
  1871. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1872. }
  1873. }
  1874. for (k = *kb; k >= 1; --k) {
  1875. if (update) {
  1876. /* Computing MAX */
  1877. i__3 = 2, i__4 = k + i0 - m;
  1878. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1879. } else {
  1880. /* Computing MAX */
  1881. i__3 = 1, i__4 = k + i0 - m;
  1882. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1883. }
  1884. /* finish applying rotations in 2nd set from the right */
  1885. for (l = *kb - k; l >= 1; --l) {
  1886. nrt = (j2 + *ka + l - 1) / ka1;
  1887. j1t = j2 - (nrt - 1) * ka1;
  1888. if (nrt > 0) {
  1889. clartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1890. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1891. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1892. &ka1);
  1893. }
  1894. /* L620: */
  1895. }
  1896. nr = (j2 + *ka - 1) / ka1;
  1897. j1 = j2 - (nr - 1) * ka1;
  1898. i__3 = j2;
  1899. i__4 = ka1;
  1900. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1901. i__1 = m - *kb + j;
  1902. i__2 = m - *kb + j + *ka;
  1903. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1904. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1905. /* L630: */
  1906. }
  1907. i__4 = j2;
  1908. i__3 = ka1;
  1909. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1910. /* create nonzero element a(j-1,j+ka) outside the band */
  1911. /* and store it in WORK(m-kb+j) */
  1912. i__1 = m - *kb + j;
  1913. i__2 = m - *kb + j;
  1914. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1915. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1916. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1917. * ab[i__5].r;
  1918. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1919. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1920. i__2 = m - *kb + j;
  1921. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1922. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1923. i__5].i;
  1924. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1925. /* L640: */
  1926. }
  1927. if (update) {
  1928. if (i__ + k > ka1 && k <= kbt) {
  1929. i__3 = m - *kb + i__ + k - *ka;
  1930. i__4 = m - *kb + i__ + k;
  1931. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1932. }
  1933. }
  1934. /* L650: */
  1935. }
  1936. for (k = *kb; k >= 1; --k) {
  1937. /* Computing MAX */
  1938. i__3 = 1, i__4 = k + i0 - m;
  1939. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1940. nr = (j2 + *ka - 1) / ka1;
  1941. j1 = j2 - (nr - 1) * ka1;
  1942. if (nr > 0) {
  1943. /* generate rotations in 2nd set to annihilate elements */
  1944. /* which have been created outside the band */
  1945. clargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1946. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1947. /* apply rotations in 2nd set from the left */
  1948. i__3 = *ka - 1;
  1949. for (l = 1; l <= i__3; ++l) {
  1950. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1951. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1952. - *kb + j1], &work[m - *kb + j1], &ka1);
  1953. /* L660: */
  1954. }
  1955. /* apply rotations in 2nd set from both sides to diagonal */
  1956. /* blocks */
  1957. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1958. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1959. kb + j1], &work[m - *kb + j1], &ka1);
  1960. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  1961. }
  1962. /* start applying rotations in 2nd set from the right */
  1963. i__3 = *kb - k + 1;
  1964. for (l = *ka - 1; l >= i__3; --l) {
  1965. nrt = (j2 + l - 1) / ka1;
  1966. j1t = j2 - (nrt - 1) * ka1;
  1967. if (nrt > 0) {
  1968. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1969. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1970. &work[m - *kb + j1t], &ka1);
  1971. }
  1972. /* L670: */
  1973. }
  1974. if (wantx) {
  1975. /* post-multiply X by product of rotations in 2nd set */
  1976. i__3 = j2;
  1977. i__4 = ka1;
  1978. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1979. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1980. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1981. j]);
  1982. /* L680: */
  1983. }
  1984. }
  1985. /* L690: */
  1986. }
  1987. i__4 = *kb - 1;
  1988. for (k = 1; k <= i__4; ++k) {
  1989. /* Computing MAX */
  1990. i__3 = 1, i__1 = k + i0 - m + 1;
  1991. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1992. /* finish applying rotations in 1st set from the right */
  1993. for (l = *kb - k; l >= 1; --l) {
  1994. nrt = (j2 + l - 1) / ka1;
  1995. j1t = j2 - (nrt - 1) * ka1;
  1996. if (nrt > 0) {
  1997. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1998. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1999. j1t], &ka1);
  2000. }
  2001. /* L700: */
  2002. }
  2003. /* L710: */
  2004. }
  2005. if (*kb > 1) {
  2006. i__4 = i2 - *ka;
  2007. for (j = 2; j <= i__4; ++j) {
  2008. rwork[j] = rwork[j + *ka];
  2009. i__3 = j;
  2010. i__1 = j + *ka;
  2011. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2012. /* L720: */
  2013. }
  2014. }
  2015. } else {
  2016. /* Transform A, working with the lower triangle */
  2017. if (update) {
  2018. /* Form inv(S(i))**H * A * inv(S(i)) */
  2019. i__4 = i__ * bb_dim1 + 1;
  2020. bii = bb[i__4].r;
  2021. i__4 = i__ * ab_dim1 + 1;
  2022. i__3 = i__ * ab_dim1 + 1;
  2023. r__1 = ab[i__3].r / bii / bii;
  2024. ab[i__4].r = r__1, ab[i__4].i = 0.f;
  2025. i__4 = i__ - 1;
  2026. for (j = i1; j <= i__4; ++j) {
  2027. i__3 = i__ - j + 1 + j * ab_dim1;
  2028. i__1 = i__ - j + 1 + j * ab_dim1;
  2029. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2030. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2031. /* L730: */
  2032. }
  2033. /* Computing MIN */
  2034. i__3 = *n, i__1 = i__ + *ka;
  2035. i__4 = f2cmin(i__3,i__1);
  2036. for (j = i__ + 1; j <= i__4; ++j) {
  2037. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2038. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2039. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2040. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2041. /* L740: */
  2042. }
  2043. i__4 = i__ + kbt;
  2044. for (k = i__ + 1; k <= i__4; ++k) {
  2045. i__3 = i__ + kbt;
  2046. for (j = k; j <= i__3; ++j) {
  2047. i__1 = j - k + 1 + k * ab_dim1;
  2048. i__2 = j - k + 1 + k * ab_dim1;
  2049. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2050. r_cnjg(&q__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2051. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  2052. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  2053. q__5.r;
  2054. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  2055. q__4.i;
  2056. r_cnjg(&q__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2057. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2058. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  2059. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  2060. .r;
  2061. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  2062. i__7 = i__ * ab_dim1 + 1;
  2063. r__1 = ab[i__7].r;
  2064. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2065. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  2066. r_cnjg(&q__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2067. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  2068. q__9.r * q__10.i + q__9.i * q__10.r;
  2069. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  2070. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2071. /* L750: */
  2072. }
  2073. /* Computing MIN */
  2074. i__1 = *n, i__2 = i__ + *ka;
  2075. i__3 = f2cmin(i__1,i__2);
  2076. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2077. i__1 = j - k + 1 + k * ab_dim1;
  2078. i__2 = j - k + 1 + k * ab_dim1;
  2079. r_cnjg(&q__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2080. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2081. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  2082. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  2083. .r;
  2084. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2085. q__2.i;
  2086. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2087. /* L760: */
  2088. }
  2089. /* L770: */
  2090. }
  2091. i__4 = i__;
  2092. for (j = i1; j <= i__4; ++j) {
  2093. /* Computing MIN */
  2094. i__1 = j + *ka, i__2 = i__ + kbt;
  2095. i__3 = f2cmin(i__1,i__2);
  2096. for (k = i__ + 1; k <= i__3; ++k) {
  2097. i__1 = k - j + 1 + j * ab_dim1;
  2098. i__2 = k - j + 1 + j * ab_dim1;
  2099. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2100. i__6 = i__ - j + 1 + j * ab_dim1;
  2101. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2102. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2103. * ab[i__6].r;
  2104. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2105. q__2.i;
  2106. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2107. /* L780: */
  2108. }
  2109. /* L790: */
  2110. }
  2111. if (wantx) {
  2112. /* post-multiply X by inv(S(i)) */
  2113. r__1 = 1.f / bii;
  2114. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  2115. if (kbt > 0) {
  2116. q__1.r = -1.f, q__1.i = 0.f;
  2117. cgerc_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2118. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2119. + 1], ldx);
  2120. }
  2121. }
  2122. /* store a(i,i1) in RA1 for use in next loop over K */
  2123. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2124. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2125. }
  2126. /* Generate and apply vectors of rotations to chase all the */
  2127. /* existing bulges KA positions up toward the top of the band */
  2128. i__4 = *kb - 1;
  2129. for (k = 1; k <= i__4; ++k) {
  2130. if (update) {
  2131. /* Determine the rotations which would annihilate the bulge */
  2132. /* which has in theory just been created */
  2133. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2134. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2135. clartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2136. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2137. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2138. /* band and store it in WORK(m-kb+i+k) */
  2139. i__3 = k + 1 + i__ * bb_dim1;
  2140. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2141. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  2142. * ra1.i + q__2.i * ra1.r;
  2143. t.r = q__1.r, t.i = q__1.i;
  2144. i__3 = m - *kb + i__ + k;
  2145. i__1 = i__ + k - *ka;
  2146. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  2147. r_cnjg(&q__4, &work[i__ + k - *ka]);
  2148. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2149. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  2150. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  2151. .r;
  2152. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  2153. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  2154. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2155. i__1 = i__ + k - *ka;
  2156. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  2157. work[i__1].r * t.i + work[i__1].i * t.r;
  2158. i__2 = i__ + k - *ka;
  2159. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2160. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  2161. ab[i__5].i;
  2162. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  2163. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2164. ra1.r = ra.r, ra1.i = ra.i;
  2165. }
  2166. }
  2167. /* Computing MAX */
  2168. i__3 = 1, i__1 = k + i0 - m + 1;
  2169. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2170. nr = (j2 + *ka - 1) / ka1;
  2171. j1 = j2 - (nr - 1) * ka1;
  2172. if (update) {
  2173. /* Computing MIN */
  2174. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2175. j2t = f2cmin(i__3,i__1);
  2176. } else {
  2177. j2t = j2;
  2178. }
  2179. nrt = (j2t + *ka - 1) / ka1;
  2180. i__3 = j2t;
  2181. i__1 = ka1;
  2182. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2183. /* create nonzero element a(j+ka,j-1) outside the band */
  2184. /* and store it in WORK(j) */
  2185. i__2 = j;
  2186. i__5 = j;
  2187. i__6 = ka1 + (j - 1) * ab_dim1;
  2188. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2189. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2190. * ab[i__6].r;
  2191. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  2192. i__2 = ka1 + (j - 1) * ab_dim1;
  2193. i__5 = j;
  2194. i__6 = ka1 + (j - 1) * ab_dim1;
  2195. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  2196. i__6].i;
  2197. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  2198. /* L800: */
  2199. }
  2200. /* generate rotations in 1st set to annihilate elements which */
  2201. /* have been created outside the band */
  2202. if (nrt > 0) {
  2203. clargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2204. &rwork[j1], &ka1);
  2205. }
  2206. if (nr > 0) {
  2207. /* apply rotations in 1st set from the right */
  2208. i__1 = *ka - 1;
  2209. for (l = 1; l <= i__1; ++l) {
  2210. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2211. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2212. j1], &ka1);
  2213. /* L810: */
  2214. }
  2215. /* apply rotations in 1st set from both sides to diagonal */
  2216. /* blocks */
  2217. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2218. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2219. work[j1], &ka1);
  2220. clacgv_(&nr, &work[j1], &ka1);
  2221. }
  2222. /* start applying rotations in 1st set from the left */
  2223. i__1 = *kb - k + 1;
  2224. for (l = *ka - 1; l >= i__1; --l) {
  2225. nrt = (j2 + l - 1) / ka1;
  2226. j1t = j2 - (nrt - 1) * ka1;
  2227. if (nrt > 0) {
  2228. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2229. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2230. &inca, &rwork[j1t], &work[j1t], &ka1);
  2231. }
  2232. /* L820: */
  2233. }
  2234. if (wantx) {
  2235. /* post-multiply X by product of rotations in 1st set */
  2236. i__1 = j2;
  2237. i__3 = ka1;
  2238. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2239. r_cnjg(&q__1, &work[j]);
  2240. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2241. + 1], &c__1, &rwork[j], &q__1);
  2242. /* L830: */
  2243. }
  2244. }
  2245. /* L840: */
  2246. }
  2247. if (update) {
  2248. if (i2 > 0 && kbt > 0) {
  2249. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2250. /* band and store it in WORK(m-kb+i+kbt) */
  2251. i__4 = m - *kb + i__ + kbt;
  2252. i__3 = kbt + 1 + i__ * bb_dim1;
  2253. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2254. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  2255. ra1.i + q__2.i * ra1.r;
  2256. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  2257. }
  2258. }
  2259. for (k = *kb; k >= 1; --k) {
  2260. if (update) {
  2261. /* Computing MAX */
  2262. i__4 = 2, i__3 = k + i0 - m;
  2263. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2264. } else {
  2265. /* Computing MAX */
  2266. i__4 = 1, i__3 = k + i0 - m;
  2267. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2268. }
  2269. /* finish applying rotations in 2nd set from the left */
  2270. for (l = *kb - k; l >= 1; --l) {
  2271. nrt = (j2 + *ka + l - 1) / ka1;
  2272. j1t = j2 - (nrt - 1) * ka1;
  2273. if (nrt > 0) {
  2274. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2275. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2276. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2277. + j1t + *ka], &ka1);
  2278. }
  2279. /* L850: */
  2280. }
  2281. nr = (j2 + *ka - 1) / ka1;
  2282. j1 = j2 - (nr - 1) * ka1;
  2283. i__4 = j2;
  2284. i__3 = ka1;
  2285. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2286. i__1 = m - *kb + j;
  2287. i__2 = m - *kb + j + *ka;
  2288. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2289. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2290. /* L860: */
  2291. }
  2292. i__3 = j2;
  2293. i__4 = ka1;
  2294. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2295. /* create nonzero element a(j+ka,j-1) outside the band */
  2296. /* and store it in WORK(m-kb+j) */
  2297. i__1 = m - *kb + j;
  2298. i__2 = m - *kb + j;
  2299. i__5 = ka1 + (j - 1) * ab_dim1;
  2300. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2301. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2302. * ab[i__5].r;
  2303. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  2304. i__1 = ka1 + (j - 1) * ab_dim1;
  2305. i__2 = m - *kb + j;
  2306. i__5 = ka1 + (j - 1) * ab_dim1;
  2307. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  2308. i__5].i;
  2309. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2310. /* L870: */
  2311. }
  2312. if (update) {
  2313. if (i__ + k > ka1 && k <= kbt) {
  2314. i__4 = m - *kb + i__ + k - *ka;
  2315. i__3 = m - *kb + i__ + k;
  2316. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2317. }
  2318. }
  2319. /* L880: */
  2320. }
  2321. for (k = *kb; k >= 1; --k) {
  2322. /* Computing MAX */
  2323. i__4 = 1, i__3 = k + i0 - m;
  2324. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2325. nr = (j2 + *ka - 1) / ka1;
  2326. j1 = j2 - (nr - 1) * ka1;
  2327. if (nr > 0) {
  2328. /* generate rotations in 2nd set to annihilate elements */
  2329. /* which have been created outside the band */
  2330. clargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2331. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2332. /* apply rotations in 2nd set from the right */
  2333. i__4 = *ka - 1;
  2334. for (l = 1; l <= i__4; ++l) {
  2335. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2336. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2337. , &work[m - *kb + j1], &ka1);
  2338. /* L890: */
  2339. }
  2340. /* apply rotations in 2nd set from both sides to diagonal */
  2341. /* blocks */
  2342. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2343. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2344. kb + j1], &work[m - *kb + j1], &ka1);
  2345. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  2346. }
  2347. /* start applying rotations in 2nd set from the left */
  2348. i__4 = *kb - k + 1;
  2349. for (l = *ka - 1; l >= i__4; --l) {
  2350. nrt = (j2 + l - 1) / ka1;
  2351. j1t = j2 - (nrt - 1) * ka1;
  2352. if (nrt > 0) {
  2353. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2354. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2355. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2356. j1t], &ka1);
  2357. }
  2358. /* L900: */
  2359. }
  2360. if (wantx) {
  2361. /* post-multiply X by product of rotations in 2nd set */
  2362. i__4 = j2;
  2363. i__3 = ka1;
  2364. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2365. r_cnjg(&q__1, &work[m - *kb + j]);
  2366. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2367. + 1], &c__1, &rwork[m - *kb + j], &q__1);
  2368. /* L910: */
  2369. }
  2370. }
  2371. /* L920: */
  2372. }
  2373. i__3 = *kb - 1;
  2374. for (k = 1; k <= i__3; ++k) {
  2375. /* Computing MAX */
  2376. i__4 = 1, i__1 = k + i0 - m + 1;
  2377. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2378. /* finish applying rotations in 1st set from the left */
  2379. for (l = *kb - k; l >= 1; --l) {
  2380. nrt = (j2 + l - 1) / ka1;
  2381. j1t = j2 - (nrt - 1) * ka1;
  2382. if (nrt > 0) {
  2383. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2384. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2385. &inca, &rwork[j1t], &work[j1t], &ka1);
  2386. }
  2387. /* L930: */
  2388. }
  2389. /* L940: */
  2390. }
  2391. if (*kb > 1) {
  2392. i__3 = i2 - *ka;
  2393. for (j = 2; j <= i__3; ++j) {
  2394. rwork[j] = rwork[j + *ka];
  2395. i__4 = j;
  2396. i__1 = j + *ka;
  2397. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2398. /* L950: */
  2399. }
  2400. }
  2401. }
  2402. goto L490;
  2403. /* End of CHBGST */
  2404. } /* chbgst_ */