You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpbtrf.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static integer c__1 = 1;
  488. static integer c_n1 = -1;
  489. static real c_b21 = -1.f;
  490. static real c_b22 = 1.f;
  491. static integer c__33 = 33;
  492. /* > \brief \b CPBTRF */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CPBTRF + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbtrf.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbtrf.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbtrf.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CPBTRF( UPLO, N, KD, AB, LDAB, INFO ) */
  511. /* CHARACTER UPLO */
  512. /* INTEGER INFO, KD, LDAB, N */
  513. /* COMPLEX AB( LDAB, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CPBTRF computes the Cholesky factorization of a complex Hermitian */
  520. /* > positive definite band matrix A. */
  521. /* > */
  522. /* > The factorization has the form */
  523. /* > A = U**H * U, if UPLO = 'U', or */
  524. /* > A = L * L**H, if UPLO = 'L', */
  525. /* > where U is an upper triangular matrix and L is lower triangular. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > = 'U': Upper triangle of A is stored; */
  533. /* > = 'L': Lower triangle of A is stored. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] KD */
  543. /* > \verbatim */
  544. /* > KD is INTEGER */
  545. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  546. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in,out] AB */
  550. /* > \verbatim */
  551. /* > AB is COMPLEX array, dimension (LDAB,N) */
  552. /* > On entry, the upper or lower triangle of the Hermitian band */
  553. /* > matrix A, stored in the first KD+1 rows of the array. The */
  554. /* > j-th column of A is stored in the j-th column of the array AB */
  555. /* > as follows: */
  556. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  557. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  558. /* > */
  559. /* > On exit, if INFO = 0, the triangular factor U or L from the */
  560. /* > Cholesky factorization A = U**H*U or A = L*L**H of the band */
  561. /* > matrix A, in the same storage format as A. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] LDAB */
  565. /* > \verbatim */
  566. /* > LDAB is INTEGER */
  567. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] INFO */
  571. /* > \verbatim */
  572. /* > INFO is INTEGER */
  573. /* > = 0: successful exit */
  574. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  575. /* > > 0: if INFO = i, the leading minor of order i is not */
  576. /* > positive definite, and the factorization could not be */
  577. /* > completed. */
  578. /* > \endverbatim */
  579. /* Authors: */
  580. /* ======== */
  581. /* > \author Univ. of Tennessee */
  582. /* > \author Univ. of California Berkeley */
  583. /* > \author Univ. of Colorado Denver */
  584. /* > \author NAG Ltd. */
  585. /* > \date December 2016 */
  586. /* > \ingroup complexOTHERcomputational */
  587. /* > \par Further Details: */
  588. /* ===================== */
  589. /* > */
  590. /* > \verbatim */
  591. /* > */
  592. /* > The band storage scheme is illustrated by the following example, when */
  593. /* > N = 6, KD = 2, and UPLO = 'U': */
  594. /* > */
  595. /* > On entry: On exit: */
  596. /* > */
  597. /* > * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
  598. /* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
  599. /* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
  600. /* > */
  601. /* > Similarly, if UPLO = 'L' the format of A is as follows: */
  602. /* > */
  603. /* > On entry: On exit: */
  604. /* > */
  605. /* > a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
  606. /* > a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
  607. /* > a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
  608. /* > */
  609. /* > Array elements marked * are not used by the routine. */
  610. /* > \endverbatim */
  611. /* > \par Contributors: */
  612. /* ================== */
  613. /* > */
  614. /* > Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */
  615. /* ===================================================================== */
  616. /* Subroutine */ void cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab,
  617. integer *ldab, integer *info)
  618. {
  619. /* System generated locals */
  620. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  621. complex q__1;
  622. /* Local variables */
  623. complex work[1056] /* was [33][32] */;
  624. integer i__, j;
  625. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  626. integer *, complex *, complex *, integer *, complex *, integer *,
  627. complex *, complex *, integer *), cherk_(char *,
  628. char *, integer *, integer *, real *, complex *, integer *, real *
  629. , complex *, integer *);
  630. extern logical lsame_(char *, char *);
  631. extern /* Subroutine */ void ctrsm_(char *, char *, char *, char *,
  632. integer *, integer *, complex *, complex *, integer *, complex *,
  633. integer *);
  634. integer i2, i3;
  635. extern /* Subroutine */ void cpbtf2_(char *, integer *, integer *, complex
  636. *, integer *, integer *);
  637. extern int cpotf2_(char *, integer *,
  638. complex *, integer *, integer *);
  639. integer ib, nb, ii, jj;
  640. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  641. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  642. integer *, integer *, ftnlen, ftnlen);
  643. /* -- LAPACK computational routine (version 3.7.0) -- */
  644. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  645. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  646. /* December 2016 */
  647. /* ===================================================================== */
  648. /* Test the input parameters. */
  649. /* Parameter adjustments */
  650. ab_dim1 = *ldab;
  651. ab_offset = 1 + ab_dim1 * 1;
  652. ab -= ab_offset;
  653. /* Function Body */
  654. *info = 0;
  655. if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
  656. *info = -1;
  657. } else if (*n < 0) {
  658. *info = -2;
  659. } else if (*kd < 0) {
  660. *info = -3;
  661. } else if (*ldab < *kd + 1) {
  662. *info = -5;
  663. }
  664. if (*info != 0) {
  665. i__1 = -(*info);
  666. xerbla_("CPBTRF", &i__1, (ftnlen)6);
  667. return;
  668. }
  669. /* Quick return if possible */
  670. if (*n == 0) {
  671. return;
  672. }
  673. /* Determine the block size for this environment */
  674. nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, (
  675. ftnlen)1);
  676. /* The block size must not exceed the semi-bandwidth KD, and must not */
  677. /* exceed the limit set by the size of the local array WORK. */
  678. nb = f2cmin(nb,32);
  679. if (nb <= 1 || nb > *kd) {
  680. /* Use unblocked code */
  681. cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
  682. } else {
  683. /* Use blocked code */
  684. if (lsame_(uplo, "U")) {
  685. /* Compute the Cholesky factorization of a Hermitian band */
  686. /* matrix, given the upper triangle of the matrix in band */
  687. /* storage. */
  688. /* Zero the upper triangle of the work array. */
  689. i__1 = nb;
  690. for (j = 1; j <= i__1; ++j) {
  691. i__2 = j - 1;
  692. for (i__ = 1; i__ <= i__2; ++i__) {
  693. i__3 = i__ + j * 33 - 34;
  694. work[i__3].r = 0.f, work[i__3].i = 0.f;
  695. /* L10: */
  696. }
  697. /* L20: */
  698. }
  699. /* Process the band matrix one diagonal block at a time. */
  700. i__1 = *n;
  701. i__2 = nb;
  702. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  703. /* Computing MIN */
  704. i__3 = nb, i__4 = *n - i__ + 1;
  705. ib = f2cmin(i__3,i__4);
  706. /* Factorize the diagonal block */
  707. i__3 = *ldab - 1;
  708. cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
  709. if (ii != 0) {
  710. *info = i__ + ii - 1;
  711. goto L150;
  712. }
  713. if (i__ + ib <= *n) {
  714. /* Update the relevant part of the trailing submatrix. */
  715. /* If A11 denotes the diagonal block which has just been */
  716. /* factorized, then we need to update the remaining */
  717. /* blocks in the diagram: */
  718. /* A11 A12 A13 */
  719. /* A22 A23 */
  720. /* A33 */
  721. /* The numbers of rows and columns in the partitioning */
  722. /* are IB, I2, I3 respectively. The blocks A12, A22 and */
  723. /* A23 are empty if IB = KD. The upper triangle of A13 */
  724. /* lies outside the band. */
  725. /* Computing MIN */
  726. i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
  727. i2 = f2cmin(i__3,i__4);
  728. /* Computing MIN */
  729. i__3 = ib, i__4 = *n - i__ - *kd + 1;
  730. i3 = f2cmin(i__3,i__4);
  731. if (i2 > 0) {
  732. /* Update A12 */
  733. i__3 = *ldab - 1;
  734. i__4 = *ldab - 1;
  735. ctrsm_("Left", "Upper", "Conjugate transpose", "Non-"
  736. "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ *
  737. ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib)
  738. * ab_dim1], &i__4);
  739. /* Update A22 */
  740. i__3 = *ldab - 1;
  741. i__4 = *ldab - 1;
  742. cherk_("Upper", "Conjugate transpose", &i2, &ib, &
  743. c_b21, &ab[*kd + 1 - ib + (i__ + ib) *
  744. ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ +
  745. ib) * ab_dim1], &i__4);
  746. }
  747. if (i3 > 0) {
  748. /* Copy the lower triangle of A13 into the work array. */
  749. i__3 = i3;
  750. for (jj = 1; jj <= i__3; ++jj) {
  751. i__4 = ib;
  752. for (ii = jj; ii <= i__4; ++ii) {
  753. i__5 = ii + jj * 33 - 34;
  754. i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) *
  755. ab_dim1;
  756. work[i__5].r = ab[i__6].r, work[i__5].i = ab[
  757. i__6].i;
  758. /* L30: */
  759. }
  760. /* L40: */
  761. }
  762. /* Update A13 (in the work array). */
  763. i__3 = *ldab - 1;
  764. ctrsm_("Left", "Upper", "Conjugate transpose", "Non-"
  765. "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ *
  766. ab_dim1], &i__3, work, &c__33);
  767. /* Update A23 */
  768. if (i2 > 0) {
  769. q__1.r = -1.f, q__1.i = 0.f;
  770. i__3 = *ldab - 1;
  771. i__4 = *ldab - 1;
  772. cgemm_("Conjugate transpose", "No transpose", &i2,
  773. &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__
  774. + ib) * ab_dim1], &i__3, work, &c__33, &
  775. c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1],
  776. &i__4);
  777. }
  778. /* Update A33 */
  779. i__3 = *ldab - 1;
  780. cherk_("Upper", "Conjugate transpose", &i3, &ib, &
  781. c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + (
  782. i__ + *kd) * ab_dim1], &i__3);
  783. /* Copy the lower triangle of A13 back into place. */
  784. i__3 = i3;
  785. for (jj = 1; jj <= i__3; ++jj) {
  786. i__4 = ib;
  787. for (ii = jj; ii <= i__4; ++ii) {
  788. i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) *
  789. ab_dim1;
  790. i__6 = ii + jj * 33 - 34;
  791. ab[i__5].r = work[i__6].r, ab[i__5].i = work[
  792. i__6].i;
  793. /* L50: */
  794. }
  795. /* L60: */
  796. }
  797. }
  798. }
  799. /* L70: */
  800. }
  801. } else {
  802. /* Compute the Cholesky factorization of a Hermitian band */
  803. /* matrix, given the lower triangle of the matrix in band */
  804. /* storage. */
  805. /* Zero the lower triangle of the work array. */
  806. i__2 = nb;
  807. for (j = 1; j <= i__2; ++j) {
  808. i__1 = nb;
  809. for (i__ = j + 1; i__ <= i__1; ++i__) {
  810. i__3 = i__ + j * 33 - 34;
  811. work[i__3].r = 0.f, work[i__3].i = 0.f;
  812. /* L80: */
  813. }
  814. /* L90: */
  815. }
  816. /* Process the band matrix one diagonal block at a time. */
  817. i__2 = *n;
  818. i__1 = nb;
  819. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  820. /* Computing MIN */
  821. i__3 = nb, i__4 = *n - i__ + 1;
  822. ib = f2cmin(i__3,i__4);
  823. /* Factorize the diagonal block */
  824. i__3 = *ldab - 1;
  825. cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
  826. if (ii != 0) {
  827. *info = i__ + ii - 1;
  828. goto L150;
  829. }
  830. if (i__ + ib <= *n) {
  831. /* Update the relevant part of the trailing submatrix. */
  832. /* If A11 denotes the diagonal block which has just been */
  833. /* factorized, then we need to update the remaining */
  834. /* blocks in the diagram: */
  835. /* A11 */
  836. /* A21 A22 */
  837. /* A31 A32 A33 */
  838. /* The numbers of rows and columns in the partitioning */
  839. /* are IB, I2, I3 respectively. The blocks A21, A22 and */
  840. /* A32 are empty if IB = KD. The lower triangle of A31 */
  841. /* lies outside the band. */
  842. /* Computing MIN */
  843. i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
  844. i2 = f2cmin(i__3,i__4);
  845. /* Computing MIN */
  846. i__3 = ib, i__4 = *n - i__ - *kd + 1;
  847. i3 = f2cmin(i__3,i__4);
  848. if (i2 > 0) {
  849. /* Update A21 */
  850. i__3 = *ldab - 1;
  851. i__4 = *ldab - 1;
  852. ctrsm_("Right", "Lower", "Conjugate transpose", "Non"
  853. "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 +
  854. 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4);
  855. /* Update A22 */
  856. i__3 = *ldab - 1;
  857. i__4 = *ldab - 1;
  858. cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[
  859. ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[(
  860. i__ + ib) * ab_dim1 + 1], &i__4);
  861. }
  862. if (i3 > 0) {
  863. /* Copy the upper triangle of A31 into the work array. */
  864. i__3 = ib;
  865. for (jj = 1; jj <= i__3; ++jj) {
  866. i__4 = f2cmin(jj,i3);
  867. for (ii = 1; ii <= i__4; ++ii) {
  868. i__5 = ii + jj * 33 - 34;
  869. i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) *
  870. ab_dim1;
  871. work[i__5].r = ab[i__6].r, work[i__5].i = ab[
  872. i__6].i;
  873. /* L100: */
  874. }
  875. /* L110: */
  876. }
  877. /* Update A31 (in the work array). */
  878. i__3 = *ldab - 1;
  879. ctrsm_("Right", "Lower", "Conjugate transpose", "Non"
  880. "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 +
  881. 1], &i__3, work, &c__33);
  882. /* Update A32 */
  883. if (i2 > 0) {
  884. q__1.r = -1.f, q__1.i = 0.f;
  885. i__3 = *ldab - 1;
  886. i__4 = *ldab - 1;
  887. cgemm_("No transpose", "Conjugate transpose", &i3,
  888. &i2, &ib, &q__1, work, &c__33, &ab[ib +
  889. 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd
  890. + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
  891. }
  892. /* Update A33 */
  893. i__3 = *ldab - 1;
  894. cherk_("Lower", "No transpose", &i3, &ib, &c_b21,
  895. work, &c__33, &c_b22, &ab[(i__ + *kd) *
  896. ab_dim1 + 1], &i__3);
  897. /* Copy the upper triangle of A31 back into place. */
  898. i__3 = ib;
  899. for (jj = 1; jj <= i__3; ++jj) {
  900. i__4 = f2cmin(jj,i3);
  901. for (ii = 1; ii <= i__4; ++ii) {
  902. i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) *
  903. ab_dim1;
  904. i__6 = ii + jj * 33 - 34;
  905. ab[i__5].r = work[i__6].r, ab[i__5].i = work[
  906. i__6].i;
  907. /* L120: */
  908. }
  909. /* L130: */
  910. }
  911. }
  912. }
  913. /* L140: */
  914. }
  915. }
  916. }
  917. return;
  918. L150:
  919. return;
  920. /* End of CPBTRF */
  921. } /* cpbtrf_ */