|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b34 = 0.;
- static doublereal c_b35 = 1.;
- static integer c__0 = 0;
- static integer c_n1 = -1;
-
- /* > \brief \b DGEJSV */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DGEJSV + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, */
- /* M, N, A, LDA, SVA, U, LDU, V, LDV, */
- /* WORK, LWORK, IWORK, INFO ) */
-
- /* IMPLICIT NONE */
- /* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N */
- /* DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ), */
- /* $ WORK( LWORK ) */
- /* INTEGER IWORK( * ) */
- /* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DGEJSV computes the singular value decomposition (SVD) of a real M-by-N */
- /* > matrix [A], where M >= N. The SVD of [A] is written as */
- /* > */
- /* > [A] = [U] * [SIGMA] * [V]^t, */
- /* > */
- /* > where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N */
- /* > diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and */
- /* > [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are */
- /* > the singular values of [A]. The columns of [U] and [V] are the left and */
- /* > the right singular vectors of [A], respectively. The matrices [U] and [V] */
- /* > are computed and stored in the arrays U and V, respectively. The diagonal */
- /* > of [SIGMA] is computed and stored in the array SVA. */
- /* > DGEJSV can sometimes compute tiny singular values and their singular vectors much */
- /* > more accurately than other SVD routines, see below under Further Details. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBA */
- /* > \verbatim */
- /* > JOBA is CHARACTER*1 */
- /* > Specifies the level of accuracy: */
- /* > = 'C': This option works well (high relative accuracy) if A = B * D, */
- /* > with well-conditioned B and arbitrary diagonal matrix D. */
- /* > The accuracy cannot be spoiled by COLUMN scaling. The */
- /* > accuracy of the computed output depends on the condition of */
- /* > B, and the procedure aims at the best theoretical accuracy. */
- /* > The relative error max_{i=1:N}|d sigma_i| / sigma_i is */
- /* > bounded by f(M,N)*epsilon* cond(B), independent of D. */
- /* > The input matrix is preprocessed with the QRF with column */
- /* > pivoting. This initial preprocessing and preconditioning by */
- /* > a rank revealing QR factorization is common for all values of */
- /* > JOBA. Additional actions are specified as follows: */
- /* > = 'E': Computation as with 'C' with an additional estimate of the */
- /* > condition number of B. It provides a realistic error bound. */
- /* > = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings */
- /* > D1, D2, and well-conditioned matrix C, this option gives */
- /* > higher accuracy than the 'C' option. If the structure of the */
- /* > input matrix is not known, and relative accuracy is */
- /* > desirable, then this option is advisable. The input matrix A */
- /* > is preprocessed with QR factorization with FULL (row and */
- /* > column) pivoting. */
- /* > = 'G': Computation as with 'F' with an additional estimate of the */
- /* > condition number of B, where A=D*B. If A has heavily weighted */
- /* > rows, then using this condition number gives too pessimistic */
- /* > error bound. */
- /* > = 'A': Small singular values are the noise and the matrix is treated */
- /* > as numerically rank deficient. The error in the computed */
- /* > singular values is bounded by f(m,n)*epsilon*||A||. */
- /* > The computed SVD A = U * S * V^t restores A up to */
- /* > f(m,n)*epsilon*||A||. */
- /* > This gives the procedure the licence to discard (set to zero) */
- /* > all singular values below N*epsilon*||A||. */
- /* > = 'R': Similar as in 'A'. Rank revealing property of the initial */
- /* > QR factorization is used do reveal (using triangular factor) */
- /* > a gap sigma_{r+1} < epsilon * sigma_r in which case the */
- /* > numerical RANK is declared to be r. The SVD is computed with */
- /* > absolute error bounds, but more accurately than with 'A'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBU */
- /* > \verbatim */
- /* > JOBU is CHARACTER*1 */
- /* > Specifies whether to compute the columns of U: */
- /* > = 'U': N columns of U are returned in the array U. */
- /* > = 'F': full set of M left sing. vectors is returned in the array U. */
- /* > = 'W': U may be used as workspace of length M*N. See the description */
- /* > of U. */
- /* > = 'N': U is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV */
- /* > \verbatim */
- /* > JOBV is CHARACTER*1 */
- /* > Specifies whether to compute the matrix V: */
- /* > = 'V': N columns of V are returned in the array V; Jacobi rotations */
- /* > are not explicitly accumulated. */
- /* > = 'J': N columns of V are returned in the array V, but they are */
- /* > computed as the product of Jacobi rotations. This option is */
- /* > allowed only if JOBU .NE. 'N', i.e. in computing the full SVD. */
- /* > = 'W': V may be used as workspace of length N*N. See the description */
- /* > of V. */
- /* > = 'N': V is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBR */
- /* > \verbatim */
- /* > JOBR is CHARACTER*1 */
- /* > Specifies the RANGE for the singular values. Issues the licence to */
- /* > set to zero small positive singular values if they are outside */
- /* > specified range. If A .NE. 0 is scaled so that the largest singular */
- /* > value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues */
- /* > the licence to kill columns of A whose norm in c*A is less than */
- /* > DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, */
- /* > where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). */
- /* > = 'N': Do not kill small columns of c*A. This option assumes that */
- /* > BLAS and QR factorizations and triangular solvers are */
- /* > implemented to work in that range. If the condition of A */
- /* > is greater than BIG, use DGESVJ. */
- /* > = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)] */
- /* > (roughly, as described above). This option is recommended. */
- /* > ~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
- /* > For computing the singular values in the FULL range [SFMIN,BIG] */
- /* > use DGESVJ. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBT */
- /* > \verbatim */
- /* > JOBT is CHARACTER*1 */
- /* > If the matrix is square then the procedure may determine to use */
- /* > transposed A if A^t seems to be better with respect to convergence. */
- /* > If the matrix is not square, JOBT is ignored. This is subject to */
- /* > changes in the future. */
- /* > The decision is based on two values of entropy over the adjoint */
- /* > orbit of A^t * A. See the descriptions of WORK(6) and WORK(7). */
- /* > = 'T': transpose if entropy test indicates possibly faster */
- /* > convergence of Jacobi process if A^t is taken as input. If A is */
- /* > replaced with A^t, then the row pivoting is included automatically. */
- /* > = 'N': do not speculate. */
- /* > This option can be used to compute only the singular values, or the */
- /* > full SVD (U, SIGMA and V). For only one set of singular vectors */
- /* > (U or V), the caller should provide both U and V, as one of the */
- /* > matrices is used as workspace if the matrix A is transposed. */
- /* > The implementer can easily remove this constraint and make the */
- /* > code more complicated. See the descriptions of U and V. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBP */
- /* > \verbatim */
- /* > JOBP is CHARACTER*1 */
- /* > Issues the licence to introduce structured perturbations to drown */
- /* > denormalized numbers. This licence should be active if the */
- /* > denormals are poorly implemented, causing slow computation, */
- /* > especially in cases of fast convergence (!). For details see [1,2]. */
- /* > For the sake of simplicity, this perturbations are included only */
- /* > when the full SVD or only the singular values are requested. The */
- /* > implementer/user can easily add the perturbation for the cases of */
- /* > computing one set of singular vectors. */
- /* > = 'P': introduce perturbation */
- /* > = 'N': do not perturb */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the input matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the input matrix A. M >= N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SVA */
- /* > \verbatim */
- /* > SVA is DOUBLE PRECISION array, dimension (N) */
- /* > On exit, */
- /* > - For WORK(1)/WORK(2) = ONE: The singular values of A. During the */
- /* > computation SVA contains Euclidean column norms of the */
- /* > iterated matrices in the array A. */
- /* > - For WORK(1) .NE. WORK(2): The singular values of A are */
- /* > (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if */
- /* > sigma_max(A) overflows or if small singular values have been */
- /* > saved from underflow by scaling the input matrix A. */
- /* > - If JOBR='R' then some of the singular values may be returned */
- /* > as exact zeros obtained by "set to zero" because they are */
- /* > below the numerical rank threshold or are denormalized numbers. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is DOUBLE PRECISION array, dimension ( LDU, N ) */
- /* > If JOBU = 'U', then U contains on exit the M-by-N matrix of */
- /* > the left singular vectors. */
- /* > If JOBU = 'F', then U contains on exit the M-by-M matrix of */
- /* > the left singular vectors, including an ONB */
- /* > of the orthogonal complement of the Range(A). */
- /* > If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), */
- /* > then U is used as workspace if the procedure */
- /* > replaces A with A^t. In that case, [V] is computed */
- /* > in U as left singular vectors of A^t and then */
- /* > copied back to the V array. This 'W' option is just */
- /* > a reminder to the caller that in this case U is */
- /* > reserved as workspace of length N*N. */
- /* > If JOBU = 'N' U is not referenced, unless JOBT='T'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U, LDU >= 1. */
- /* > IF JOBU = 'U' or 'F' or 'W', then LDU >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is DOUBLE PRECISION array, dimension ( LDV, N ) */
- /* > If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of */
- /* > the right singular vectors; */
- /* > If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), */
- /* > then V is used as workspace if the pprocedure */
- /* > replaces A with A^t. In that case, [U] is computed */
- /* > in V as right singular vectors of A^t and then */
- /* > copied back to the U array. This 'W' option is just */
- /* > a reminder to the caller that in this case V is */
- /* > reserved as workspace of length N*N. */
- /* > If JOBV = 'N' V is not referenced, unless JOBT='T'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > The leading dimension of the array V, LDV >= 1. */
- /* > If JOBV = 'V' or 'J' or 'W', then LDV >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
- /* > On exit, if N > 0 .AND. M > 0 (else not referenced), */
- /* > WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such */
- /* > that SCALE*SVA(1:N) are the computed singular values */
- /* > of A. (See the description of SVA().) */
- /* > WORK(2) = See the description of WORK(1). */
- /* > WORK(3) = SCONDA is an estimate for the condition number of */
- /* > column equilibrated A. (If JOBA = 'E' or 'G') */
- /* > SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). */
- /* > It is computed using DPOCON. It holds */
- /* > N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
- /* > where R is the triangular factor from the QRF of A. */
- /* > However, if R is truncated and the numerical rank is */
- /* > determined to be strictly smaller than N, SCONDA is */
- /* > returned as -1, thus indicating that the smallest */
- /* > singular values might be lost. */
- /* > */
- /* > If full SVD is needed, the following two condition numbers are */
- /* > useful for the analysis of the algorithm. They are provied for */
- /* > a developer/implementer who is familiar with the details of */
- /* > the method. */
- /* > */
- /* > WORK(4) = an estimate of the scaled condition number of the */
- /* > triangular factor in the first QR factorization. */
- /* > WORK(5) = an estimate of the scaled condition number of the */
- /* > triangular factor in the second QR factorization. */
- /* > The following two parameters are computed if JOBT = 'T'. */
- /* > They are provided for a developer/implementer who is familiar */
- /* > with the details of the method. */
- /* > */
- /* > WORK(6) = the entropy of A^t*A :: this is the Shannon entropy */
- /* > of diag(A^t*A) / Trace(A^t*A) taken as point in the */
- /* > probability simplex. */
- /* > WORK(7) = the entropy of A*A^t. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > Length of WORK to confirm proper allocation of work space. */
- /* > LWORK depends on the job: */
- /* > */
- /* > If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and */
- /* > -> .. no scaled condition estimate required (JOBE = 'N'): */
- /* > LWORK >= f2cmax(2*M+N,4*N+1,7). This is the minimal requirement. */
- /* > ->> For optimal performance (blocked code) the optimal value */
- /* > is LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal */
- /* > block size for DGEQP3 and DGEQRF. */
- /* > In general, optimal LWORK is computed as */
- /* > LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7). */
- /* > -> .. an estimate of the scaled condition number of A is */
- /* > required (JOBA='E', 'G'). In this case, LWORK is the maximum */
- /* > of the above and N*N+4*N, i.e. LWORK >= f2cmax(2*M+N,N*N+4*N,7). */
- /* > ->> For optimal performance (blocked code) the optimal value */
- /* > is LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7). */
- /* > In general, the optimal length LWORK is computed as */
- /* > LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), */
- /* > N+N*N+LWORK(DPOCON),7). */
- /* > */
- /* > If SIGMA and the right singular vectors are needed (JOBV = 'V'), */
- /* > -> the minimal requirement is LWORK >= f2cmax(2*M+N,4*N+1,7). */
- /* > -> For optimal performance, LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7), */
- /* > where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF, */
- /* > DORMLQ. In general, the optimal length LWORK is computed as */
- /* > LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), */
- /* > N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)). */
- /* > */
- /* > If SIGMA and the left singular vectors are needed */
- /* > -> the minimal requirement is LWORK >= f2cmax(2*M+N,4*N+1,7). */
- /* > -> For optimal performance: */
- /* > if JOBU = 'U' :: LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7), */
- /* > if JOBU = 'F' :: LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,N+M*NB,7), */
- /* > where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR. */
- /* > In general, the optimal length LWORK is computed as */
- /* > LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON), */
- /* > 2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). */
- /* > Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or */
- /* > M*NB (for JOBU = 'F'). */
- /* > */
- /* > If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and */
- /* > -> if JOBV = 'V' */
- /* > the minimal requirement is LWORK >= f2cmax(2*M+N,6*N+2*N*N). */
- /* > -> if JOBV = 'J' the minimal requirement is */
- /* > LWORK >= f2cmax(2*M+N, 4*N+N*N,2*N+N*N+6). */
- /* > -> For optimal performance, LWORK should be additionally */
- /* > larger than N+M*NB, where NB is the optimal block size */
- /* > for DORMQR. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (M+3*N). */
- /* > On exit, */
- /* > IWORK(1) = the numerical rank determined after the initial */
- /* > QR factorization with pivoting. See the descriptions */
- /* > of JOBA and JOBR. */
- /* > IWORK(2) = the number of the computed nonzero singular values */
- /* > IWORK(3) = if nonzero, a warning message: */
- /* > If IWORK(3) = 1 then some of the column norms of A */
- /* > were denormalized floats. The requested high accuracy */
- /* > is not warranted by the data. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > < 0: if INFO = -i, then the i-th argument had an illegal value. */
- /* > = 0: successful exit; */
- /* > > 0: DGEJSV did not converge in the maximal allowed number */
- /* > of sweeps. The computed values may be inaccurate. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleGEsing */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3, */
- /* > DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an */
- /* > additional row pivoting can be used as a preprocessor, which in some */
- /* > cases results in much higher accuracy. An example is matrix A with the */
- /* > structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned */
- /* > diagonal matrices and C is well-conditioned matrix. In that case, complete */
- /* > pivoting in the first QR factorizations provides accuracy dependent on the */
- /* > condition number of C, and independent of D1, D2. Such higher accuracy is */
- /* > not completely understood theoretically, but it works well in practice. */
- /* > Further, if A can be written as A = B*D, with well-conditioned B and some */
- /* > diagonal D, then the high accuracy is guaranteed, both theoretically and */
- /* > in software, independent of D. For more details see [1], [2]. */
- /* > The computational range for the singular values can be the full range */
- /* > ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS */
- /* > & LAPACK routines called by DGEJSV are implemented to work in that range. */
- /* > If that is not the case, then the restriction for safe computation with */
- /* > the singular values in the range of normalized IEEE numbers is that the */
- /* > spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not */
- /* > overflow. This code (DGEJSV) is best used in this restricted range, */
- /* > meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are */
- /* > returned as zeros. See JOBR for details on this. */
- /* > Further, this implementation is somewhat slower than the one described */
- /* > in [1,2] due to replacement of some non-LAPACK components, and because */
- /* > the choice of some tuning parameters in the iterative part (DGESVJ) is */
- /* > left to the implementer on a particular machine. */
- /* > The rank revealing QR factorization (in this code: DGEQP3) should be */
- /* > implemented as in [3]. We have a new version of DGEQP3 under development */
- /* > that is more robust than the current one in LAPACK, with a cleaner cut in */
- /* > rank deficient cases. It will be available in the SIGMA library [4]. */
- /* > If M is much larger than N, it is obvious that the initial QRF with */
- /* > column pivoting can be preprocessed by the QRF without pivoting. That */
- /* > well known trick is not used in DGEJSV because in some cases heavy row */
- /* > weighting can be treated with complete pivoting. The overhead in cases */
- /* > M much larger than N is then only due to pivoting, but the benefits in */
- /* > terms of accuracy have prevailed. The implementer/user can incorporate */
- /* > this extra QRF step easily. The implementer can also improve data movement */
- /* > (matrix transpose, matrix copy, matrix transposed copy) - this */
- /* > implementation of DGEJSV uses only the simplest, naive data movement. */
- /* > \endverbatim */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. */
- /* > SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. */
- /* > LAPACK Working note 169. */
- /* > [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. */
- /* > SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. */
- /* > LAPACK Working note 170. */
- /* > [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR */
- /* > factorization software - a case study. */
- /* > ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. */
- /* > LAPACK Working note 176. */
- /* > [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, */
- /* > QSVD, (H,K)-SVD computations. */
- /* > Department of Mathematics, University of Zagreb, 2008. */
- /* > \endverbatim */
-
- /* > \par Bugs, examples and comments: */
- /* ================================= */
- /* > */
- /* > Please report all bugs and send interesting examples and/or comments to */
- /* > drmac@math.hr. Thank you. */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dgejsv_(char *joba, char *jobu, char *jobv, char *jobr,
- char *jobt, char *jobp, integer *m, integer *n, doublereal *a,
- integer *lda, doublereal *sva, doublereal *u, integer *ldu,
- doublereal *v, integer *ldv, doublereal *work, integer *lwork,
- integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2,
- i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11, i__12;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Local variables */
- logical defr;
- doublereal aapp, aaqq;
- logical kill;
- integer ierr;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- doublereal temp1;
- integer p, q;
- logical jracc;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- doublereal small, entra, sfmin;
- logical lsvec;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- doublereal epsln;
- logical rsvec;
- extern /* Subroutine */ void dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- integer n1;
- logical l2aber;
- extern /* Subroutine */ void dgeqp3_(integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- doublereal condr1, condr2, uscal1, uscal2;
- logical l2kill, l2rank, l2tran, l2pert;
- extern doublereal dlamch_(char *);
- integer nr;
- extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- doublereal scalem;
- extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- doublereal sconda;
- logical goscal;
- doublereal aatmin;
- extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- doublereal aatmax;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- logical noscal;
- extern /* Subroutine */ void dpocon_(char *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), dgesvj_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), dlassq_(integer *, doublereal *, integer
- *, doublereal *, doublereal *);
- extern int dlaswp_(integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *);
- doublereal entrat;
- logical almort;
- extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), dormlq_(char *, char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- doublereal maxprj;
- logical errest;
- extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- logical transp, rowpiv;
- doublereal big, cond_ok__, xsc, big1;
- integer warning, numrank;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* =========================================================================== */
-
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- --sva;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- --work;
- --iwork;
-
- /* Function Body */
- lsvec = lsame_(jobu, "U") || lsame_(jobu, "F");
- jracc = lsame_(jobv, "J");
- rsvec = lsame_(jobv, "V") || jracc;
- rowpiv = lsame_(joba, "F") || lsame_(joba, "G");
- l2rank = lsame_(joba, "R");
- l2aber = lsame_(joba, "A");
- errest = lsame_(joba, "E") || lsame_(joba, "G");
- l2tran = lsame_(jobt, "T");
- l2kill = lsame_(jobr, "R");
- defr = lsame_(jobr, "N");
- l2pert = lsame_(jobp, "P");
-
- if (! (rowpiv || l2rank || l2aber || errest || lsame_(joba, "C"))) {
- *info = -1;
- } else if (! (lsvec || lsame_(jobu, "N") || lsame_(
- jobu, "W"))) {
- *info = -2;
- } else if (! (rsvec || lsame_(jobv, "N") || lsame_(
- jobv, "W")) || jracc && ! lsvec) {
- *info = -3;
- } else if (! (l2kill || defr)) {
- *info = -4;
- } else if (! (l2tran || lsame_(jobt, "N"))) {
- *info = -5;
- } else if (! (l2pert || lsame_(jobp, "N"))) {
- *info = -6;
- } else if (*m < 0) {
- *info = -7;
- } else if (*n < 0 || *n > *m) {
- *info = -8;
- } else if (*lda < *m) {
- *info = -10;
- } else if (lsvec && *ldu < *m) {
- *info = -13;
- } else if (rsvec && *ldv < *n) {
- *info = -15;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 7, i__2 = (*n << 2) + 1, i__1 = f2cmax(i__1,i__2), i__2 = (*m <<
- 1) + *n;
- /* Computing MAX */
- i__3 = 7, i__4 = (*n << 2) + *n * *n, i__3 = f2cmax(i__3,i__4), i__4 = (*
- m << 1) + *n;
- /* Computing MAX */
- i__5 = 7, i__6 = (*m << 1) + *n, i__5 = f2cmax(i__5,i__6), i__6 = (*n <<
- 2) + 1;
- /* Computing MAX */
- i__7 = 7, i__8 = (*m << 1) + *n, i__7 = f2cmax(i__7,i__8), i__8 = (*n <<
- 2) + 1;
- /* Computing MAX */
- i__9 = (*m << 1) + *n, i__10 = *n * 6 + (*n << 1) * *n;
- /* Computing MAX */
- i__11 = (*m << 1) + *n, i__12 = (*n << 2) + *n * *n, i__11 = f2cmax(
- i__11,i__12), i__12 = (*n << 1) + *n * *n + 6;
- if (! (lsvec || rsvec || errest) && *lwork < f2cmax(i__1,i__2) || ! (
- lsvec || rsvec) && errest && *lwork < f2cmax(i__3,i__4) || lsvec
- && ! rsvec && *lwork < f2cmax(i__5,i__6) || rsvec && ! lsvec && *
- lwork < f2cmax(i__7,i__8) || lsvec && rsvec && ! jracc && *lwork
- < f2cmax(i__9,i__10) || lsvec && rsvec && jracc && *lwork < f2cmax(
- i__11,i__12)) {
- *info = -17;
- } else {
- /* #:) */
- *info = 0;
- }
- }
-
- if (*info != 0) {
- /* #:( */
- i__1 = -(*info);
- xerbla_("DGEJSV", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return for void matrix (Y3K safe) */
- /* #:) */
- if (*m == 0 || *n == 0) {
- iwork[1] = 0;
- iwork[2] = 0;
- iwork[3] = 0;
- work[1] = 0.;
- work[2] = 0.;
- work[3] = 0.;
- work[4] = 0.;
- work[5] = 0.;
- work[6] = 0.;
- work[7] = 0.;
- return;
- }
-
- /* Determine whether the matrix U should be M x N or M x M */
-
- if (lsvec) {
- n1 = *n;
- if (lsame_(jobu, "F")) {
- n1 = *m;
- }
- }
-
- /* Set numerical parameters */
-
- /* ! NOTE: Make sure DLAMCH() does not fail on the target architecture. */
-
- epsln = dlamch_("Epsilon");
- sfmin = dlamch_("SafeMinimum");
- small = sfmin / epsln;
- big = dlamch_("O");
- /* BIG = ONE / SFMIN */
-
- /* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N */
-
- /* (!) If necessary, scale SVA() to protect the largest norm from */
- /* overflow. It is possible that this scaling pushes the smallest */
- /* column norm left from the underflow threshold (extreme case). */
-
- scalem = 1. / sqrt((doublereal) (*m) * (doublereal) (*n));
- noscal = TRUE_;
- goscal = TRUE_;
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- aapp = 0.;
- aaqq = 1.;
- dlassq_(m, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq);
- if (aapp > big) {
- *info = -9;
- i__2 = -(*info);
- xerbla_("DGEJSV", &i__2, (ftnlen)6);
- return;
- }
- aaqq = sqrt(aaqq);
- if (aapp < big / aaqq && noscal) {
- sva[p] = aapp * aaqq;
- } else {
- noscal = FALSE_;
- sva[p] = aapp * (aaqq * scalem);
- if (goscal) {
- goscal = FALSE_;
- i__2 = p - 1;
- dscal_(&i__2, &scalem, &sva[1], &c__1);
- }
- }
- /* L1874: */
- }
-
- if (noscal) {
- scalem = 1.;
- }
-
- aapp = 0.;
- aaqq = big;
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- /* Computing MAX */
- d__1 = aapp, d__2 = sva[p];
- aapp = f2cmax(d__1,d__2);
- if (sva[p] != 0.) {
- /* Computing MIN */
- d__1 = aaqq, d__2 = sva[p];
- aaqq = f2cmin(d__1,d__2);
- }
- /* L4781: */
- }
-
- /* Quick return for zero M x N matrix */
- /* #:) */
- if (aapp == 0.) {
- if (lsvec) {
- dlaset_("G", m, &n1, &c_b34, &c_b35, &u[u_offset], ldu)
- ;
- }
- if (rsvec) {
- dlaset_("G", n, n, &c_b34, &c_b35, &v[v_offset], ldv);
- }
- work[1] = 1.;
- work[2] = 1.;
- if (errest) {
- work[3] = 1.;
- }
- if (lsvec && rsvec) {
- work[4] = 1.;
- work[5] = 1.;
- }
- if (l2tran) {
- work[6] = 0.;
- work[7] = 0.;
- }
- iwork[1] = 0;
- iwork[2] = 0;
- iwork[3] = 0;
- return;
- }
-
- /* Issue warning if denormalized column norms detected. Override the */
- /* high relative accuracy request. Issue licence to kill columns */
- /* (set them to zero) whose norm is less than sigma_max / BIG (roughly). */
- /* #:( */
- warning = 0;
- if (aaqq <= sfmin) {
- l2rank = TRUE_;
- l2kill = TRUE_;
- warning = 1;
- }
-
- /* Quick return for one-column matrix */
- /* #:) */
- if (*n == 1) {
-
- if (lsvec) {
- dlascl_("G", &c__0, &c__0, &sva[1], &scalem, m, &c__1, &a[a_dim1
- + 1], lda, &ierr);
- dlacpy_("A", m, &c__1, &a[a_offset], lda, &u[u_offset], ldu);
- /* computing all M left singular vectors of the M x 1 matrix */
- if (n1 != *n) {
- i__1 = *lwork - *n;
- dgeqrf_(m, n, &u[u_offset], ldu, &work[1], &work[*n + 1], &
- i__1, &ierr);
- i__1 = *lwork - *n;
- dorgqr_(m, &n1, &c__1, &u[u_offset], ldu, &work[1], &work[*n
- + 1], &i__1, &ierr);
- dcopy_(m, &a[a_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
- }
- }
- if (rsvec) {
- v[v_dim1 + 1] = 1.;
- }
- if (sva[1] < big * scalem) {
- sva[1] /= scalem;
- scalem = 1.;
- }
- work[1] = 1. / scalem;
- work[2] = 1.;
- if (sva[1] != 0.) {
- iwork[1] = 1;
- if (sva[1] / scalem >= sfmin) {
- iwork[2] = 1;
- } else {
- iwork[2] = 0;
- }
- } else {
- iwork[1] = 0;
- iwork[2] = 0;
- }
- iwork[3] = 0;
- if (errest) {
- work[3] = 1.;
- }
- if (lsvec && rsvec) {
- work[4] = 1.;
- work[5] = 1.;
- }
- if (l2tran) {
- work[6] = 0.;
- work[7] = 0.;
- }
- return;
-
- }
-
- transp = FALSE_;
- l2tran = l2tran && *m == *n;
-
- aatmax = -1.;
- aatmin = big;
- if (rowpiv || l2tran) {
-
- /* Compute the row norms, needed to determine row pivoting sequence */
- /* (in the case of heavily row weighted A, row pivoting is strongly */
- /* advised) and to collect information needed to compare the */
- /* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.). */
-
- if (l2tran) {
- i__1 = *m;
- for (p = 1; p <= i__1; ++p) {
- xsc = 0.;
- temp1 = 1.;
- dlassq_(n, &a[p + a_dim1], lda, &xsc, &temp1);
- /* DLASSQ gets both the ell_2 and the ell_infinity norm */
- /* in one pass through the vector */
- work[*m + *n + p] = xsc * scalem;
- work[*n + p] = xsc * (scalem * sqrt(temp1));
- /* Computing MAX */
- d__1 = aatmax, d__2 = work[*n + p];
- aatmax = f2cmax(d__1,d__2);
- if (work[*n + p] != 0.) {
- /* Computing MIN */
- d__1 = aatmin, d__2 = work[*n + p];
- aatmin = f2cmin(d__1,d__2);
- }
- /* L1950: */
- }
- } else {
- i__1 = *m;
- for (p = 1; p <= i__1; ++p) {
- work[*m + *n + p] = scalem * (d__1 = a[p + idamax_(n, &a[p +
- a_dim1], lda) * a_dim1], abs(d__1));
- /* Computing MAX */
- d__1 = aatmax, d__2 = work[*m + *n + p];
- aatmax = f2cmax(d__1,d__2);
- /* Computing MIN */
- d__1 = aatmin, d__2 = work[*m + *n + p];
- aatmin = f2cmin(d__1,d__2);
- /* L1904: */
- }
- }
-
- }
-
- /* For square matrix A try to determine whether A^t would be better */
- /* input for the preconditioned Jacobi SVD, with faster convergence. */
- /* The decision is based on an O(N) function of the vector of column */
- /* and row norms of A, based on the Shannon entropy. This should give */
- /* the right choice in most cases when the difference actually matters. */
- /* It may fail and pick the slower converging side. */
-
- entra = 0.;
- entrat = 0.;
- if (l2tran) {
-
- xsc = 0.;
- temp1 = 1.;
- dlassq_(n, &sva[1], &c__1, &xsc, &temp1);
- temp1 = 1. / temp1;
-
- entra = 0.;
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- /* Computing 2nd power */
- d__1 = sva[p] / xsc;
- big1 = d__1 * d__1 * temp1;
- if (big1 != 0.) {
- entra += big1 * log(big1);
- }
- /* L1113: */
- }
- entra = -entra / log((doublereal) (*n));
-
- /* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex. */
- /* It is derived from the diagonal of A^t * A. Do the same with the */
- /* diagonal of A * A^t, compute the entropy of the corresponding */
- /* probability distribution. Note that A * A^t and A^t * A have the */
- /* same trace. */
-
- entrat = 0.;
- i__1 = *n + *m;
- for (p = *n + 1; p <= i__1; ++p) {
- /* Computing 2nd power */
- d__1 = work[p] / xsc;
- big1 = d__1 * d__1 * temp1;
- if (big1 != 0.) {
- entrat += big1 * log(big1);
- }
- /* L1114: */
- }
- entrat = -entrat / log((doublereal) (*m));
-
- /* Analyze the entropies and decide A or A^t. Smaller entropy */
- /* usually means better input for the algorithm. */
-
- transp = entrat < entra;
-
- /* If A^t is better than A, transpose A. */
-
- if (transp) {
- /* In an optimal implementation, this trivial transpose */
- /* should be replaced with faster transpose. */
- i__1 = *n - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n;
- for (q = p + 1; q <= i__2; ++q) {
- temp1 = a[q + p * a_dim1];
- a[q + p * a_dim1] = a[p + q * a_dim1];
- a[p + q * a_dim1] = temp1;
- /* L1116: */
- }
- /* L1115: */
- }
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- work[*m + *n + p] = sva[p];
- sva[p] = work[*n + p];
- /* L1117: */
- }
- temp1 = aapp;
- aapp = aatmax;
- aatmax = temp1;
- temp1 = aaqq;
- aaqq = aatmin;
- aatmin = temp1;
- kill = lsvec;
- lsvec = rsvec;
- rsvec = kill;
- if (lsvec) {
- n1 = *n;
- }
-
- rowpiv = TRUE_;
- }
-
- }
- /* END IF L2TRAN */
-
- /* Scale the matrix so that its maximal singular value remains less */
- /* than DSQRT(BIG) -- the matrix is scaled so that its maximal column */
- /* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep */
- /* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and */
- /* BLAS routines that, in some implementations, are not capable of */
- /* working in the full interval [SFMIN,BIG] and that they may provoke */
- /* overflows in the intermediate results. If the singular values spread */
- /* from SFMIN to BIG, then DGESVJ will compute them. So, in that case, */
- /* one should use DGESVJ instead of DGEJSV. */
-
- big1 = sqrt(big);
- temp1 = sqrt(big / (doublereal) (*n));
-
- dlascl_("G", &c__0, &c__0, &aapp, &temp1, n, &c__1, &sva[1], n, &ierr);
- if (aaqq > aapp * sfmin) {
- aaqq = aaqq / aapp * temp1;
- } else {
- aaqq = aaqq * temp1 / aapp;
- }
- temp1 *= scalem;
- dlascl_("G", &c__0, &c__0, &aapp, &temp1, m, n, &a[a_offset], lda, &ierr);
-
- /* To undo scaling at the end of this procedure, multiply the */
- /* computed singular values with USCAL2 / USCAL1. */
-
- uscal1 = temp1;
- uscal2 = aapp;
-
- if (l2kill) {
- /* L2KILL enforces computation of nonzero singular values in */
- /* the restricted range of condition number of the initial A, */
- /* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN). */
- xsc = sqrt(sfmin);
- } else {
- xsc = small;
-
- /* Now, if the condition number of A is too big, */
- /* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN, */
- /* as a precaution measure, the full SVD is computed using DGESVJ */
- /* with accumulated Jacobi rotations. This provides numerically */
- /* more robust computation, at the cost of slightly increased run */
- /* time. Depending on the concrete implementation of BLAS and LAPACK */
- /* (i.e. how they behave in presence of extreme ill-conditioning) the */
- /* implementor may decide to remove this switch. */
- if (aaqq < sqrt(sfmin) && lsvec && rsvec) {
- jracc = TRUE_;
- }
-
- }
- if (aaqq < xsc) {
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- if (sva[p] < xsc) {
- dlaset_("A", m, &c__1, &c_b34, &c_b34, &a[p * a_dim1 + 1],
- lda);
- sva[p] = 0.;
- }
- /* L700: */
- }
- }
-
- /* Preconditioning using QR factorization with pivoting */
-
- if (rowpiv) {
- /* Optional row permutation (Bjoerck row pivoting): */
- /* A result by Cox and Higham shows that the Bjoerck's */
- /* row pivoting combined with standard column pivoting */
- /* has similar effect as Powell-Reid complete pivoting. */
- /* The ell-infinity norms of A are made nonincreasing. */
- i__1 = *m - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *m - p + 1;
- q = idamax_(&i__2, &work[*m + *n + p], &c__1) + p - 1;
- iwork[(*n << 1) + p] = q;
- if (p != q) {
- temp1 = work[*m + *n + p];
- work[*m + *n + p] = work[*m + *n + q];
- work[*m + *n + q] = temp1;
- }
- /* L1952: */
- }
- i__1 = *m - 1;
- dlaswp_(n, &a[a_offset], lda, &c__1, &i__1, &iwork[(*n << 1) + 1], &
- c__1);
- }
-
- /* End of the preparation phase (scaling, optional sorting and */
- /* transposing, optional flushing of small columns). */
-
- /* Preconditioning */
-
- /* If the full SVD is needed, the right singular vectors are computed */
- /* from a matrix equation, and for that we need theoretical analysis */
- /* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF. */
- /* In all other cases the first RR QRF can be chosen by other criteria */
- /* (eg speed by replacing global with restricted window pivoting, such */
- /* as in SGEQPX from TOMS # 782). Good results will be obtained using */
- /* SGEQPX with properly (!) chosen numerical parameters. */
- /* Any improvement of DGEQP3 improves overal performance of DGEJSV. */
-
- /* A * P1 = Q1 * [ R1^t 0]^t: */
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- iwork[p] = 0;
- /* L1963: */
- }
- i__1 = *lwork - *n;
- dgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &work[1], &work[*n + 1], &
- i__1, &ierr);
-
- /* The upper triangular matrix R1 from the first QRF is inspected for */
- /* rank deficiency and possibilities for deflation, or possible */
- /* ill-conditioning. Depending on the user specified flag L2RANK, */
- /* the procedure explores possibilities to reduce the numerical */
- /* rank by inspecting the computed upper triangular factor. If */
- /* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of */
- /* A + dA, where ||dA|| <= f(M,N)*EPSLN. */
-
- nr = 1;
- if (l2aber) {
- /* Standard absolute error bound suffices. All sigma_i with */
- /* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an */
- /* aggressive enforcement of lower numerical rank by introducing a */
- /* backward error of the order of N*EPSLN*||A||. */
- temp1 = sqrt((doublereal) (*n)) * epsln;
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if ((d__2 = a[p + p * a_dim1], abs(d__2)) >= temp1 * (d__1 = a[
- a_dim1 + 1], abs(d__1))) {
- ++nr;
- } else {
- goto L3002;
- }
- /* L3001: */
- }
- L3002:
- ;
- } else if (l2rank) {
- /* Sudden drop on the diagonal of R1 is used as the criterion for */
- /* close-to-rank-deficient. */
- temp1 = sqrt(sfmin);
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if ((d__2 = a[p + p * a_dim1], abs(d__2)) < epsln * (d__1 = a[p -
- 1 + (p - 1) * a_dim1], abs(d__1)) || (d__3 = a[p + p *
- a_dim1], abs(d__3)) < small || l2kill && (d__4 = a[p + p *
- a_dim1], abs(d__4)) < temp1) {
- goto L3402;
- }
- ++nr;
- /* L3401: */
- }
- L3402:
-
- ;
- } else {
- /* The goal is high relative accuracy. However, if the matrix */
- /* has high scaled condition number the relative accuracy is in */
- /* general not feasible. Later on, a condition number estimator */
- /* will be deployed to estimate the scaled condition number. */
- /* Here we just remove the underflowed part of the triangular */
- /* factor. This prevents the situation in which the code is */
- /* working hard to get the accuracy not warranted by the data. */
- temp1 = sqrt(sfmin);
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- if ((d__1 = a[p + p * a_dim1], abs(d__1)) < small || l2kill && (
- d__2 = a[p + p * a_dim1], abs(d__2)) < temp1) {
- goto L3302;
- }
- ++nr;
- /* L3301: */
- }
- L3302:
-
- ;
- }
-
- almort = FALSE_;
- if (nr == *n) {
- maxprj = 1.;
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- temp1 = (d__1 = a[p + p * a_dim1], abs(d__1)) / sva[iwork[p]];
- maxprj = f2cmin(maxprj,temp1);
- /* L3051: */
- }
- /* Computing 2nd power */
- d__1 = maxprj;
- if (d__1 * d__1 >= 1. - (doublereal) (*n) * epsln) {
- almort = TRUE_;
- }
- }
-
-
- sconda = -1.;
- condr1 = -1.;
- condr2 = -1.;
-
- if (errest) {
- if (*n == nr) {
- if (rsvec) {
- dlacpy_("U", n, n, &a[a_offset], lda, &v[v_offset], ldv);
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- temp1 = sva[iwork[p]];
- d__1 = 1. / temp1;
- dscal_(&p, &d__1, &v[p * v_dim1 + 1], &c__1);
- /* L3053: */
- }
- dpocon_("U", n, &v[v_offset], ldv, &c_b35, &temp1, &work[*n +
- 1], &iwork[(*n << 1) + *m + 1], &ierr);
- } else if (lsvec) {
- dlacpy_("U", n, n, &a[a_offset], lda, &u[u_offset], ldu);
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- temp1 = sva[iwork[p]];
- d__1 = 1. / temp1;
- dscal_(&p, &d__1, &u[p * u_dim1 + 1], &c__1);
- /* L3054: */
- }
- dpocon_("U", n, &u[u_offset], ldu, &c_b35, &temp1, &work[*n +
- 1], &iwork[(*n << 1) + *m + 1], &ierr);
- } else {
- dlacpy_("U", n, n, &a[a_offset], lda, &work[*n + 1], n);
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- temp1 = sva[iwork[p]];
- d__1 = 1. / temp1;
- dscal_(&p, &d__1, &work[*n + (p - 1) * *n + 1], &c__1);
- /* L3052: */
- }
- dpocon_("U", n, &work[*n + 1], n, &c_b35, &temp1, &work[*n + *
- n * *n + 1], &iwork[(*n << 1) + *m + 1], &ierr);
- }
- sconda = 1. / sqrt(temp1);
- /* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1). */
- /* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
- } else {
- sconda = -1.;
- }
- }
-
- l2pert = l2pert && (d__1 = a[a_dim1 + 1] / a[nr + nr * a_dim1], abs(d__1))
- > sqrt(big1);
- /* If there is no violent scaling, artificial perturbation is not needed. */
-
- /* Phase 3: */
-
- if (! (rsvec || lsvec)) {
-
- /* Singular Values only */
-
- /* Computing MIN */
- i__2 = *n - 1;
- i__1 = f2cmin(i__2,nr);
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n - p;
- dcopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p *
- a_dim1], &c__1);
- /* L1946: */
- }
-
- /* The following two DO-loops introduce small relative perturbation */
- /* into the strict upper triangle of the lower triangular matrix. */
- /* Small entries below the main diagonal are also changed. */
- /* This modification is useful if the computing environment does not */
- /* provide/allow FLUSH TO ZERO underflow, for it prevents many */
- /* annoying denormalized numbers in case of strongly scaled matrices. */
- /* The perturbation is structured so that it does not introduce any */
- /* new perturbation of the singular values, and it does not destroy */
- /* the job done by the preconditioner. */
- /* The licence for this perturbation is in the variable L2PERT, which */
- /* should be .FALSE. if FLUSH TO ZERO underflow is active. */
-
- if (! almort) {
-
- if (l2pert) {
- /* XSC = DSQRT(SMALL) */
- xsc = epsln / (doublereal) (*n);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- temp1 = xsc * (d__1 = a[q + q * a_dim1], abs(d__1));
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- if (p > q && (d__1 = a[p + q * a_dim1], abs(d__1)) <=
- temp1 || p < q) {
- a[p + q * a_dim1] = d_sign(&temp1, &a[p + q *
- a_dim1]);
- }
- /* L4949: */
- }
- /* L4947: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) +
- 1], lda);
- }
-
-
- i__1 = *lwork - *n;
- dgeqrf_(n, &nr, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1,
- &ierr);
-
- i__1 = nr - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p;
- dcopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p *
- a_dim1], &c__1);
- /* L1948: */
- }
-
- }
-
- /* Row-cyclic Jacobi SVD algorithm with column pivoting */
-
- /* to drown denormals */
- if (l2pert) {
- /* XSC = DSQRT(SMALL) */
- xsc = epsln / (doublereal) (*n);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- temp1 = xsc * (d__1 = a[q + q * a_dim1], abs(d__1));
- i__2 = nr;
- for (p = 1; p <= i__2; ++p) {
- if (p > q && (d__1 = a[p + q * a_dim1], abs(d__1)) <=
- temp1 || p < q) {
- a[p + q * a_dim1] = d_sign(&temp1, &a[p + q * a_dim1])
- ;
- }
- /* L1949: */
- }
- /* L1947: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) + 1],
- lda);
- }
-
- /* triangular matrix (plus perturbation which is ignored in */
- /* the part which destroys triangular form (confusing?!)) */
-
- dgesvj_("L", "NoU", "NoV", &nr, &nr, &a[a_offset], lda, &sva[1], n, &
- v[v_offset], ldv, &work[1], lwork, info);
-
- scalem = work[1];
- numrank = i_dnnt(&work[2]);
-
-
- } else if (rsvec && ! lsvec) {
-
- /* -> Singular Values and Right Singular Vectors <- */
-
- if (almort) {
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n - p + 1;
- dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &
- c__1);
- /* L1998: */
- }
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) +
- 1], ldv);
-
- dgesvj_("L", "U", "N", n, &nr, &v[v_offset], ldv, &sva[1], &nr, &
- a[a_offset], lda, &work[1], lwork, info);
- scalem = work[1];
- numrank = i_dnnt(&work[2]);
- } else {
-
- /* accumulated product of Jacobi rotations, three are perfect ) */
-
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &a[a_dim1 + 2],
- lda);
- i__1 = *lwork - *n;
- dgelqf_(&nr, n, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1,
- &ierr);
- dlacpy_("Lower", &nr, &nr, &a[a_offset], lda, &v[v_offset], ldv);
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) +
- 1], ldv);
- i__1 = *lwork - (*n << 1);
- dgeqrf_(&nr, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n <<
- 1) + 1], &i__1, &ierr);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p + 1;
- dcopy_(&i__2, &v[p + p * v_dim1], ldv, &v[p + p * v_dim1], &
- c__1);
- /* L8998: */
- }
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) +
- 1], ldv);
-
- dgesvj_("Lower", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[1], &
- nr, &u[u_offset], ldu, &work[*n + 1], lwork, info);
- scalem = work[*n + 1];
- numrank = i_dnnt(&work[*n + 2]);
- if (nr < *n) {
- i__1 = *n - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1],
- ldv);
- i__1 = *n - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1
- + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr +
- 1) * v_dim1], ldv);
- }
-
- i__1 = *lwork - *n;
- dormlq_("Left", "Transpose", n, n, &nr, &a[a_offset], lda, &work[
- 1], &v[v_offset], ldv, &work[*n + 1], &i__1, &ierr);
-
- }
-
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- dcopy_(n, &v[p + v_dim1], ldv, &a[iwork[p] + a_dim1], lda);
- /* L8991: */
- }
- dlacpy_("All", n, n, &a[a_offset], lda, &v[v_offset], ldv);
-
- if (transp) {
- dlacpy_("All", n, n, &v[v_offset], ldv, &u[u_offset], ldu);
- }
-
- } else if (lsvec && ! rsvec) {
-
-
- /* Jacobi rotations in the Jacobi iterations. */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n - p + 1;
- dcopy_(&i__2, &a[p + p * a_dim1], lda, &u[p + p * u_dim1], &c__1);
- /* L1965: */
- }
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1],
- ldu);
-
- i__1 = *lwork - (*n << 1);
- dgeqrf_(n, &nr, &u[u_offset], ldu, &work[*n + 1], &work[(*n << 1) + 1]
- , &i__1, &ierr);
-
- i__1 = nr - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p;
- dcopy_(&i__2, &u[p + (p + 1) * u_dim1], ldu, &u[p + 1 + p *
- u_dim1], &c__1);
- /* L1967: */
- }
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1],
- ldu);
-
- i__1 = *lwork - *n;
- dgesvj_("Lower", "U", "N", &nr, &nr, &u[u_offset], ldu, &sva[1], &nr,
- &a[a_offset], lda, &work[*n + 1], &i__1, info);
- scalem = work[*n + 1];
- numrank = i_dnnt(&work[*n + 2]);
-
- if (nr < *m) {
- i__1 = *m - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + u_dim1], ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) * u_dim1
- + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (nr +
- 1) * u_dim1], ldu);
- }
- }
-
- i__1 = *lwork - *n;
- dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &u[
- u_offset], ldu, &work[*n + 1], &i__1, &ierr);
-
- if (rowpiv) {
- i__1 = *m - 1;
- dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1) +
- 1], &c_n1);
- }
-
- i__1 = n1;
- for (p = 1; p <= i__1; ++p) {
- xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);
- dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
- /* L1974: */
- }
-
- if (transp) {
- dlacpy_("All", n, n, &u[u_offset], ldu, &v[v_offset], ldv);
- }
-
- } else {
-
-
- if (! jracc) {
-
- if (! almort) {
-
- /* Second Preconditioning Step (QRF [with pivoting]) */
- /* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is */
- /* equivalent to an LQF CALL. Since in many libraries the QRF */
- /* seems to be better optimized than the LQF, we do explicit */
- /* transpose and use the QRF. This is subject to changes in an */
- /* optimized implementation of DGEJSV. */
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n - p + 1;
- dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1],
- &c__1);
- /* L1968: */
- }
-
- /* denormals in the second QR factorization, where they are */
- /* as good as zeros. This is done to avoid painfully slow */
- /* computation with denormals. The relative size of the perturbation */
- /* is a parameter that can be changed by the implementer. */
- /* This perturbation device will be obsolete on machines with */
- /* properly implemented arithmetic. */
- /* To switch it off, set L2PERT=.FALSE. To remove it from the */
- /* code, remove the action under L2PERT=.TRUE., leave the ELSE part. */
- /* The following two loops should be blocked and fused with the */
- /* transposed copy above. */
-
- if (l2pert) {
- xsc = sqrt(small);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- temp1 = xsc * (d__1 = v[q + q * v_dim1], abs(d__1));
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- if (p > q && (d__1 = v[p + q * v_dim1], abs(d__1))
- <= temp1 || p < q) {
- v[p + q * v_dim1] = d_sign(&temp1, &v[p + q *
- v_dim1]);
- }
- if (p < q) {
- v[p + q * v_dim1] = -v[p + q * v_dim1];
- }
- /* L2968: */
- }
- /* L2969: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 <<
- 1) + 1], ldv);
- }
-
- /* Estimate the row scaled condition number of R1 */
- /* (If R1 is rectangular, N > NR, then the condition number */
- /* of the leading NR x NR submatrix is estimated.) */
-
- dlacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1]
- , &nr);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p + 1;
- temp1 = dnrm2_(&i__2, &work[(*n << 1) + (p - 1) * nr + p],
- &c__1);
- i__2 = nr - p + 1;
- d__1 = 1. / temp1;
- dscal_(&i__2, &d__1, &work[(*n << 1) + (p - 1) * nr + p],
- &c__1);
- /* L3950: */
- }
- dpocon_("Lower", &nr, &work[(*n << 1) + 1], &nr, &c_b35, &
- temp1, &work[(*n << 1) + nr * nr + 1], &iwork[*m + (*
- n << 1) + 1], &ierr);
- condr1 = 1. / sqrt(temp1);
- /* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N) */
- /* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N)) */
-
- cond_ok__ = sqrt((doublereal) nr);
- /* [TP] COND_OK is a tuning parameter. */
- if (condr1 < cond_ok__) {
- /* implementation, this QRF should be implemented as the QRF */
- /* of a lower triangular matrix. */
- /* R1^t = Q2 * R2 */
- i__1 = *lwork - (*n << 1);
- dgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*
- n << 1) + 1], &i__1, &ierr);
-
- if (l2pert) {
- xsc = sqrt(small) / epsln;
- i__1 = nr;
- for (p = 2; p <= i__1; ++p) {
- i__2 = p - 1;
- for (q = 1; q <= i__2; ++q) {
- /* Computing MIN */
- d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)),
- d__4 = (d__2 = v[q + q * v_dim1], abs(
- d__2));
- temp1 = xsc * f2cmin(d__3,d__4);
- if ((d__1 = v[q + p * v_dim1], abs(d__1)) <=
- temp1) {
- v[q + p * v_dim1] = d_sign(&temp1, &v[q +
- p * v_dim1]);
- }
- /* L3958: */
- }
- /* L3959: */
- }
- }
-
- if (nr != *n) {
- dlacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n <<
- 1) + 1], n);
- }
-
- i__1 = nr - 1;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p;
- dcopy_(&i__2, &v[p + (p + 1) * v_dim1], ldv, &v[p + 1
- + p * v_dim1], &c__1);
- /* L1969: */
- }
-
- condr2 = condr1;
-
- } else {
-
- /* Note that windowed pivoting would be equally good */
- /* numerically, and more run-time efficient. So, in */
- /* an optimal implementation, the next call to DGEQP3 */
- /* should be replaced with eg. CALL SGEQPX (ACM TOMS #782) */
- /* with properly (carefully) chosen parameters. */
-
- /* R1^t * P2 = Q2 * R2 */
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- iwork[*n + p] = 0;
- /* L3003: */
- }
- i__1 = *lwork - (*n << 1);
- dgeqp3_(n, &nr, &v[v_offset], ldv, &iwork[*n + 1], &work[*
- n + 1], &work[(*n << 1) + 1], &i__1, &ierr);
- /* * CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), */
- /* * $ LWORK-2*N, IERR ) */
- if (l2pert) {
- xsc = sqrt(small);
- i__1 = nr;
- for (p = 2; p <= i__1; ++p) {
- i__2 = p - 1;
- for (q = 1; q <= i__2; ++q) {
- /* Computing MIN */
- d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)),
- d__4 = (d__2 = v[q + q * v_dim1], abs(
- d__2));
- temp1 = xsc * f2cmin(d__3,d__4);
- if ((d__1 = v[q + p * v_dim1], abs(d__1)) <=
- temp1) {
- v[q + p * v_dim1] = d_sign(&temp1, &v[q +
- p * v_dim1]);
- }
- /* L3968: */
- }
- /* L3969: */
- }
- }
-
- dlacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n << 1) +
- 1], n);
-
- if (l2pert) {
- xsc = sqrt(small);
- i__1 = nr;
- for (p = 2; p <= i__1; ++p) {
- i__2 = p - 1;
- for (q = 1; q <= i__2; ++q) {
- /* Computing MIN */
- d__3 = (d__1 = v[p + p * v_dim1], abs(d__1)),
- d__4 = (d__2 = v[q + q * v_dim1], abs(
- d__2));
- temp1 = xsc * f2cmin(d__3,d__4);
- v[p + q * v_dim1] = -d_sign(&temp1, &v[q + p *
- v_dim1]);
- /* L8971: */
- }
- /* L8970: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("L", &i__1, &i__2, &c_b34, &c_b34, &v[v_dim1
- + 2], ldv);
- }
- /* Now, compute R2 = L3 * Q3, the LQ factorization. */
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dgelqf_(&nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + *n
- * nr + 1], &work[(*n << 1) + *n * nr + nr + 1], &
- i__1, &ierr);
- dlacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1)
- + *n * nr + nr + 1], &nr);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- temp1 = dnrm2_(&p, &work[(*n << 1) + *n * nr + nr + p]
- , &nr);
- d__1 = 1. / temp1;
- dscal_(&p, &d__1, &work[(*n << 1) + *n * nr + nr + p],
- &nr);
- /* L4950: */
- }
- dpocon_("L", &nr, &work[(*n << 1) + *n * nr + nr + 1], &
- nr, &c_b35, &temp1, &work[(*n << 1) + *n * nr +
- nr + nr * nr + 1], &iwork[*m + (*n << 1) + 1], &
- ierr);
- condr2 = 1. / sqrt(temp1);
-
- if (condr2 >= cond_ok__) {
- /* (this overwrites the copy of R2, as it will not be */
- /* needed in this branch, but it does not overwritte the */
- /* Huseholder vectors of Q2.). */
- dlacpy_("U", &nr, &nr, &v[v_offset], ldv, &work[(*n <<
- 1) + 1], n);
- /* WORK(2*N+N*NR+1:2*N+N*NR+N) */
- }
-
- }
-
- if (l2pert) {
- xsc = sqrt(small);
- i__1 = nr;
- for (q = 2; q <= i__1; ++q) {
- temp1 = xsc * v[q + q * v_dim1];
- i__2 = q - 1;
- for (p = 1; p <= i__2; ++p) {
- /* V(p,q) = - DSIGN( TEMP1, V(q,p) ) */
- v[p + q * v_dim1] = -d_sign(&temp1, &v[p + q *
- v_dim1]);
- /* L4969: */
- }
- /* L4968: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 <<
- 1) + 1], ldv);
- }
-
- /* Second preconditioning finished; continue with Jacobi SVD */
- /* The input matrix is lower trinagular. */
-
- /* Recover the right singular vectors as solution of a well */
- /* conditioned triangular matrix equation. */
-
- if (condr1 < cond_ok__) {
-
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[
- 1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
- nr + nr + 1], &i__1, info);
- scalem = work[(*n << 1) + *n * nr + nr + 1];
- numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- dcopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1
- + 1], &c__1);
- dscal_(&nr, &sva[p], &v[p * v_dim1 + 1], &c__1);
- /* L3970: */
- }
-
- if (nr == *n) {
- /* :)) .. best case, R1 is inverted. The solution of this matrix */
- /* equation is Q2*V2 = the product of the Jacobi rotations */
- /* used in DGESVJ, premultiplied with the orthogonal matrix */
- /* from the second QR factorization. */
- dtrsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &a[
- a_offset], lda, &v[v_offset], ldv);
- } else {
- /* is inverted to get the product of the Jacobi rotations */
- /* used in DGESVJ. The Q-factor from the second QR */
- /* factorization is then built in explicitly. */
- dtrsm_("L", "U", "T", "N", &nr, &nr, &c_b35, &work[(*
- n << 1) + 1], n, &v[v_offset], ldv);
- if (nr < *n) {
- i__1 = *n - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr +
- 1 + v_dim1], ldv);
- i__1 = *n - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr +
- 1) * v_dim1 + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr
- + 1 + (nr + 1) * v_dim1], ldv);
- }
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n,
- &work[*n + 1], &v[v_offset], ldv, &work[(*n <<
- 1) + *n * nr + nr + 1], &i__1, &ierr);
- }
-
- } else if (condr2 < cond_ok__) {
-
- /* :) .. the input matrix A is very likely a relative of */
- /* the Kahan matrix :) */
- /* The matrix R2 is inverted. The solution of the matrix equation */
- /* is Q3^T*V3 = the product of the Jacobi rotations (appplied to */
- /* the lower triangular L3 from the LQ factorization of */
- /* R2=L3*Q3), pre-multiplied with the transposed Q3. */
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[
- 1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
- nr + nr + 1], &i__1, info);
- scalem = work[(*n << 1) + *n * nr + nr + 1];
- numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- dcopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1
- + 1], &c__1);
- dscal_(&nr, &sva[p], &u[p * u_dim1 + 1], &c__1);
- /* L3870: */
- }
- dtrsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &work[(*n <<
- 1) + 1], n, &u[u_offset], ldu);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- i__2 = nr;
- for (p = 1; p <= i__2; ++p) {
- work[(*n << 1) + *n * nr + nr + iwork[*n + p]] =
- u[p + q * u_dim1];
- /* L872: */
- }
- i__2 = nr;
- for (p = 1; p <= i__2; ++p) {
- u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr
- + p];
- /* L874: */
- }
- /* L873: */
- }
- if (nr < *n) {
- i__1 = *n - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 +
- v_dim1], ldv);
- i__1 = *n - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *
- v_dim1 + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1
- + (nr + 1) * v_dim1], ldv);
- }
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &
- work[*n + 1], &v[v_offset], ldv, &work[(*n << 1)
- + *n * nr + nr + 1], &i__1, &ierr);
- } else {
- /* Last line of defense. */
- /* #:( This is a rather pathological case: no scaled condition */
- /* improvement after two pivoted QR factorizations. Other */
- /* possibility is that the rank revealing QR factorization */
- /* or the condition estimator has failed, or the COND_OK */
- /* is set very close to ONE (which is unnecessary). Normally, */
- /* this branch should never be executed, but in rare cases of */
- /* failure of the RRQR or condition estimator, the last line of */
- /* defense ensures that DGEJSV completes the task. */
- /* Compute the full SVD of L3 using DGESVJ with explicit */
- /* accumulation of Jacobi rotations. */
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dgesvj_("L", "U", "V", &nr, &nr, &v[v_offset], ldv, &sva[
- 1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
- nr + nr + 1], &i__1, info);
- scalem = work[(*n << 1) + *n * nr + nr + 1];
- numrank = i_dnnt(&work[(*n << 1) + *n * nr + nr + 2]);
- if (nr < *n) {
- i__1 = *n - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 +
- v_dim1], ldv);
- i__1 = *n - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *
- v_dim1 + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1
- + (nr + 1) * v_dim1], ldv);
- }
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &
- work[*n + 1], &v[v_offset], ldv, &work[(*n << 1)
- + *n * nr + nr + 1], &i__1, &ierr);
-
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dormlq_("L", "T", &nr, &nr, &nr, &work[(*n << 1) + 1], n,
- &work[(*n << 1) + *n * nr + 1], &u[u_offset], ldu,
- &work[(*n << 1) + *n * nr + nr + 1], &i__1, &
- ierr);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- i__2 = nr;
- for (p = 1; p <= i__2; ++p) {
- work[(*n << 1) + *n * nr + nr + iwork[*n + p]] =
- u[p + q * u_dim1];
- /* L772: */
- }
- i__2 = nr;
- for (p = 1; p <= i__2; ++p) {
- u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr
- + p];
- /* L774: */
- }
- /* L773: */
- }
-
- }
-
- /* Permute the rows of V using the (column) permutation from the */
- /* first QRF. Also, scale the columns to make them unit in */
- /* Euclidean norm. This applies to all cases. */
-
- temp1 = sqrt((doublereal) (*n)) * epsln;
- i__1 = *n;
- for (q = 1; q <= i__1; ++q) {
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q *
- v_dim1];
- /* L972: */
- }
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p]
- ;
- /* L973: */
- }
- xsc = 1. / dnrm2_(n, &v[q * v_dim1 + 1], &c__1);
- if (xsc < 1. - temp1 || xsc > temp1 + 1.) {
- dscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);
- }
- /* L1972: */
- }
- /* At this moment, V contains the right singular vectors of A. */
- /* Next, assemble the left singular vector matrix U (M x N). */
- if (nr < *m) {
- i__1 = *m - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 +
- u_dim1], ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1
- + (nr + 1) * u_dim1], ldu);
- }
- }
-
- /* The Q matrix from the first QRF is built into the left singular */
- /* matrix U. This applies to all cases. */
-
- i__1 = *lwork - *n;
- dormqr_("Left", "No_Tr", m, &n1, n, &a[a_offset], lda, &work[
- 1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
- /* The columns of U are normalized. The cost is O(M*N) flops. */
- temp1 = sqrt((doublereal) (*m)) * epsln;
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);
- if (xsc < 1. - temp1 || xsc > temp1 + 1.) {
- dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
- }
- /* L1973: */
- }
-
- /* If the initial QRF is computed with row pivoting, the left */
- /* singular vectors must be adjusted. */
-
- if (rowpiv) {
- i__1 = *m - 1;
- dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n
- << 1) + 1], &c_n1);
- }
-
- } else {
-
- /* the second QRF is not needed */
-
- dlacpy_("Upper", n, n, &a[a_offset], lda, &work[*n + 1], n);
- if (l2pert) {
- xsc = sqrt(small);
- i__1 = *n;
- for (p = 2; p <= i__1; ++p) {
- temp1 = xsc * work[*n + (p - 1) * *n + p];
- i__2 = p - 1;
- for (q = 1; q <= i__2; ++q) {
- work[*n + (q - 1) * *n + p] = -d_sign(&temp1, &
- work[*n + (p - 1) * *n + q]);
- /* L5971: */
- }
- /* L5970: */
- }
- } else {
- i__1 = *n - 1;
- i__2 = *n - 1;
- dlaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &work[*n +
- 2], n);
- }
-
- i__1 = *lwork - *n - *n * *n;
- dgesvj_("Upper", "U", "N", n, n, &work[*n + 1], n, &sva[1], n,
- &u[u_offset], ldu, &work[*n + *n * *n + 1], &i__1,
- info);
-
- scalem = work[*n + *n * *n + 1];
- numrank = i_dnnt(&work[*n + *n * *n + 2]);
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- dcopy_(n, &work[*n + (p - 1) * *n + 1], &c__1, &u[p *
- u_dim1 + 1], &c__1);
- dscal_(n, &sva[p], &work[*n + (p - 1) * *n + 1], &c__1);
- /* L6970: */
- }
-
- dtrsm_("Left", "Upper", "NoTrans", "No UD", n, n, &c_b35, &a[
- a_offset], lda, &work[*n + 1], n);
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- dcopy_(n, &work[*n + p], n, &v[iwork[p] + v_dim1], ldv);
- /* L6972: */
- }
- temp1 = sqrt((doublereal) (*n)) * epsln;
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- xsc = 1. / dnrm2_(n, &v[p * v_dim1 + 1], &c__1);
- if (xsc < 1. - temp1 || xsc > temp1 + 1.) {
- dscal_(n, &xsc, &v[p * v_dim1 + 1], &c__1);
- }
- /* L6971: */
- }
-
- /* Assemble the left singular vector matrix U (M x N). */
-
- if (*n < *m) {
- i__1 = *m - *n;
- dlaset_("A", &i__1, n, &c_b34, &c_b34, &u[*n + 1 + u_dim1]
- , ldu);
- if (*n < n1) {
- i__1 = n1 - *n;
- dlaset_("A", n, &i__1, &c_b34, &c_b34, &u[(*n + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - *n;
- i__2 = n1 - *n;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[*n + 1
- + (*n + 1) * u_dim1], ldu);
- }
- }
- i__1 = *lwork - *n;
- dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[
- 1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
- temp1 = sqrt((doublereal) (*m)) * epsln;
- i__1 = n1;
- for (p = 1; p <= i__1; ++p) {
- xsc = 1. / dnrm2_(m, &u[p * u_dim1 + 1], &c__1);
- if (xsc < 1. - temp1 || xsc > temp1 + 1.) {
- dscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
- }
- /* L6973: */
- }
-
- if (rowpiv) {
- i__1 = *m - 1;
- dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n
- << 1) + 1], &c_n1);
- }
-
- }
-
- /* end of the >> almost orthogonal case << in the full SVD */
-
- } else {
-
- /* This branch deploys a preconditioned Jacobi SVD with explicitly */
- /* accumulated rotations. It is included as optional, mainly for */
- /* experimental purposes. It does perform well, and can also be used. */
- /* In this implementation, this branch will be automatically activated */
- /* if the condition number sigma_max(A) / sigma_min(A) is predicted */
- /* to be greater than the overflow threshold. This is because the */
- /* a posteriori computation of the singular vectors assumes robust */
- /* implementation of BLAS and some LAPACK procedures, capable of working */
- /* in presence of extreme values. Since that is not always the case, ... */
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = *n - p + 1;
- dcopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &
- c__1);
- /* L7968: */
- }
-
- if (l2pert) {
- xsc = sqrt(small / epsln);
- i__1 = nr;
- for (q = 1; q <= i__1; ++q) {
- temp1 = xsc * (d__1 = v[q + q * v_dim1], abs(d__1));
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- if (p > q && (d__1 = v[p + q * v_dim1], abs(d__1)) <=
- temp1 || p < q) {
- v[p + q * v_dim1] = d_sign(&temp1, &v[p + q *
- v_dim1]);
- }
- if (p < q) {
- v[p + q * v_dim1] = -v[p + q * v_dim1];
- }
- /* L5968: */
- }
- /* L5969: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) +
- 1], ldv);
- }
- i__1 = *lwork - (*n << 1);
- dgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n << 1)
- + 1], &i__1, &ierr);
- dlacpy_("L", n, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1], n);
-
- i__1 = nr;
- for (p = 1; p <= i__1; ++p) {
- i__2 = nr - p + 1;
- dcopy_(&i__2, &v[p + p * v_dim1], ldv, &u[p + p * u_dim1], &
- c__1);
- /* L7969: */
- }
- if (l2pert) {
- xsc = sqrt(small / epsln);
- i__1 = nr;
- for (q = 2; q <= i__1; ++q) {
- i__2 = q - 1;
- for (p = 1; p <= i__2; ++p) {
- /* Computing MIN */
- d__3 = (d__1 = u[p + p * u_dim1], abs(d__1)), d__4 = (
- d__2 = u[q + q * u_dim1], abs(d__2));
- temp1 = xsc * f2cmin(d__3,d__4);
- u[p + q * u_dim1] = -d_sign(&temp1, &u[q + p * u_dim1]
- );
- /* L9971: */
- }
- /* L9970: */
- }
- } else {
- i__1 = nr - 1;
- i__2 = nr - 1;
- dlaset_("U", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) +
- 1], ldu);
- }
- i__1 = *lwork - (*n << 1) - *n * nr;
- dgesvj_("G", "U", "V", &nr, &nr, &u[u_offset], ldu, &sva[1], n, &
- v[v_offset], ldv, &work[(*n << 1) + *n * nr + 1], &i__1,
- info);
- scalem = work[(*n << 1) + *n * nr + 1];
- numrank = i_dnnt(&work[(*n << 1) + *n * nr + 2]);
- if (nr < *n) {
- i__1 = *n - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1],
- ldv);
- i__1 = *n - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1
- + 1], ldv);
- i__1 = *n - nr;
- i__2 = *n - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr +
- 1) * v_dim1], ldv);
- }
- i__1 = *lwork - (*n << 1) - *n * nr - nr;
- dormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &work[*n +
- 1], &v[v_offset], ldv, &work[(*n << 1) + *n * nr + nr + 1]
- , &i__1, &ierr);
-
- /* Permute the rows of V using the (column) permutation from the */
- /* first QRF. Also, scale the columns to make them unit in */
- /* Euclidean norm. This applies to all cases. */
-
- temp1 = sqrt((doublereal) (*n)) * epsln;
- i__1 = *n;
- for (q = 1; q <= i__1; ++q) {
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q *
- v_dim1];
- /* L8972: */
- }
- i__2 = *n;
- for (p = 1; p <= i__2; ++p) {
- v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p];
- /* L8973: */
- }
- xsc = 1. / dnrm2_(n, &v[q * v_dim1 + 1], &c__1);
- if (xsc < 1. - temp1 || xsc > temp1 + 1.) {
- dscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);
- }
- /* L7972: */
- }
-
- /* At this moment, V contains the right singular vectors of A. */
- /* Next, assemble the left singular vector matrix U (M x N). */
-
- if (nr < *m) {
- i__1 = *m - nr;
- dlaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + u_dim1],
- ldu);
- if (nr < n1) {
- i__1 = n1 - nr;
- dlaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) *
- u_dim1 + 1], ldu);
- i__1 = *m - nr;
- i__2 = n1 - nr;
- dlaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (
- nr + 1) * u_dim1], ldu);
- }
- }
-
- i__1 = *lwork - *n;
- dormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &
- u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
-
- if (rowpiv) {
- i__1 = *m - 1;
- dlaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1)
- + 1], &c_n1);
- }
-
-
- }
- if (transp) {
- i__1 = *n;
- for (p = 1; p <= i__1; ++p) {
- dswap_(n, &u[p * u_dim1 + 1], &c__1, &v[p * v_dim1 + 1], &
- c__1);
- /* L6974: */
- }
- }
-
- }
- /* end of the full SVD */
-
- /* Undo scaling, if necessary (and possible) */
-
- if (uscal2 <= big / sva[1] * uscal1) {
- dlascl_("G", &c__0, &c__0, &uscal1, &uscal2, &nr, &c__1, &sva[1], n, &
- ierr);
- uscal1 = 1.;
- uscal2 = 1.;
- }
-
- if (nr < *n) {
- i__1 = *n;
- for (p = nr + 1; p <= i__1; ++p) {
- sva[p] = 0.;
- /* L3004: */
- }
- }
-
- work[1] = uscal2 * scalem;
- work[2] = uscal1;
- if (errest) {
- work[3] = sconda;
- }
- if (lsvec && rsvec) {
- work[4] = condr1;
- work[5] = condr2;
- }
- if (l2tran) {
- work[6] = entra;
- work[7] = entrat;
- }
-
- iwork[1] = nr;
- iwork[2] = numrank;
- iwork[3] = warning;
-
- return;
- } /* dgejsv_ */
-
|