You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetf2_rook.c 49 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bound
  488. ed Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CHETF2_ROOK + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2_
  495. rook.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2_
  498. rook.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2_
  501. rook.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CHETF2_ROOK computes the factorization of a complex Hermitian matrix A */
  517. /* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: */
  518. /* > */
  519. /* > A = U*D*U**H or A = L*D*L**H */
  520. /* > */
  521. /* > where U (or L) is a product of permutation and unit upper (lower) */
  522. /* > triangular matrices, U**H is the conjugate transpose of U, and D is */
  523. /* > Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the upper or lower triangular part of the */
  533. /* > Hermitian matrix A is stored: */
  534. /* > = 'U': Upper triangular */
  535. /* > = 'L': Lower triangular */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX array, dimension (LDA,N) */
  547. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  548. /* > n-by-n upper triangular part of A contains the upper */
  549. /* > triangular part of the matrix A, and the strictly lower */
  550. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  551. /* > leading n-by-n lower triangular part of A contains the lower */
  552. /* > triangular part of the matrix A, and the strictly upper */
  553. /* > triangular part of A is not referenced. */
  554. /* > */
  555. /* > On exit, the block diagonal matrix D and the multipliers used */
  556. /* > to obtain the factor U or L (see below for further details). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] IPIV */
  566. /* > \verbatim */
  567. /* > IPIV is INTEGER array, dimension (N) */
  568. /* > Details of the interchanges and the block structure of D. */
  569. /* > */
  570. /* > If UPLO = 'U': */
  571. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  572. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  573. /* > */
  574. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  575. /* > columns k and -IPIV(k) were interchanged and rows and */
  576. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  577. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  578. /* > */
  579. /* > If UPLO = 'L': */
  580. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  581. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  582. /* > */
  583. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  584. /* > columns k and -IPIV(k) were interchanged and rows and */
  585. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  586. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] INFO */
  590. /* > \verbatim */
  591. /* > INFO is INTEGER */
  592. /* > = 0: successful exit */
  593. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  594. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  595. /* > has been completed, but the block diagonal matrix D is */
  596. /* > exactly singular, and division by zero will occur if it */
  597. /* > is used to solve a system of equations. */
  598. /* > \endverbatim */
  599. /* Authors: */
  600. /* ======== */
  601. /* > \author Univ. of Tennessee */
  602. /* > \author Univ. of California Berkeley */
  603. /* > \author Univ. of Colorado Denver */
  604. /* > \author NAG Ltd. */
  605. /* > \date November 2013 */
  606. /* > \ingroup complexHEcomputational */
  607. /* > \par Further Details: */
  608. /* ===================== */
  609. /* > */
  610. /* > \verbatim */
  611. /* > */
  612. /* > If UPLO = 'U', then A = U*D*U**H, where */
  613. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  614. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  615. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  616. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  617. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  618. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  619. /* > */
  620. /* > ( I v 0 ) k-s */
  621. /* > U(k) = ( 0 I 0 ) s */
  622. /* > ( 0 0 I ) n-k */
  623. /* > k-s s n-k */
  624. /* > */
  625. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  626. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  627. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  628. /* > */
  629. /* > If UPLO = 'L', then A = L*D*L**H, where */
  630. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  631. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  632. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  633. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  634. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  635. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  636. /* > */
  637. /* > ( I 0 0 ) k-1 */
  638. /* > L(k) = ( 0 I 0 ) s */
  639. /* > ( 0 v I ) n-k-s+1 */
  640. /* > k-1 s n-k-s+1 */
  641. /* > */
  642. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  643. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  644. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  645. /* > \endverbatim */
  646. /* > \par Contributors: */
  647. /* ================== */
  648. /* > */
  649. /* > \verbatim */
  650. /* > */
  651. /* > November 2013, Igor Kozachenko, */
  652. /* > Computer Science Division, */
  653. /* > University of California, Berkeley */
  654. /* > */
  655. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  656. /* > School of Mathematics, */
  657. /* > University of Manchester */
  658. /* > */
  659. /* > 01-01-96 - Based on modifications by */
  660. /* > J. Lewis, Boeing Computer Services Company */
  661. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  662. /* > \endverbatim */
  663. /* ===================================================================== */
  664. /* Subroutine */ void chetf2_rook_(char *uplo, integer *n, complex *a,
  665. integer *lda, integer *ipiv, integer *info)
  666. {
  667. /* System generated locals */
  668. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  669. real r__1, r__2;
  670. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  671. /* Local variables */
  672. extern /* Subroutine */ void cher_(char *, integer *, real *, complex *,
  673. integer *, complex *, integer *);
  674. logical done;
  675. integer imax, jmax;
  676. real d__;
  677. integer i__, j, k, p;
  678. complex t;
  679. real alpha;
  680. extern logical lsame_(char *, char *);
  681. real sfmin;
  682. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  683. complex *, integer *);
  684. integer itemp, kstep;
  685. real stemp;
  686. logical upper;
  687. real r1, d11;
  688. complex d12;
  689. real d22;
  690. complex d21;
  691. extern real slapy2_(real *, real *);
  692. integer ii, kk, kp;
  693. real absakk;
  694. complex wk;
  695. extern integer icamax_(integer *, complex *, integer *);
  696. extern real slamch_(char *);
  697. real tt;
  698. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  699. *);
  700. extern int xerbla_(char *, integer *, ftnlen);
  701. real colmax, rowmax;
  702. complex wkm1, wkp1;
  703. /* -- LAPACK computational routine (version 3.5.0) -- */
  704. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  705. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  706. /* November 2013 */
  707. /* ====================================================================== */
  708. /* Test the input parameters. */
  709. /* Parameter adjustments */
  710. a_dim1 = *lda;
  711. a_offset = 1 + a_dim1 * 1;
  712. a -= a_offset;
  713. --ipiv;
  714. /* Function Body */
  715. *info = 0;
  716. upper = lsame_(uplo, "U");
  717. if (! upper && ! lsame_(uplo, "L")) {
  718. *info = -1;
  719. } else if (*n < 0) {
  720. *info = -2;
  721. } else if (*lda < f2cmax(1,*n)) {
  722. *info = -4;
  723. }
  724. if (*info != 0) {
  725. i__1 = -(*info);
  726. xerbla_("CHETF2_ROOK", &i__1, (ftnlen)11);
  727. return;
  728. }
  729. /* Initialize ALPHA for use in choosing pivot block size. */
  730. alpha = (sqrt(17.f) + 1.f) / 8.f;
  731. /* Compute machine safe minimum */
  732. sfmin = slamch_("S");
  733. if (upper) {
  734. /* Factorize A as U*D*U**H using the upper triangle of A */
  735. /* K is the main loop index, decreasing from N to 1 in steps of */
  736. /* 1 or 2 */
  737. k = *n;
  738. L10:
  739. /* If K < 1, exit from loop */
  740. if (k < 1) {
  741. goto L70;
  742. }
  743. kstep = 1;
  744. p = k;
  745. /* Determine rows and columns to be interchanged and whether */
  746. /* a 1-by-1 or 2-by-2 pivot block will be used */
  747. i__1 = k + k * a_dim1;
  748. absakk = (r__1 = a[i__1].r, abs(r__1));
  749. /* IMAX is the row-index of the largest off-diagonal element in */
  750. /* column K, and COLMAX is its absolute value. */
  751. /* Determine both COLMAX and IMAX. */
  752. if (k > 1) {
  753. i__1 = k - 1;
  754. imax = icamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  755. i__1 = imax + k * a_dim1;
  756. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  757. k * a_dim1]), abs(r__2));
  758. } else {
  759. colmax = 0.f;
  760. }
  761. if (f2cmax(absakk,colmax) == 0.f) {
  762. /* Column K is zero or underflow: set INFO and continue */
  763. if (*info == 0) {
  764. *info = k;
  765. }
  766. kp = k;
  767. i__1 = k + k * a_dim1;
  768. i__2 = k + k * a_dim1;
  769. r__1 = a[i__2].r;
  770. a[i__1].r = r__1, a[i__1].i = 0.f;
  771. } else {
  772. /* ============================================================ */
  773. /* BEGIN pivot search */
  774. /* Case(1) */
  775. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  776. /* (used to handle NaN and Inf) */
  777. if (! (absakk < alpha * colmax)) {
  778. /* no interchange, use 1-by-1 pivot block */
  779. kp = k;
  780. } else {
  781. done = FALSE_;
  782. /* Loop until pivot found */
  783. L12:
  784. /* BEGIN pivot search loop body */
  785. /* JMAX is the column-index of the largest off-diagonal */
  786. /* element in row IMAX, and ROWMAX is its absolute value. */
  787. /* Determine both ROWMAX and JMAX. */
  788. if (imax != k) {
  789. i__1 = k - imax;
  790. jmax = imax + icamax_(&i__1, &a[imax + (imax + 1) *
  791. a_dim1], lda);
  792. i__1 = imax + jmax * a_dim1;
  793. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  794. a[imax + jmax * a_dim1]), abs(r__2));
  795. } else {
  796. rowmax = 0.f;
  797. }
  798. if (imax > 1) {
  799. i__1 = imax - 1;
  800. itemp = icamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  801. i__1 = itemp + imax * a_dim1;
  802. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  803. itemp + imax * a_dim1]), abs(r__2));
  804. if (stemp > rowmax) {
  805. rowmax = stemp;
  806. jmax = itemp;
  807. }
  808. }
  809. /* Case(2) */
  810. /* Equivalent to testing for */
  811. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  812. /* (used to handle NaN and Inf) */
  813. i__1 = imax + imax * a_dim1;
  814. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  815. /* interchange rows and columns K and IMAX, */
  816. /* use 1-by-1 pivot block */
  817. kp = imax;
  818. done = TRUE_;
  819. /* Case(3) */
  820. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  821. /* (used to handle NaN and Inf) */
  822. } else if (p == jmax || rowmax <= colmax) {
  823. /* interchange rows and columns K-1 and IMAX, */
  824. /* use 2-by-2 pivot block */
  825. kp = imax;
  826. kstep = 2;
  827. done = TRUE_;
  828. /* Case(4) */
  829. } else {
  830. /* Pivot not found: set params and repeat */
  831. p = imax;
  832. colmax = rowmax;
  833. imax = jmax;
  834. }
  835. /* END pivot search loop body */
  836. if (! done) {
  837. goto L12;
  838. }
  839. }
  840. /* END pivot search */
  841. /* ============================================================ */
  842. /* KK is the column of A where pivoting step stopped */
  843. kk = k - kstep + 1;
  844. /* For only a 2x2 pivot, interchange rows and columns K and P */
  845. /* in the leading submatrix A(1:k,1:k) */
  846. if (kstep == 2 && p != k) {
  847. /* (1) Swap columnar parts */
  848. if (p > 1) {
  849. i__1 = p - 1;
  850. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  851. 1], &c__1);
  852. }
  853. /* (2) Swap and conjugate middle parts */
  854. i__1 = k - 1;
  855. for (j = p + 1; j <= i__1; ++j) {
  856. r_cnjg(&q__1, &a[j + k * a_dim1]);
  857. t.r = q__1.r, t.i = q__1.i;
  858. i__2 = j + k * a_dim1;
  859. r_cnjg(&q__1, &a[p + j * a_dim1]);
  860. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  861. i__2 = p + j * a_dim1;
  862. a[i__2].r = t.r, a[i__2].i = t.i;
  863. /* L14: */
  864. }
  865. /* (3) Swap and conjugate corner elements at row-col interserction */
  866. i__1 = p + k * a_dim1;
  867. r_cnjg(&q__1, &a[p + k * a_dim1]);
  868. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  869. /* (4) Swap diagonal elements at row-col intersection */
  870. i__1 = k + k * a_dim1;
  871. r1 = a[i__1].r;
  872. i__1 = k + k * a_dim1;
  873. i__2 = p + p * a_dim1;
  874. r__1 = a[i__2].r;
  875. a[i__1].r = r__1, a[i__1].i = 0.f;
  876. i__1 = p + p * a_dim1;
  877. a[i__1].r = r1, a[i__1].i = 0.f;
  878. }
  879. /* For both 1x1 and 2x2 pivots, interchange rows and */
  880. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  881. if (kp != kk) {
  882. /* (1) Swap columnar parts */
  883. if (kp > 1) {
  884. i__1 = kp - 1;
  885. cswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  886. + 1], &c__1);
  887. }
  888. /* (2) Swap and conjugate middle parts */
  889. i__1 = kk - 1;
  890. for (j = kp + 1; j <= i__1; ++j) {
  891. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  892. t.r = q__1.r, t.i = q__1.i;
  893. i__2 = j + kk * a_dim1;
  894. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  895. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  896. i__2 = kp + j * a_dim1;
  897. a[i__2].r = t.r, a[i__2].i = t.i;
  898. /* L15: */
  899. }
  900. /* (3) Swap and conjugate corner elements at row-col interserction */
  901. i__1 = kp + kk * a_dim1;
  902. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  903. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  904. /* (4) Swap diagonal elements at row-col intersection */
  905. i__1 = kk + kk * a_dim1;
  906. r1 = a[i__1].r;
  907. i__1 = kk + kk * a_dim1;
  908. i__2 = kp + kp * a_dim1;
  909. r__1 = a[i__2].r;
  910. a[i__1].r = r__1, a[i__1].i = 0.f;
  911. i__1 = kp + kp * a_dim1;
  912. a[i__1].r = r1, a[i__1].i = 0.f;
  913. if (kstep == 2) {
  914. /* (*) Make sure that diagonal element of pivot is real */
  915. i__1 = k + k * a_dim1;
  916. i__2 = k + k * a_dim1;
  917. r__1 = a[i__2].r;
  918. a[i__1].r = r__1, a[i__1].i = 0.f;
  919. /* (5) Swap row elements */
  920. i__1 = k - 1 + k * a_dim1;
  921. t.r = a[i__1].r, t.i = a[i__1].i;
  922. i__1 = k - 1 + k * a_dim1;
  923. i__2 = kp + k * a_dim1;
  924. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  925. i__1 = kp + k * a_dim1;
  926. a[i__1].r = t.r, a[i__1].i = t.i;
  927. }
  928. } else {
  929. /* (*) Make sure that diagonal element of pivot is real */
  930. i__1 = k + k * a_dim1;
  931. i__2 = k + k * a_dim1;
  932. r__1 = a[i__2].r;
  933. a[i__1].r = r__1, a[i__1].i = 0.f;
  934. if (kstep == 2) {
  935. i__1 = k - 1 + (k - 1) * a_dim1;
  936. i__2 = k - 1 + (k - 1) * a_dim1;
  937. r__1 = a[i__2].r;
  938. a[i__1].r = r__1, a[i__1].i = 0.f;
  939. }
  940. }
  941. /* Update the leading submatrix */
  942. if (kstep == 1) {
  943. /* 1-by-1 pivot block D(k): column k now holds */
  944. /* W(k) = U(k)*D(k) */
  945. /* where U(k) is the k-th column of U */
  946. if (k > 1) {
  947. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  948. /* store U(k) in column k */
  949. i__1 = k + k * a_dim1;
  950. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  951. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  952. /* A := A - U(k)*D(k)*U(k)**T */
  953. /* = A - W(k)*1/D(k)*W(k)**T */
  954. i__1 = k + k * a_dim1;
  955. d11 = 1.f / a[i__1].r;
  956. i__1 = k - 1;
  957. r__1 = -d11;
  958. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  959. a[a_offset], lda);
  960. /* Store U(k) in column k */
  961. i__1 = k - 1;
  962. csscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  963. } else {
  964. /* Store L(k) in column K */
  965. i__1 = k + k * a_dim1;
  966. d11 = a[i__1].r;
  967. i__1 = k - 1;
  968. for (ii = 1; ii <= i__1; ++ii) {
  969. i__2 = ii + k * a_dim1;
  970. i__3 = ii + k * a_dim1;
  971. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  972. d11;
  973. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  974. /* L16: */
  975. }
  976. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  977. /* A := A - U(k)*D(k)*U(k)**T */
  978. /* = A - W(k)*(1/D(k))*W(k)**T */
  979. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  980. i__1 = k - 1;
  981. r__1 = -d11;
  982. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  983. a[a_offset], lda);
  984. }
  985. }
  986. } else {
  987. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  988. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  989. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  990. /* of U */
  991. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  992. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  993. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  994. /* and store L(k) and L(k+1) in columns k and k+1 */
  995. if (k > 2) {
  996. /* D = |A12| */
  997. i__1 = k - 1 + k * a_dim1;
  998. r__1 = a[i__1].r;
  999. r__2 = r_imag(&a[k - 1 + k * a_dim1]);
  1000. d__ = slapy2_(&r__1, &r__2);
  1001. i__1 = k + k * a_dim1;
  1002. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1003. d11 = q__1.r;
  1004. i__1 = k - 1 + (k - 1) * a_dim1;
  1005. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1006. d22 = q__1.r;
  1007. i__1 = k - 1 + k * a_dim1;
  1008. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1009. d12.r = q__1.r, d12.i = q__1.i;
  1010. tt = 1.f / (d11 * d22 - 1.f);
  1011. for (j = k - 2; j >= 1; --j) {
  1012. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1013. i__1 = j + (k - 1) * a_dim1;
  1014. q__3.r = d11 * a[i__1].r, q__3.i = d11 * a[i__1].i;
  1015. r_cnjg(&q__5, &d12);
  1016. i__2 = j + k * a_dim1;
  1017. q__4.r = q__5.r * a[i__2].r - q__5.i * a[i__2].i,
  1018. q__4.i = q__5.r * a[i__2].i + q__5.i * a[i__2]
  1019. .r;
  1020. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1021. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1022. wkm1.r = q__1.r, wkm1.i = q__1.i;
  1023. i__1 = j + k * a_dim1;
  1024. q__3.r = d22 * a[i__1].r, q__3.i = d22 * a[i__1].i;
  1025. i__2 = j + (k - 1) * a_dim1;
  1026. q__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1027. q__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1028. .r;
  1029. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1030. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1031. wk.r = q__1.r, wk.i = q__1.i;
  1032. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1033. for (i__ = j; i__ >= 1; --i__) {
  1034. i__1 = i__ + j * a_dim1;
  1035. i__2 = i__ + j * a_dim1;
  1036. i__3 = i__ + k * a_dim1;
  1037. q__4.r = a[i__3].r / d__, q__4.i = a[i__3].i /
  1038. d__;
  1039. r_cnjg(&q__5, &wk);
  1040. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1041. q__3.i = q__4.r * q__5.i + q__4.i *
  1042. q__5.r;
  1043. q__2.r = a[i__2].r - q__3.r, q__2.i = a[i__2].i -
  1044. q__3.i;
  1045. i__4 = i__ + (k - 1) * a_dim1;
  1046. q__7.r = a[i__4].r / d__, q__7.i = a[i__4].i /
  1047. d__;
  1048. r_cnjg(&q__8, &wkm1);
  1049. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1050. q__6.i = q__7.r * q__8.i + q__7.i *
  1051. q__8.r;
  1052. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1053. q__6.i;
  1054. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1055. /* L20: */
  1056. }
  1057. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1058. i__1 = j + k * a_dim1;
  1059. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1060. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1061. i__1 = j + (k - 1) * a_dim1;
  1062. q__1.r = wkm1.r / d__, q__1.i = wkm1.i / d__;
  1063. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1064. /* (*) Make sure that diagonal element of pivot is real */
  1065. i__1 = j + j * a_dim1;
  1066. i__2 = j + j * a_dim1;
  1067. r__1 = a[i__2].r;
  1068. q__1.r = r__1, q__1.i = 0.f;
  1069. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1070. /* L30: */
  1071. }
  1072. }
  1073. }
  1074. }
  1075. /* Store details of the interchanges in IPIV */
  1076. if (kstep == 1) {
  1077. ipiv[k] = kp;
  1078. } else {
  1079. ipiv[k] = -p;
  1080. ipiv[k - 1] = -kp;
  1081. }
  1082. /* Decrease K and return to the start of the main loop */
  1083. k -= kstep;
  1084. goto L10;
  1085. } else {
  1086. /* Factorize A as L*D*L**H using the lower triangle of A */
  1087. /* K is the main loop index, increasing from 1 to N in steps of */
  1088. /* 1 or 2 */
  1089. k = 1;
  1090. L40:
  1091. /* If K > N, exit from loop */
  1092. if (k > *n) {
  1093. goto L70;
  1094. }
  1095. kstep = 1;
  1096. p = k;
  1097. /* Determine rows and columns to be interchanged and whether */
  1098. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1099. i__1 = k + k * a_dim1;
  1100. absakk = (r__1 = a[i__1].r, abs(r__1));
  1101. /* IMAX is the row-index of the largest off-diagonal element in */
  1102. /* column K, and COLMAX is its absolute value. */
  1103. /* Determine both COLMAX and IMAX. */
  1104. if (k < *n) {
  1105. i__1 = *n - k;
  1106. imax = k + icamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1107. i__1 = imax + k * a_dim1;
  1108. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  1109. k * a_dim1]), abs(r__2));
  1110. } else {
  1111. colmax = 0.f;
  1112. }
  1113. if (f2cmax(absakk,colmax) == 0.f) {
  1114. /* Column K is zero or underflow: set INFO and continue */
  1115. if (*info == 0) {
  1116. *info = k;
  1117. }
  1118. kp = k;
  1119. i__1 = k + k * a_dim1;
  1120. i__2 = k + k * a_dim1;
  1121. r__1 = a[i__2].r;
  1122. a[i__1].r = r__1, a[i__1].i = 0.f;
  1123. } else {
  1124. /* ============================================================ */
  1125. /* BEGIN pivot search */
  1126. /* Case(1) */
  1127. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1128. /* (used to handle NaN and Inf) */
  1129. if (! (absakk < alpha * colmax)) {
  1130. /* no interchange, use 1-by-1 pivot block */
  1131. kp = k;
  1132. } else {
  1133. done = FALSE_;
  1134. /* Loop until pivot found */
  1135. L42:
  1136. /* BEGIN pivot search loop body */
  1137. /* JMAX is the column-index of the largest off-diagonal */
  1138. /* element in row IMAX, and ROWMAX is its absolute value. */
  1139. /* Determine both ROWMAX and JMAX. */
  1140. if (imax != k) {
  1141. i__1 = imax - k;
  1142. jmax = k - 1 + icamax_(&i__1, &a[imax + k * a_dim1], lda);
  1143. i__1 = imax + jmax * a_dim1;
  1144. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1145. a[imax + jmax * a_dim1]), abs(r__2));
  1146. } else {
  1147. rowmax = 0.f;
  1148. }
  1149. if (imax < *n) {
  1150. i__1 = *n - imax;
  1151. itemp = imax + icamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1152. , &c__1);
  1153. i__1 = itemp + imax * a_dim1;
  1154. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  1155. itemp + imax * a_dim1]), abs(r__2));
  1156. if (stemp > rowmax) {
  1157. rowmax = stemp;
  1158. jmax = itemp;
  1159. }
  1160. }
  1161. /* Case(2) */
  1162. /* Equivalent to testing for */
  1163. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1164. /* (used to handle NaN and Inf) */
  1165. i__1 = imax + imax * a_dim1;
  1166. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  1167. /* interchange rows and columns K and IMAX, */
  1168. /* use 1-by-1 pivot block */
  1169. kp = imax;
  1170. done = TRUE_;
  1171. /* Case(3) */
  1172. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1173. /* (used to handle NaN and Inf) */
  1174. } else if (p == jmax || rowmax <= colmax) {
  1175. /* interchange rows and columns K+1 and IMAX, */
  1176. /* use 2-by-2 pivot block */
  1177. kp = imax;
  1178. kstep = 2;
  1179. done = TRUE_;
  1180. /* Case(4) */
  1181. } else {
  1182. /* Pivot not found: set params and repeat */
  1183. p = imax;
  1184. colmax = rowmax;
  1185. imax = jmax;
  1186. }
  1187. /* END pivot search loop body */
  1188. if (! done) {
  1189. goto L42;
  1190. }
  1191. }
  1192. /* END pivot search */
  1193. /* ============================================================ */
  1194. /* KK is the column of A where pivoting step stopped */
  1195. kk = k + kstep - 1;
  1196. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1197. /* in the trailing submatrix A(k:n,k:n) */
  1198. if (kstep == 2 && p != k) {
  1199. /* (1) Swap columnar parts */
  1200. if (p < *n) {
  1201. i__1 = *n - p;
  1202. cswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1203. * a_dim1], &c__1);
  1204. }
  1205. /* (2) Swap and conjugate middle parts */
  1206. i__1 = p - 1;
  1207. for (j = k + 1; j <= i__1; ++j) {
  1208. r_cnjg(&q__1, &a[j + k * a_dim1]);
  1209. t.r = q__1.r, t.i = q__1.i;
  1210. i__2 = j + k * a_dim1;
  1211. r_cnjg(&q__1, &a[p + j * a_dim1]);
  1212. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1213. i__2 = p + j * a_dim1;
  1214. a[i__2].r = t.r, a[i__2].i = t.i;
  1215. /* L44: */
  1216. }
  1217. /* (3) Swap and conjugate corner elements at row-col interserction */
  1218. i__1 = p + k * a_dim1;
  1219. r_cnjg(&q__1, &a[p + k * a_dim1]);
  1220. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1221. /* (4) Swap diagonal elements at row-col intersection */
  1222. i__1 = k + k * a_dim1;
  1223. r1 = a[i__1].r;
  1224. i__1 = k + k * a_dim1;
  1225. i__2 = p + p * a_dim1;
  1226. r__1 = a[i__2].r;
  1227. a[i__1].r = r__1, a[i__1].i = 0.f;
  1228. i__1 = p + p * a_dim1;
  1229. a[i__1].r = r1, a[i__1].i = 0.f;
  1230. }
  1231. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1232. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1233. if (kp != kk) {
  1234. /* (1) Swap columnar parts */
  1235. if (kp < *n) {
  1236. i__1 = *n - kp;
  1237. cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1238. + kp * a_dim1], &c__1);
  1239. }
  1240. /* (2) Swap and conjugate middle parts */
  1241. i__1 = kp - 1;
  1242. for (j = kk + 1; j <= i__1; ++j) {
  1243. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  1244. t.r = q__1.r, t.i = q__1.i;
  1245. i__2 = j + kk * a_dim1;
  1246. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1247. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1248. i__2 = kp + j * a_dim1;
  1249. a[i__2].r = t.r, a[i__2].i = t.i;
  1250. /* L45: */
  1251. }
  1252. /* (3) Swap and conjugate corner elements at row-col interserction */
  1253. i__1 = kp + kk * a_dim1;
  1254. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  1255. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1256. /* (4) Swap diagonal elements at row-col intersection */
  1257. i__1 = kk + kk * a_dim1;
  1258. r1 = a[i__1].r;
  1259. i__1 = kk + kk * a_dim1;
  1260. i__2 = kp + kp * a_dim1;
  1261. r__1 = a[i__2].r;
  1262. a[i__1].r = r__1, a[i__1].i = 0.f;
  1263. i__1 = kp + kp * a_dim1;
  1264. a[i__1].r = r1, a[i__1].i = 0.f;
  1265. if (kstep == 2) {
  1266. /* (*) Make sure that diagonal element of pivot is real */
  1267. i__1 = k + k * a_dim1;
  1268. i__2 = k + k * a_dim1;
  1269. r__1 = a[i__2].r;
  1270. a[i__1].r = r__1, a[i__1].i = 0.f;
  1271. /* (5) Swap row elements */
  1272. i__1 = k + 1 + k * a_dim1;
  1273. t.r = a[i__1].r, t.i = a[i__1].i;
  1274. i__1 = k + 1 + k * a_dim1;
  1275. i__2 = kp + k * a_dim1;
  1276. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1277. i__1 = kp + k * a_dim1;
  1278. a[i__1].r = t.r, a[i__1].i = t.i;
  1279. }
  1280. } else {
  1281. /* (*) Make sure that diagonal element of pivot is real */
  1282. i__1 = k + k * a_dim1;
  1283. i__2 = k + k * a_dim1;
  1284. r__1 = a[i__2].r;
  1285. a[i__1].r = r__1, a[i__1].i = 0.f;
  1286. if (kstep == 2) {
  1287. i__1 = k + 1 + (k + 1) * a_dim1;
  1288. i__2 = k + 1 + (k + 1) * a_dim1;
  1289. r__1 = a[i__2].r;
  1290. a[i__1].r = r__1, a[i__1].i = 0.f;
  1291. }
  1292. }
  1293. /* Update the trailing submatrix */
  1294. if (kstep == 1) {
  1295. /* 1-by-1 pivot block D(k): column k of A now holds */
  1296. /* W(k) = L(k)*D(k), */
  1297. /* where L(k) is the k-th column of L */
  1298. if (k < *n) {
  1299. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1300. /* store L(k) in column k */
  1301. /* Handle division by a small number */
  1302. i__1 = k + k * a_dim1;
  1303. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  1304. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1305. /* A := A - L(k)*D(k)*L(k)**T */
  1306. /* = A - W(k)*(1/D(k))*W(k)**T */
  1307. i__1 = k + k * a_dim1;
  1308. d11 = 1.f / a[i__1].r;
  1309. i__1 = *n - k;
  1310. r__1 = -d11;
  1311. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1312. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1313. /* Store L(k) in column k */
  1314. i__1 = *n - k;
  1315. csscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1316. } else {
  1317. /* Store L(k) in column k */
  1318. i__1 = k + k * a_dim1;
  1319. d11 = a[i__1].r;
  1320. i__1 = *n;
  1321. for (ii = k + 1; ii <= i__1; ++ii) {
  1322. i__2 = ii + k * a_dim1;
  1323. i__3 = ii + k * a_dim1;
  1324. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  1325. d11;
  1326. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1327. /* L46: */
  1328. }
  1329. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1330. /* A := A - L(k)*D(k)*L(k)**T */
  1331. /* = A - W(k)*(1/D(k))*W(k)**T */
  1332. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1333. i__1 = *n - k;
  1334. r__1 = -d11;
  1335. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1336. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1337. }
  1338. }
  1339. } else {
  1340. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1341. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1342. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1343. /* of L */
  1344. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1345. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1346. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1347. /* and store L(k) and L(k+1) in columns k and k+1 */
  1348. if (k < *n - 1) {
  1349. /* D = |A21| */
  1350. i__1 = k + 1 + k * a_dim1;
  1351. r__1 = a[i__1].r;
  1352. r__2 = r_imag(&a[k + 1 + k * a_dim1]);
  1353. d__ = slapy2_(&r__1, &r__2);
  1354. i__1 = k + 1 + (k + 1) * a_dim1;
  1355. d11 = a[i__1].r / d__;
  1356. i__1 = k + k * a_dim1;
  1357. d22 = a[i__1].r / d__;
  1358. i__1 = k + 1 + k * a_dim1;
  1359. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1360. d21.r = q__1.r, d21.i = q__1.i;
  1361. tt = 1.f / (d11 * d22 - 1.f);
  1362. i__1 = *n;
  1363. for (j = k + 2; j <= i__1; ++j) {
  1364. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1365. i__2 = j + k * a_dim1;
  1366. q__3.r = d11 * a[i__2].r, q__3.i = d11 * a[i__2].i;
  1367. i__3 = j + (k + 1) * a_dim1;
  1368. q__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1369. q__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1370. .r;
  1371. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1372. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1373. wk.r = q__1.r, wk.i = q__1.i;
  1374. i__2 = j + (k + 1) * a_dim1;
  1375. q__3.r = d22 * a[i__2].r, q__3.i = d22 * a[i__2].i;
  1376. r_cnjg(&q__5, &d21);
  1377. i__3 = j + k * a_dim1;
  1378. q__4.r = q__5.r * a[i__3].r - q__5.i * a[i__3].i,
  1379. q__4.i = q__5.r * a[i__3].i + q__5.i * a[i__3]
  1380. .r;
  1381. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1382. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1383. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1384. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1385. i__2 = *n;
  1386. for (i__ = j; i__ <= i__2; ++i__) {
  1387. i__3 = i__ + j * a_dim1;
  1388. i__4 = i__ + j * a_dim1;
  1389. i__5 = i__ + k * a_dim1;
  1390. q__4.r = a[i__5].r / d__, q__4.i = a[i__5].i /
  1391. d__;
  1392. r_cnjg(&q__5, &wk);
  1393. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1394. q__3.i = q__4.r * q__5.i + q__4.i *
  1395. q__5.r;
  1396. q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i -
  1397. q__3.i;
  1398. i__6 = i__ + (k + 1) * a_dim1;
  1399. q__7.r = a[i__6].r / d__, q__7.i = a[i__6].i /
  1400. d__;
  1401. r_cnjg(&q__8, &wkp1);
  1402. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1403. q__6.i = q__7.r * q__8.i + q__7.i *
  1404. q__8.r;
  1405. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1406. q__6.i;
  1407. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1408. /* L50: */
  1409. }
  1410. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1411. i__2 = j + k * a_dim1;
  1412. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1413. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1414. i__2 = j + (k + 1) * a_dim1;
  1415. q__1.r = wkp1.r / d__, q__1.i = wkp1.i / d__;
  1416. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1417. /* (*) Make sure that diagonal element of pivot is real */
  1418. i__2 = j + j * a_dim1;
  1419. i__3 = j + j * a_dim1;
  1420. r__1 = a[i__3].r;
  1421. q__1.r = r__1, q__1.i = 0.f;
  1422. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1423. /* L60: */
  1424. }
  1425. }
  1426. }
  1427. }
  1428. /* Store details of the interchanges in IPIV */
  1429. if (kstep == 1) {
  1430. ipiv[k] = kp;
  1431. } else {
  1432. ipiv[k] = -p;
  1433. ipiv[k + 1] = -kp;
  1434. }
  1435. /* Increase K and return to the start of the main loop */
  1436. k += kstep;
  1437. goto L40;
  1438. }
  1439. L70:
  1440. return;
  1441. /* End of CHETF2_ROOK */
  1442. } /* chetf2_rook__ */