You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd2.c 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b30 = 0.f;
  488. /* > \brief \b SLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
  489. . */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SLASD2 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd2.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd2.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd2.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
  508. /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
  509. /* IDXC, IDXQ, COLTYP, INFO ) */
  510. /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
  511. /* REAL ALPHA, BETA */
  512. /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
  513. /* $ IDXQ( * ) */
  514. /* REAL D( * ), DSIGMA( * ), U( LDU, * ), */
  515. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  516. /* $ Z( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > SLASD2 merges the two sets of singular values together into a single */
  523. /* > sorted set. Then it tries to deflate the size of the problem. */
  524. /* > There are two ways in which deflation can occur: when two or more */
  525. /* > singular values are close together or if there is a tiny entry in the */
  526. /* > Z vector. For each such occurrence the order of the related secular */
  527. /* > equation problem is reduced by one. */
  528. /* > */
  529. /* > SLASD2 is called from SLASD1. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] NL */
  534. /* > \verbatim */
  535. /* > NL is INTEGER */
  536. /* > The row dimension of the upper block. NL >= 1. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] NR */
  540. /* > \verbatim */
  541. /* > NR is INTEGER */
  542. /* > The row dimension of the lower block. NR >= 1. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] SQRE */
  546. /* > \verbatim */
  547. /* > SQRE is INTEGER */
  548. /* > = 0: the lower block is an NR-by-NR square matrix. */
  549. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  550. /* > */
  551. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  552. /* > M = N + SQRE >= N columns. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[out] K */
  556. /* > \verbatim */
  557. /* > K is INTEGER */
  558. /* > Contains the dimension of the non-deflated matrix, */
  559. /* > This is the order of the related secular equation. 1 <= K <=N. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] D */
  563. /* > \verbatim */
  564. /* > D is REAL array, dimension (N) */
  565. /* > On entry D contains the singular values of the two submatrices */
  566. /* > to be combined. On exit D contains the trailing (N-K) updated */
  567. /* > singular values (those which were deflated) sorted into */
  568. /* > increasing order. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[out] Z */
  572. /* > \verbatim */
  573. /* > Z is REAL array, dimension (N) */
  574. /* > On exit Z contains the updating row vector in the secular */
  575. /* > equation. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] ALPHA */
  579. /* > \verbatim */
  580. /* > ALPHA is REAL */
  581. /* > Contains the diagonal element associated with the added row. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BETA */
  585. /* > \verbatim */
  586. /* > BETA is REAL */
  587. /* > Contains the off-diagonal element associated with the added */
  588. /* > row. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] U */
  592. /* > \verbatim */
  593. /* > U is REAL array, dimension (LDU,N) */
  594. /* > On entry U contains the left singular vectors of two */
  595. /* > submatrices in the two square blocks with corners at (1,1), */
  596. /* > (NL, NL), and (NL+2, NL+2), (N,N). */
  597. /* > On exit U contains the trailing (N-K) updated left singular */
  598. /* > vectors (those which were deflated) in its last N-K columns. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDU */
  602. /* > \verbatim */
  603. /* > LDU is INTEGER */
  604. /* > The leading dimension of the array U. LDU >= N. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in,out] VT */
  608. /* > \verbatim */
  609. /* > VT is REAL array, dimension (LDVT,M) */
  610. /* > On entry VT**T contains the right singular vectors of two */
  611. /* > submatrices in the two square blocks with corners at (1,1), */
  612. /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
  613. /* > On exit VT**T contains the trailing (N-K) updated right singular */
  614. /* > vectors (those which were deflated) in its last N-K columns. */
  615. /* > In case SQRE =1, the last row of VT spans the right null */
  616. /* > space. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDVT */
  620. /* > \verbatim */
  621. /* > LDVT is INTEGER */
  622. /* > The leading dimension of the array VT. LDVT >= M. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] DSIGMA */
  626. /* > \verbatim */
  627. /* > DSIGMA is REAL array, dimension (N) */
  628. /* > Contains a copy of the diagonal elements (K-1 singular values */
  629. /* > and one zero) in the secular equation. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] U2 */
  633. /* > \verbatim */
  634. /* > U2 is REAL array, dimension (LDU2,N) */
  635. /* > Contains a copy of the first K-1 left singular vectors which */
  636. /* > will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
  637. /* > for the new left singular vectors. U2 is arranged into four */
  638. /* > blocks. The first block contains a column with 1 at NL+1 and */
  639. /* > zero everywhere else; the second block contains non-zero */
  640. /* > entries only at and above NL; the third contains non-zero */
  641. /* > entries only below NL+1; and the fourth is dense. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in] LDU2 */
  645. /* > \verbatim */
  646. /* > LDU2 is INTEGER */
  647. /* > The leading dimension of the array U2. LDU2 >= N. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] VT2 */
  651. /* > \verbatim */
  652. /* > VT2 is REAL array, dimension (LDVT2,N) */
  653. /* > VT2**T contains a copy of the first K right singular vectors */
  654. /* > which will be used by SLASD3 in a matrix multiply (SGEMM) to */
  655. /* > solve for the new right singular vectors. VT2 is arranged into */
  656. /* > three blocks. The first block contains a row that corresponds */
  657. /* > to the special 0 diagonal element in SIGMA; the second block */
  658. /* > contains non-zeros only at and before NL +1; the third block */
  659. /* > contains non-zeros only at and after NL +2. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[in] LDVT2 */
  663. /* > \verbatim */
  664. /* > LDVT2 is INTEGER */
  665. /* > The leading dimension of the array VT2. LDVT2 >= M. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] IDXP */
  669. /* > \verbatim */
  670. /* > IDXP is INTEGER array, dimension (N) */
  671. /* > This will contain the permutation used to place deflated */
  672. /* > values of D at the end of the array. On output IDXP(2:K) */
  673. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  674. /* > points to the deflated singular values. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] IDX */
  678. /* > \verbatim */
  679. /* > IDX is INTEGER array, dimension (N) */
  680. /* > This will contain the permutation used to sort the contents of */
  681. /* > D into ascending order. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] IDXC */
  685. /* > \verbatim */
  686. /* > IDXC is INTEGER array, dimension (N) */
  687. /* > This will contain the permutation used to arrange the columns */
  688. /* > of the deflated U matrix into three groups: the first group */
  689. /* > contains non-zero entries only at and above NL, the second */
  690. /* > contains non-zero entries only below NL+2, and the third is */
  691. /* > dense. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in,out] IDXQ */
  695. /* > \verbatim */
  696. /* > IDXQ is INTEGER array, dimension (N) */
  697. /* > This contains the permutation which separately sorts the two */
  698. /* > sub-problems in D into ascending order. Note that entries in */
  699. /* > the first hlaf of this permutation must first be moved one */
  700. /* > position backward; and entries in the second half */
  701. /* > must first have NL+1 added to their values. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] COLTYP */
  705. /* > \verbatim */
  706. /* > COLTYP is INTEGER array, dimension (N) */
  707. /* > As workspace, this will contain a label which will indicate */
  708. /* > which of the following types a column in the U2 matrix or a */
  709. /* > row in the VT2 matrix is: */
  710. /* > 1 : non-zero in the upper half only */
  711. /* > 2 : non-zero in the lower half only */
  712. /* > 3 : dense */
  713. /* > 4 : deflated */
  714. /* > */
  715. /* > On exit, it is an array of dimension 4, with COLTYP(I) being */
  716. /* > the dimension of the I-th type columns. */
  717. /* > \endverbatim */
  718. /* > */
  719. /* > \param[out] INFO */
  720. /* > \verbatim */
  721. /* > INFO is INTEGER */
  722. /* > = 0: successful exit. */
  723. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  724. /* > \endverbatim */
  725. /* Authors: */
  726. /* ======== */
  727. /* > \author Univ. of Tennessee */
  728. /* > \author Univ. of California Berkeley */
  729. /* > \author Univ. of Colorado Denver */
  730. /* > \author NAG Ltd. */
  731. /* > \date December 2016 */
  732. /* > \ingroup OTHERauxiliary */
  733. /* > \par Contributors: */
  734. /* ================== */
  735. /* > */
  736. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  737. /* > California at Berkeley, USA */
  738. /* > */
  739. /* ===================================================================== */
  740. /* Subroutine */ void slasd2_(integer *nl, integer *nr, integer *sqre, integer
  741. *k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
  742. ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2,
  743. real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
  744. integer *idxq, integer *coltyp, integer *info)
  745. {
  746. /* System generated locals */
  747. integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
  748. vt2_dim1, vt2_offset, i__1;
  749. real r__1, r__2;
  750. /* Local variables */
  751. integer idxi, idxj, ctot[4];
  752. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  753. integer *, real *, real *);
  754. real c__;
  755. integer i__, j, m, n;
  756. real s;
  757. integer idxjp, jprev, k2;
  758. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  759. integer *);
  760. real z1;
  761. extern real slapy2_(real *, real *);
  762. integer ct, jp;
  763. extern real slamch_(char *);
  764. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  765. extern void slamrg_(
  766. integer *, integer *, real *, integer *, integer *, integer *);
  767. real hlftol;
  768. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  769. integer *, real *, integer *), slaset_(char *, integer *,
  770. integer *, real *, real *, real *, integer *);
  771. real eps, tau, tol;
  772. integer psm[4], nlp1, nlp2;
  773. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  774. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  775. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  776. /* December 2016 */
  777. /* ===================================================================== */
  778. /* Test the input parameters. */
  779. /* Parameter adjustments */
  780. --d__;
  781. --z__;
  782. u_dim1 = *ldu;
  783. u_offset = 1 + u_dim1 * 1;
  784. u -= u_offset;
  785. vt_dim1 = *ldvt;
  786. vt_offset = 1 + vt_dim1 * 1;
  787. vt -= vt_offset;
  788. --dsigma;
  789. u2_dim1 = *ldu2;
  790. u2_offset = 1 + u2_dim1 * 1;
  791. u2 -= u2_offset;
  792. vt2_dim1 = *ldvt2;
  793. vt2_offset = 1 + vt2_dim1 * 1;
  794. vt2 -= vt2_offset;
  795. --idxp;
  796. --idx;
  797. --idxc;
  798. --idxq;
  799. --coltyp;
  800. /* Function Body */
  801. *info = 0;
  802. if (*nl < 1) {
  803. *info = -1;
  804. } else if (*nr < 1) {
  805. *info = -2;
  806. } else if (*sqre != 1 && *sqre != 0) {
  807. *info = -3;
  808. }
  809. n = *nl + *nr + 1;
  810. m = n + *sqre;
  811. if (*ldu < n) {
  812. *info = -10;
  813. } else if (*ldvt < m) {
  814. *info = -12;
  815. } else if (*ldu2 < n) {
  816. *info = -15;
  817. } else if (*ldvt2 < m) {
  818. *info = -17;
  819. }
  820. if (*info != 0) {
  821. i__1 = -(*info);
  822. xerbla_("SLASD2", &i__1, (ftnlen)6);
  823. return;
  824. }
  825. nlp1 = *nl + 1;
  826. nlp2 = *nl + 2;
  827. /* Generate the first part of the vector Z; and move the singular */
  828. /* values in the first part of D one position backward. */
  829. z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
  830. z__[1] = z1;
  831. for (i__ = *nl; i__ >= 1; --i__) {
  832. z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
  833. d__[i__ + 1] = d__[i__];
  834. idxq[i__ + 1] = idxq[i__] + 1;
  835. /* L10: */
  836. }
  837. /* Generate the second part of the vector Z. */
  838. i__1 = m;
  839. for (i__ = nlp2; i__ <= i__1; ++i__) {
  840. z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
  841. /* L20: */
  842. }
  843. /* Initialize some reference arrays. */
  844. i__1 = nlp1;
  845. for (i__ = 2; i__ <= i__1; ++i__) {
  846. coltyp[i__] = 1;
  847. /* L30: */
  848. }
  849. i__1 = n;
  850. for (i__ = nlp2; i__ <= i__1; ++i__) {
  851. coltyp[i__] = 2;
  852. /* L40: */
  853. }
  854. /* Sort the singular values into increasing order */
  855. i__1 = n;
  856. for (i__ = nlp2; i__ <= i__1; ++i__) {
  857. idxq[i__] += nlp1;
  858. /* L50: */
  859. }
  860. /* DSIGMA, IDXC, IDXC, and the first column of U2 */
  861. /* are used as storage space. */
  862. i__1 = n;
  863. for (i__ = 2; i__ <= i__1; ++i__) {
  864. dsigma[i__] = d__[idxq[i__]];
  865. u2[i__ + u2_dim1] = z__[idxq[i__]];
  866. idxc[i__] = coltyp[idxq[i__]];
  867. /* L60: */
  868. }
  869. slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  870. i__1 = n;
  871. for (i__ = 2; i__ <= i__1; ++i__) {
  872. idxi = idx[i__] + 1;
  873. d__[i__] = dsigma[idxi];
  874. z__[i__] = u2[idxi + u2_dim1];
  875. coltyp[i__] = idxc[idxi];
  876. /* L70: */
  877. }
  878. /* Calculate the allowable deflation tolerance */
  879. eps = slamch_("Epsilon");
  880. /* Computing MAX */
  881. r__1 = abs(*alpha), r__2 = abs(*beta);
  882. tol = f2cmax(r__1,r__2);
  883. /* Computing MAX */
  884. r__2 = (r__1 = d__[n], abs(r__1));
  885. tol = eps * 8.f * f2cmax(r__2,tol);
  886. /* There are 2 kinds of deflation -- first a value in the z-vector */
  887. /* is small, second two (or more) singular values are very close */
  888. /* together (their difference is small). */
  889. /* If the value in the z-vector is small, we simply permute the */
  890. /* array so that the corresponding singular value is moved to the */
  891. /* end. */
  892. /* If two values in the D-vector are close, we perform a two-sided */
  893. /* rotation designed to make one of the corresponding z-vector */
  894. /* entries zero, and then permute the array so that the deflated */
  895. /* singular value is moved to the end. */
  896. /* If there are multiple singular values then the problem deflates. */
  897. /* Here the number of equal singular values are found. As each equal */
  898. /* singular value is found, an elementary reflector is computed to */
  899. /* rotate the corresponding singular subspace so that the */
  900. /* corresponding components of Z are zero in this new basis. */
  901. *k = 1;
  902. k2 = n + 1;
  903. i__1 = n;
  904. for (j = 2; j <= i__1; ++j) {
  905. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  906. /* Deflate due to small z component. */
  907. --k2;
  908. idxp[k2] = j;
  909. coltyp[j] = 4;
  910. if (j == n) {
  911. goto L120;
  912. }
  913. } else {
  914. jprev = j;
  915. goto L90;
  916. }
  917. /* L80: */
  918. }
  919. L90:
  920. j = jprev;
  921. L100:
  922. ++j;
  923. if (j > n) {
  924. goto L110;
  925. }
  926. if ((r__1 = z__[j], abs(r__1)) <= tol) {
  927. /* Deflate due to small z component. */
  928. --k2;
  929. idxp[k2] = j;
  930. coltyp[j] = 4;
  931. } else {
  932. /* Check if singular values are close enough to allow deflation. */
  933. if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
  934. /* Deflation is possible. */
  935. s = z__[jprev];
  936. c__ = z__[j];
  937. /* Find sqrt(a**2+b**2) without overflow or */
  938. /* destructive underflow. */
  939. tau = slapy2_(&c__, &s);
  940. c__ /= tau;
  941. s = -s / tau;
  942. z__[j] = tau;
  943. z__[jprev] = 0.f;
  944. /* Apply back the Givens rotation to the left and right */
  945. /* singular vector matrices. */
  946. idxjp = idxq[idx[jprev] + 1];
  947. idxj = idxq[idx[j] + 1];
  948. if (idxjp <= nlp1) {
  949. --idxjp;
  950. }
  951. if (idxj <= nlp1) {
  952. --idxj;
  953. }
  954. srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
  955. c__1, &c__, &s);
  956. srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
  957. c__, &s);
  958. if (coltyp[j] != coltyp[jprev]) {
  959. coltyp[j] = 3;
  960. }
  961. coltyp[jprev] = 4;
  962. --k2;
  963. idxp[k2] = jprev;
  964. jprev = j;
  965. } else {
  966. ++(*k);
  967. u2[*k + u2_dim1] = z__[jprev];
  968. dsigma[*k] = d__[jprev];
  969. idxp[*k] = jprev;
  970. jprev = j;
  971. }
  972. }
  973. goto L100;
  974. L110:
  975. /* Record the last singular value. */
  976. ++(*k);
  977. u2[*k + u2_dim1] = z__[jprev];
  978. dsigma[*k] = d__[jprev];
  979. idxp[*k] = jprev;
  980. L120:
  981. /* Count up the total number of the various types of columns, then */
  982. /* form a permutation which positions the four column types into */
  983. /* four groups of uniform structure (although one or more of these */
  984. /* groups may be empty). */
  985. for (j = 1; j <= 4; ++j) {
  986. ctot[j - 1] = 0;
  987. /* L130: */
  988. }
  989. i__1 = n;
  990. for (j = 2; j <= i__1; ++j) {
  991. ct = coltyp[j];
  992. ++ctot[ct - 1];
  993. /* L140: */
  994. }
  995. /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
  996. psm[0] = 2;
  997. psm[1] = ctot[0] + 2;
  998. psm[2] = psm[1] + ctot[1];
  999. psm[3] = psm[2] + ctot[2];
  1000. /* Fill out the IDXC array so that the permutation which it induces */
  1001. /* will place all type-1 columns first, all type-2 columns next, */
  1002. /* then all type-3's, and finally all type-4's, starting from the */
  1003. /* second column. This applies similarly to the rows of VT. */
  1004. i__1 = n;
  1005. for (j = 2; j <= i__1; ++j) {
  1006. jp = idxp[j];
  1007. ct = coltyp[jp];
  1008. idxc[psm[ct - 1]] = j;
  1009. ++psm[ct - 1];
  1010. /* L150: */
  1011. }
  1012. /* Sort the singular values and corresponding singular vectors into */
  1013. /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
  1014. /* which were not deflated go into the first K slots of DSIGMA, U2, */
  1015. /* and VT2 respectively, while those which were deflated go into the */
  1016. /* last N - K slots, except that the first column/row will be treated */
  1017. /* separately. */
  1018. i__1 = n;
  1019. for (j = 2; j <= i__1; ++j) {
  1020. jp = idxp[j];
  1021. dsigma[j] = d__[jp];
  1022. idxj = idxq[idx[idxp[idxc[j]]] + 1];
  1023. if (idxj <= nlp1) {
  1024. --idxj;
  1025. }
  1026. scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
  1027. scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
  1028. /* L160: */
  1029. }
  1030. /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
  1031. dsigma[1] = 0.f;
  1032. hlftol = tol / 2.f;
  1033. if (abs(dsigma[2]) <= hlftol) {
  1034. dsigma[2] = hlftol;
  1035. }
  1036. if (m > n) {
  1037. z__[1] = slapy2_(&z1, &z__[m]);
  1038. if (z__[1] <= tol) {
  1039. c__ = 1.f;
  1040. s = 0.f;
  1041. z__[1] = tol;
  1042. } else {
  1043. c__ = z1 / z__[1];
  1044. s = z__[m] / z__[1];
  1045. }
  1046. } else {
  1047. if (abs(z1) <= tol) {
  1048. z__[1] = tol;
  1049. } else {
  1050. z__[1] = z1;
  1051. }
  1052. }
  1053. /* Move the rest of the updating row to Z. */
  1054. i__1 = *k - 1;
  1055. scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
  1056. /* Determine the first column of U2, the first row of VT2 and the */
  1057. /* last row of VT. */
  1058. slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
  1059. u2[nlp1 + u2_dim1] = 1.f;
  1060. if (m > n) {
  1061. i__1 = nlp1;
  1062. for (i__ = 1; i__ <= i__1; ++i__) {
  1063. vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
  1064. vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
  1065. /* L170: */
  1066. }
  1067. i__1 = m;
  1068. for (i__ = nlp2; i__ <= i__1; ++i__) {
  1069. vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
  1070. vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
  1071. /* L180: */
  1072. }
  1073. } else {
  1074. scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
  1075. }
  1076. if (m > n) {
  1077. scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
  1078. }
  1079. /* The deflated singular values and their corresponding vectors go */
  1080. /* into the back of D, U, and V respectively. */
  1081. if (n > *k) {
  1082. i__1 = n - *k;
  1083. scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1084. i__1 = n - *k;
  1085. slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
  1086. * u_dim1 + 1], ldu);
  1087. i__1 = n - *k;
  1088. slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
  1089. vt_dim1], ldvt);
  1090. }
  1091. /* Copy CTOT into COLTYP for referencing in SLASD3. */
  1092. for (j = 1; j <= 4; ++j) {
  1093. coltyp[j] = ctot[j - 1];
  1094. /* L190: */
  1095. }
  1096. return;
  1097. /* End of SLASD2 */
  1098. } /* slasd2_ */