You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clalsa.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b9 = 1.f;
  487. static real c_b10 = 0.f;
  488. static integer c__2 = 2;
  489. /* > \brief \b CLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLALSA + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsa.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsa.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsa.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
  508. /* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
  509. /* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, */
  510. /* IWORK, INFO ) */
  511. /* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
  512. /* $ SMLSIZ */
  513. /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
  514. /* $ K( * ), PERM( LDGCOL, * ) */
  515. /* REAL C( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
  516. /* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), */
  517. /* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * ) */
  518. /* COMPLEX B( LDB, * ), BX( LDBX, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > CLALSA is an itermediate step in solving the least squares problem */
  525. /* > by computing the SVD of the coefficient matrix in compact form (The */
  526. /* > singular vectors are computed as products of simple orthorgonal */
  527. /* > matrices.). */
  528. /* > */
  529. /* > If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector */
  530. /* > matrix of an upper bidiagonal matrix to the right hand side; and if */
  531. /* > ICOMPQ = 1, CLALSA applies the right singular vector matrix to the */
  532. /* > right hand side. The singular vector matrices were generated in */
  533. /* > compact form by CLALSA. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] ICOMPQ */
  538. /* > \verbatim */
  539. /* > ICOMPQ is INTEGER */
  540. /* > Specifies whether the left or the right singular vector */
  541. /* > matrix is involved. */
  542. /* > = 0: Left singular vector matrix */
  543. /* > = 1: Right singular vector matrix */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SMLSIZ */
  547. /* > \verbatim */
  548. /* > SMLSIZ is INTEGER */
  549. /* > The maximum size of the subproblems at the bottom of the */
  550. /* > computation tree. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] N */
  554. /* > \verbatim */
  555. /* > N is INTEGER */
  556. /* > The row and column dimensions of the upper bidiagonal matrix. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NRHS */
  560. /* > \verbatim */
  561. /* > NRHS is INTEGER */
  562. /* > The number of columns of B and BX. NRHS must be at least 1. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] B */
  566. /* > \verbatim */
  567. /* > B is COMPLEX array, dimension ( LDB, NRHS ) */
  568. /* > On input, B contains the right hand sides of the least */
  569. /* > squares problem in rows 1 through M. */
  570. /* > On output, B contains the solution X in rows 1 through N. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] LDB */
  574. /* > \verbatim */
  575. /* > LDB is INTEGER */
  576. /* > The leading dimension of B in the calling subprogram. */
  577. /* > LDB must be at least f2cmax(1,MAX( M, N ) ). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] BX */
  581. /* > \verbatim */
  582. /* > BX is COMPLEX array, dimension ( LDBX, NRHS ) */
  583. /* > On exit, the result of applying the left or right singular */
  584. /* > vector matrix to B. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDBX */
  588. /* > \verbatim */
  589. /* > LDBX is INTEGER */
  590. /* > The leading dimension of BX. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] U */
  594. /* > \verbatim */
  595. /* > U is REAL array, dimension ( LDU, SMLSIZ ). */
  596. /* > On entry, U contains the left singular vector matrices of all */
  597. /* > subproblems at the bottom level. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDU */
  601. /* > \verbatim */
  602. /* > LDU is INTEGER, LDU = > N. */
  603. /* > The leading dimension of arrays U, VT, DIFL, DIFR, */
  604. /* > POLES, GIVNUM, and Z. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] VT */
  608. /* > \verbatim */
  609. /* > VT is REAL array, dimension ( LDU, SMLSIZ+1 ). */
  610. /* > On entry, VT**H contains the right singular vector matrices of */
  611. /* > all subproblems at the bottom level. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] K */
  615. /* > \verbatim */
  616. /* > K is INTEGER array, dimension ( N ). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] DIFL */
  620. /* > \verbatim */
  621. /* > DIFL is REAL array, dimension ( LDU, NLVL ). */
  622. /* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] DIFR */
  626. /* > \verbatim */
  627. /* > DIFR is REAL array, dimension ( LDU, 2 * NLVL ). */
  628. /* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
  629. /* > distances between singular values on the I-th level and */
  630. /* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
  631. /* > record the normalizing factors of the right singular vectors */
  632. /* > matrices of subproblems on I-th level. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] Z */
  636. /* > \verbatim */
  637. /* > Z is REAL array, dimension ( LDU, NLVL ). */
  638. /* > On entry, Z(1, I) contains the components of the deflation- */
  639. /* > adjusted updating row vector for subproblems on the I-th */
  640. /* > level. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] POLES */
  644. /* > \verbatim */
  645. /* > POLES is REAL array, dimension ( LDU, 2 * NLVL ). */
  646. /* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
  647. /* > singular values involved in the secular equations on the I-th */
  648. /* > level. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] GIVPTR */
  652. /* > \verbatim */
  653. /* > GIVPTR is INTEGER array, dimension ( N ). */
  654. /* > On entry, GIVPTR( I ) records the number of Givens */
  655. /* > rotations performed on the I-th problem on the computation */
  656. /* > tree. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] GIVCOL */
  660. /* > \verbatim */
  661. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
  662. /* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
  663. /* > locations of Givens rotations performed on the I-th level on */
  664. /* > the computation tree. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] LDGCOL */
  668. /* > \verbatim */
  669. /* > LDGCOL is INTEGER, LDGCOL = > N. */
  670. /* > The leading dimension of arrays GIVCOL and PERM. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] PERM */
  674. /* > \verbatim */
  675. /* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
  676. /* > On entry, PERM(*, I) records permutations done on the I-th */
  677. /* > level of the computation tree. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[in] GIVNUM */
  681. /* > \verbatim */
  682. /* > GIVNUM is REAL array, dimension ( LDU, 2 * NLVL ). */
  683. /* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
  684. /* > values of Givens rotations performed on the I-th level on the */
  685. /* > computation tree. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in] C */
  689. /* > \verbatim */
  690. /* > C is REAL array, dimension ( N ). */
  691. /* > On entry, if the I-th subproblem is not square, */
  692. /* > C( I ) contains the C-value of a Givens rotation related to */
  693. /* > the right null space of the I-th subproblem. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[in] S */
  697. /* > \verbatim */
  698. /* > S is REAL array, dimension ( N ). */
  699. /* > On entry, if the I-th subproblem is not square, */
  700. /* > S( I ) contains the S-value of a Givens rotation related to */
  701. /* > the right null space of the I-th subproblem. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] RWORK */
  705. /* > \verbatim */
  706. /* > RWORK is REAL array, dimension at least */
  707. /* > MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ). */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[out] IWORK */
  711. /* > \verbatim */
  712. /* > IWORK is INTEGER array, dimension (3*N) */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] INFO */
  716. /* > \verbatim */
  717. /* > INFO is INTEGER */
  718. /* > = 0: successful exit. */
  719. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  720. /* > \endverbatim */
  721. /* Authors: */
  722. /* ======== */
  723. /* > \author Univ. of Tennessee */
  724. /* > \author Univ. of California Berkeley */
  725. /* > \author Univ. of Colorado Denver */
  726. /* > \author NAG Ltd. */
  727. /* > \date June 2017 */
  728. /* > \ingroup complexOTHERcomputational */
  729. /* > \par Contributors: */
  730. /* ================== */
  731. /* > */
  732. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  733. /* > California at Berkeley, USA \n */
  734. /* > Osni Marques, LBNL/NERSC, USA \n */
  735. /* ===================================================================== */
  736. /* Subroutine */ void clalsa_(integer *icompq, integer *smlsiz, integer *n,
  737. integer *nrhs, complex *b, integer *ldb, complex *bx, integer *ldbx,
  738. real *u, integer *ldu, real *vt, integer *k, real *difl, real *difr,
  739. real *z__, real *poles, integer *givptr, integer *givcol, integer *
  740. ldgcol, integer *perm, real *givnum, real *c__, real *s, real *rwork,
  741. integer *iwork, integer *info)
  742. {
  743. /* System generated locals */
  744. integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
  745. difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
  746. poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
  747. z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1,
  748. i__2, i__3, i__4, i__5, i__6;
  749. complex q__1;
  750. /* Local variables */
  751. integer jcol, nlvl, sqre, jrow, i__, j, jimag, jreal, inode, ndiml;
  752. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  753. integer *, real *, real *, integer *, real *, integer *, real *,
  754. real *, integer *);
  755. integer ndimr;
  756. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  757. complex *, integer *);
  758. integer i1;
  759. extern /* Subroutine */ void clals0_(integer *, integer *, integer *,
  760. integer *, integer *, complex *, integer *, complex *, integer *,
  761. integer *, integer *, integer *, integer *, real *, integer *,
  762. real *, real *, real *, real *, integer *, real *, real *, real *,
  763. integer *);
  764. integer ic, lf, nd, ll, nl, nr;
  765. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  766. extern void slasdt_(
  767. integer *, integer *, integer *, integer *, integer *, integer *,
  768. integer *);
  769. integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
  770. /* -- LAPACK computational routine (version 3.7.1) -- */
  771. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  772. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  773. /* June 2017 */
  774. /* ===================================================================== */
  775. /* Test the input parameters. */
  776. /* Parameter adjustments */
  777. b_dim1 = *ldb;
  778. b_offset = 1 + b_dim1 * 1;
  779. b -= b_offset;
  780. bx_dim1 = *ldbx;
  781. bx_offset = 1 + bx_dim1 * 1;
  782. bx -= bx_offset;
  783. givnum_dim1 = *ldu;
  784. givnum_offset = 1 + givnum_dim1 * 1;
  785. givnum -= givnum_offset;
  786. poles_dim1 = *ldu;
  787. poles_offset = 1 + poles_dim1 * 1;
  788. poles -= poles_offset;
  789. z_dim1 = *ldu;
  790. z_offset = 1 + z_dim1 * 1;
  791. z__ -= z_offset;
  792. difr_dim1 = *ldu;
  793. difr_offset = 1 + difr_dim1 * 1;
  794. difr -= difr_offset;
  795. difl_dim1 = *ldu;
  796. difl_offset = 1 + difl_dim1 * 1;
  797. difl -= difl_offset;
  798. vt_dim1 = *ldu;
  799. vt_offset = 1 + vt_dim1 * 1;
  800. vt -= vt_offset;
  801. u_dim1 = *ldu;
  802. u_offset = 1 + u_dim1 * 1;
  803. u -= u_offset;
  804. --k;
  805. --givptr;
  806. perm_dim1 = *ldgcol;
  807. perm_offset = 1 + perm_dim1 * 1;
  808. perm -= perm_offset;
  809. givcol_dim1 = *ldgcol;
  810. givcol_offset = 1 + givcol_dim1 * 1;
  811. givcol -= givcol_offset;
  812. --c__;
  813. --s;
  814. --rwork;
  815. --iwork;
  816. /* Function Body */
  817. *info = 0;
  818. if (*icompq < 0 || *icompq > 1) {
  819. *info = -1;
  820. } else if (*smlsiz < 3) {
  821. *info = -2;
  822. } else if (*n < *smlsiz) {
  823. *info = -3;
  824. } else if (*nrhs < 1) {
  825. *info = -4;
  826. } else if (*ldb < *n) {
  827. *info = -6;
  828. } else if (*ldbx < *n) {
  829. *info = -8;
  830. } else if (*ldu < *n) {
  831. *info = -10;
  832. } else if (*ldgcol < *n) {
  833. *info = -19;
  834. }
  835. if (*info != 0) {
  836. i__1 = -(*info);
  837. xerbla_("CLALSA", &i__1, (ftnlen)6);
  838. return;
  839. }
  840. /* Book-keeping and setting up the computation tree. */
  841. inode = 1;
  842. ndiml = inode + *n;
  843. ndimr = ndiml + *n;
  844. slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
  845. smlsiz);
  846. /* The following code applies back the left singular vector factors. */
  847. /* For applying back the right singular vector factors, go to 170. */
  848. if (*icompq == 1) {
  849. goto L170;
  850. }
  851. /* The nodes on the bottom level of the tree were solved */
  852. /* by SLASDQ. The corresponding left and right singular vector */
  853. /* matrices are in explicit form. First apply back the left */
  854. /* singular vector matrices. */
  855. ndb1 = (nd + 1) / 2;
  856. i__1 = nd;
  857. for (i__ = ndb1; i__ <= i__1; ++i__) {
  858. /* IC : center row of each node */
  859. /* NL : number of rows of left subproblem */
  860. /* NR : number of rows of right subproblem */
  861. /* NLF: starting row of the left subproblem */
  862. /* NRF: starting row of the right subproblem */
  863. i1 = i__ - 1;
  864. ic = iwork[inode + i1];
  865. nl = iwork[ndiml + i1];
  866. nr = iwork[ndimr + i1];
  867. nlf = ic - nl;
  868. nrf = ic + 1;
  869. /* Since B and BX are complex, the following call to SGEMM */
  870. /* is performed in two steps (real and imaginary parts). */
  871. /* CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, */
  872. /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
  873. j = nl * *nrhs << 1;
  874. i__2 = *nrhs;
  875. for (jcol = 1; jcol <= i__2; ++jcol) {
  876. i__3 = nlf + nl - 1;
  877. for (jrow = nlf; jrow <= i__3; ++jrow) {
  878. ++j;
  879. i__4 = jrow + jcol * b_dim1;
  880. rwork[j] = b[i__4].r;
  881. /* L10: */
  882. }
  883. /* L20: */
  884. }
  885. sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
  886. (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl);
  887. j = nl * *nrhs << 1;
  888. i__2 = *nrhs;
  889. for (jcol = 1; jcol <= i__2; ++jcol) {
  890. i__3 = nlf + nl - 1;
  891. for (jrow = nlf; jrow <= i__3; ++jrow) {
  892. ++j;
  893. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  894. /* L30: */
  895. }
  896. /* L40: */
  897. }
  898. sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[
  899. (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], &
  900. nl);
  901. jreal = 0;
  902. jimag = nl * *nrhs;
  903. i__2 = *nrhs;
  904. for (jcol = 1; jcol <= i__2; ++jcol) {
  905. i__3 = nlf + nl - 1;
  906. for (jrow = nlf; jrow <= i__3; ++jrow) {
  907. ++jreal;
  908. ++jimag;
  909. i__4 = jrow + jcol * bx_dim1;
  910. i__5 = jreal;
  911. i__6 = jimag;
  912. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  913. bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
  914. /* L50: */
  915. }
  916. /* L60: */
  917. }
  918. /* Since B and BX are complex, the following call to SGEMM */
  919. /* is performed in two steps (real and imaginary parts). */
  920. /* CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, */
  921. /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
  922. j = nr * *nrhs << 1;
  923. i__2 = *nrhs;
  924. for (jcol = 1; jcol <= i__2; ++jcol) {
  925. i__3 = nrf + nr - 1;
  926. for (jrow = nrf; jrow <= i__3; ++jrow) {
  927. ++j;
  928. i__4 = jrow + jcol * b_dim1;
  929. rwork[j] = b[i__4].r;
  930. /* L70: */
  931. }
  932. /* L80: */
  933. }
  934. sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
  935. (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr);
  936. j = nr * *nrhs << 1;
  937. i__2 = *nrhs;
  938. for (jcol = 1; jcol <= i__2; ++jcol) {
  939. i__3 = nrf + nr - 1;
  940. for (jrow = nrf; jrow <= i__3; ++jrow) {
  941. ++j;
  942. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  943. /* L90: */
  944. }
  945. /* L100: */
  946. }
  947. sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[
  948. (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], &
  949. nr);
  950. jreal = 0;
  951. jimag = nr * *nrhs;
  952. i__2 = *nrhs;
  953. for (jcol = 1; jcol <= i__2; ++jcol) {
  954. i__3 = nrf + nr - 1;
  955. for (jrow = nrf; jrow <= i__3; ++jrow) {
  956. ++jreal;
  957. ++jimag;
  958. i__4 = jrow + jcol * bx_dim1;
  959. i__5 = jreal;
  960. i__6 = jimag;
  961. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  962. bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
  963. /* L110: */
  964. }
  965. /* L120: */
  966. }
  967. /* L130: */
  968. }
  969. /* Next copy the rows of B that correspond to unchanged rows */
  970. /* in the bidiagonal matrix to BX. */
  971. i__1 = nd;
  972. for (i__ = 1; i__ <= i__1; ++i__) {
  973. ic = iwork[inode + i__ - 1];
  974. ccopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
  975. /* L140: */
  976. }
  977. /* Finally go through the left singular vector matrices of all */
  978. /* the other subproblems bottom-up on the tree. */
  979. j = pow_ii(c__2, nlvl);
  980. sqre = 0;
  981. for (lvl = nlvl; lvl >= 1; --lvl) {
  982. lvl2 = (lvl << 1) - 1;
  983. /* find the first node LF and last node LL on */
  984. /* the current level LVL */
  985. if (lvl == 1) {
  986. lf = 1;
  987. ll = 1;
  988. } else {
  989. i__1 = lvl - 1;
  990. lf = pow_ii(c__2, i__1);
  991. ll = (lf << 1) - 1;
  992. }
  993. i__1 = ll;
  994. for (i__ = lf; i__ <= i__1; ++i__) {
  995. im1 = i__ - 1;
  996. ic = iwork[inode + im1];
  997. nl = iwork[ndiml + im1];
  998. nr = iwork[ndimr + im1];
  999. nlf = ic - nl;
  1000. nrf = ic + 1;
  1001. --j;
  1002. clals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
  1003. b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
  1004. givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
  1005. givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
  1006. poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
  1007. lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
  1008. j], &s[j], &rwork[1], info);
  1009. /* L150: */
  1010. }
  1011. /* L160: */
  1012. }
  1013. goto L330;
  1014. /* ICOMPQ = 1: applying back the right singular vector factors. */
  1015. L170:
  1016. /* First now go through the right singular vector matrices of all */
  1017. /* the tree nodes top-down. */
  1018. j = 0;
  1019. i__1 = nlvl;
  1020. for (lvl = 1; lvl <= i__1; ++lvl) {
  1021. lvl2 = (lvl << 1) - 1;
  1022. /* Find the first node LF and last node LL on */
  1023. /* the current level LVL. */
  1024. if (lvl == 1) {
  1025. lf = 1;
  1026. ll = 1;
  1027. } else {
  1028. i__2 = lvl - 1;
  1029. lf = pow_ii(c__2, i__2);
  1030. ll = (lf << 1) - 1;
  1031. }
  1032. i__2 = lf;
  1033. for (i__ = ll; i__ >= i__2; --i__) {
  1034. im1 = i__ - 1;
  1035. ic = iwork[inode + im1];
  1036. nl = iwork[ndiml + im1];
  1037. nr = iwork[ndimr + im1];
  1038. nlf = ic - nl;
  1039. nrf = ic + 1;
  1040. if (i__ == ll) {
  1041. sqre = 0;
  1042. } else {
  1043. sqre = 1;
  1044. }
  1045. ++j;
  1046. clals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
  1047. nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
  1048. givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
  1049. givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
  1050. poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
  1051. lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
  1052. j], &s[j], &rwork[1], info);
  1053. /* L180: */
  1054. }
  1055. /* L190: */
  1056. }
  1057. /* The nodes on the bottom level of the tree were solved */
  1058. /* by SLASDQ. The corresponding right singular vector */
  1059. /* matrices are in explicit form. Apply them back. */
  1060. ndb1 = (nd + 1) / 2;
  1061. i__1 = nd;
  1062. for (i__ = ndb1; i__ <= i__1; ++i__) {
  1063. i1 = i__ - 1;
  1064. ic = iwork[inode + i1];
  1065. nl = iwork[ndiml + i1];
  1066. nr = iwork[ndimr + i1];
  1067. nlp1 = nl + 1;
  1068. if (i__ == nd) {
  1069. nrp1 = nr;
  1070. } else {
  1071. nrp1 = nr + 1;
  1072. }
  1073. nlf = ic - nl;
  1074. nrf = ic + 1;
  1075. /* Since B and BX are complex, the following call to SGEMM is */
  1076. /* performed in two steps (real and imaginary parts). */
  1077. /* CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, */
  1078. /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
  1079. j = nlp1 * *nrhs << 1;
  1080. i__2 = *nrhs;
  1081. for (jcol = 1; jcol <= i__2; ++jcol) {
  1082. i__3 = nlf + nlp1 - 1;
  1083. for (jrow = nlf; jrow <= i__3; ++jrow) {
  1084. ++j;
  1085. i__4 = jrow + jcol * b_dim1;
  1086. rwork[j] = b[i__4].r;
  1087. /* L200: */
  1088. }
  1089. /* L210: */
  1090. }
  1091. sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
  1092. rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], &
  1093. nlp1);
  1094. j = nlp1 * *nrhs << 1;
  1095. i__2 = *nrhs;
  1096. for (jcol = 1; jcol <= i__2; ++jcol) {
  1097. i__3 = nlf + nlp1 - 1;
  1098. for (jrow = nlf; jrow <= i__3; ++jrow) {
  1099. ++j;
  1100. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  1101. /* L220: */
  1102. }
  1103. /* L230: */
  1104. }
  1105. sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, &
  1106. rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * *
  1107. nrhs + 1], &nlp1);
  1108. jreal = 0;
  1109. jimag = nlp1 * *nrhs;
  1110. i__2 = *nrhs;
  1111. for (jcol = 1; jcol <= i__2; ++jcol) {
  1112. i__3 = nlf + nlp1 - 1;
  1113. for (jrow = nlf; jrow <= i__3; ++jrow) {
  1114. ++jreal;
  1115. ++jimag;
  1116. i__4 = jrow + jcol * bx_dim1;
  1117. i__5 = jreal;
  1118. i__6 = jimag;
  1119. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1120. bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
  1121. /* L240: */
  1122. }
  1123. /* L250: */
  1124. }
  1125. /* Since B and BX are complex, the following call to SGEMM is */
  1126. /* performed in two steps (real and imaginary parts). */
  1127. /* CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, */
  1128. /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */
  1129. j = nrp1 * *nrhs << 1;
  1130. i__2 = *nrhs;
  1131. for (jcol = 1; jcol <= i__2; ++jcol) {
  1132. i__3 = nrf + nrp1 - 1;
  1133. for (jrow = nrf; jrow <= i__3; ++jrow) {
  1134. ++j;
  1135. i__4 = jrow + jcol * b_dim1;
  1136. rwork[j] = b[i__4].r;
  1137. /* L260: */
  1138. }
  1139. /* L270: */
  1140. }
  1141. sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
  1142. rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], &
  1143. nrp1);
  1144. j = nrp1 * *nrhs << 1;
  1145. i__2 = *nrhs;
  1146. for (jcol = 1; jcol <= i__2; ++jcol) {
  1147. i__3 = nrf + nrp1 - 1;
  1148. for (jrow = nrf; jrow <= i__3; ++jrow) {
  1149. ++j;
  1150. rwork[j] = r_imag(&b[jrow + jcol * b_dim1]);
  1151. /* L280: */
  1152. }
  1153. /* L290: */
  1154. }
  1155. sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, &
  1156. rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * *
  1157. nrhs + 1], &nrp1);
  1158. jreal = 0;
  1159. jimag = nrp1 * *nrhs;
  1160. i__2 = *nrhs;
  1161. for (jcol = 1; jcol <= i__2; ++jcol) {
  1162. i__3 = nrf + nrp1 - 1;
  1163. for (jrow = nrf; jrow <= i__3; ++jrow) {
  1164. ++jreal;
  1165. ++jimag;
  1166. i__4 = jrow + jcol * bx_dim1;
  1167. i__5 = jreal;
  1168. i__6 = jimag;
  1169. q__1.r = rwork[i__5], q__1.i = rwork[i__6];
  1170. bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
  1171. /* L300: */
  1172. }
  1173. /* L310: */
  1174. }
  1175. /* L320: */
  1176. }
  1177. L330:
  1178. return;
  1179. /* End of CLALSA */
  1180. } /* clalsa_ */