You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelq.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static integer c__2 = 2;
  489. /* > \brief \b CGELQ */
  490. /* Definition: */
  491. /* =========== */
  492. /* SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, */
  493. /* INFO ) */
  494. /* INTEGER INFO, LDA, M, N, TSIZE, LWORK */
  495. /* COMPLEX A( LDA, * ), T( * ), WORK( * ) */
  496. /* > \par Purpose: */
  497. /* ============= */
  498. /* > */
  499. /* > \verbatim */
  500. /* > */
  501. /* > CGELQ computes an LQ factorization of a complex M-by-N matrix A: */
  502. /* > */
  503. /* > A = ( L 0 ) * Q */
  504. /* > */
  505. /* > where: */
  506. /* > */
  507. /* > Q is a N-by-N orthogonal matrix; */
  508. /* > L is a lower-triangular M-by-M matrix; */
  509. /* > 0 is a M-by-(N-M) zero matrix, if M < N. */
  510. /* > */
  511. /* > \endverbatim */
  512. /* Arguments: */
  513. /* ========== */
  514. /* > \param[in] M */
  515. /* > \verbatim */
  516. /* > M is INTEGER */
  517. /* > The number of rows of the matrix A. M >= 0. */
  518. /* > \endverbatim */
  519. /* > */
  520. /* > \param[in] N */
  521. /* > \verbatim */
  522. /* > N is INTEGER */
  523. /* > The number of columns of the matrix A. N >= 0. */
  524. /* > \endverbatim */
  525. /* > */
  526. /* > \param[in,out] A */
  527. /* > \verbatim */
  528. /* > A is COMPLEX array, dimension (LDA,N) */
  529. /* > On entry, the M-by-N matrix A. */
  530. /* > On exit, the elements on and below the diagonal of the array */
  531. /* > contain the M-by-f2cmin(M,N) lower trapezoidal matrix L */
  532. /* > (L is lower triangular if M <= N); */
  533. /* > the elements above the diagonal are used to store part of the */
  534. /* > data structure to represent Q. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] LDA */
  538. /* > \verbatim */
  539. /* > LDA is INTEGER */
  540. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[out] T */
  544. /* > \verbatim */
  545. /* > T is COMPLEX array, dimension (MAX(5,TSIZE)) */
  546. /* > On exit, if INFO = 0, T(1) returns optimal (or either minimal */
  547. /* > or optimal, if query is assumed) TSIZE. See TSIZE for details. */
  548. /* > Remaining T contains part of the data structure used to represent Q. */
  549. /* > If one wants to apply or construct Q, then one needs to keep T */
  550. /* > (in addition to A) and pass it to further subroutines. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] TSIZE */
  554. /* > \verbatim */
  555. /* > TSIZE is INTEGER */
  556. /* > If TSIZE >= 5, the dimension of the array T. */
  557. /* > If TSIZE = -1 or -2, then a workspace query is assumed. The routine */
  558. /* > only calculates the sizes of the T and WORK arrays, returns these */
  559. /* > values as the first entries of the T and WORK arrays, and no error */
  560. /* > message related to T or WORK is issued by XERBLA. */
  561. /* > If TSIZE = -1, the routine calculates optimal size of T for the */
  562. /* > optimum performance and returns this value in T(1). */
  563. /* > If TSIZE = -2, the routine calculates minimal size of T and */
  564. /* > returns this value in T(1). */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] WORK */
  568. /* > \verbatim */
  569. /* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
  570. /* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
  571. /* > or optimal, if query was assumed) LWORK. */
  572. /* > See LWORK for details. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LWORK */
  576. /* > \verbatim */
  577. /* > LWORK is INTEGER */
  578. /* > The dimension of the array WORK. */
  579. /* > If LWORK = -1 or -2, then a workspace query is assumed. The routine */
  580. /* > only calculates the sizes of the T and WORK arrays, returns these */
  581. /* > values as the first entries of the T and WORK arrays, and no error */
  582. /* > message related to T or WORK is issued by XERBLA. */
  583. /* > If LWORK = -1, the routine calculates optimal size of WORK for the */
  584. /* > optimal performance and returns this value in WORK(1). */
  585. /* > If LWORK = -2, the routine calculates minimal size of WORK and */
  586. /* > returns this value in WORK(1). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] INFO */
  590. /* > \verbatim */
  591. /* > INFO is INTEGER */
  592. /* > = 0: successful exit */
  593. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  594. /* > \endverbatim */
  595. /* Authors: */
  596. /* ======== */
  597. /* > \author Univ. of Tennessee */
  598. /* > \author Univ. of California Berkeley */
  599. /* > \author Univ. of Colorado Denver */
  600. /* > \author NAG Ltd. */
  601. /* > \par Further Details */
  602. /* ==================== */
  603. /* > */
  604. /* > \verbatim */
  605. /* > */
  606. /* > The goal of the interface is to give maximum freedom to the developers for */
  607. /* > creating any LQ factorization algorithm they wish. The triangular */
  608. /* > (trapezoidal) L has to be stored in the lower part of A. The lower part of A */
  609. /* > and the array T can be used to store any relevant information for applying or */
  610. /* > constructing the Q factor. The WORK array can safely be discarded after exit. */
  611. /* > */
  612. /* > Caution: One should not expect the sizes of T and WORK to be the same from one */
  613. /* > LAPACK implementation to the other, or even from one execution to the other. */
  614. /* > A workspace query (for T and WORK) is needed at each execution. However, */
  615. /* > for a given execution, the size of T and WORK are fixed and will not change */
  616. /* > from one query to the next. */
  617. /* > */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \par Further Details particular to this LAPACK implementation: */
  621. /* ============================================================== */
  622. /* > */
  623. /* > \verbatim */
  624. /* > */
  625. /* > These details are particular for this LAPACK implementation. Users should not */
  626. /* > take them for granted. These details may change in the future, and are not likely */
  627. /* > true for another LAPACK implementation. These details are relevant if one wants */
  628. /* > to try to understand the code. They are not part of the interface. */
  629. /* > */
  630. /* > In this version, */
  631. /* > */
  632. /* > T(2): row block size (MB) */
  633. /* > T(3): column block size (NB) */
  634. /* > T(6:TSIZE): data structure needed for Q, computed by */
  635. /* > CLASWLQ or CGELQT */
  636. /* > */
  637. /* > Depending on the matrix dimensions M and N, and row and column */
  638. /* > block sizes MB and NB returned by ILAENV, CGELQ will use either */
  639. /* > CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute */
  640. /* > the LQ factorization. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* ===================================================================== */
  644. /* Subroutine */ void cgelq_(integer *m, integer *n, complex *a, integer *lda,
  645. complex *t, integer *tsize, complex *work, integer *lwork, integer *
  646. info)
  647. {
  648. /* System generated locals */
  649. integer a_dim1, a_offset, i__1, i__2;
  650. /* Local variables */
  651. logical mint, minw;
  652. integer lwmin, lwreq, lwopt, mb, nb, nblcks;
  653. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  654. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  655. integer *, integer *, ftnlen, ftnlen);
  656. extern /* Subroutine */ void cgelqt_(integer *, integer *, integer *,
  657. complex *, integer *, complex *, integer *, complex *, integer *);
  658. logical lminws, lquery;
  659. integer mintsz;
  660. extern /* Subroutine */ void claswlq_(integer *, integer *, integer *,
  661. integer *, complex *, integer *, complex *, integer *, complex *,
  662. integer *, integer *);
  663. /* -- LAPACK computational routine (version 3.9.0) -- */
  664. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  665. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- */
  666. /* November 2019 */
  667. /* ===================================================================== */
  668. /* Test the input arguments */
  669. /* Parameter adjustments */
  670. a_dim1 = *lda;
  671. a_offset = 1 + a_dim1 * 1;
  672. a -= a_offset;
  673. --t;
  674. --work;
  675. /* Function Body */
  676. *info = 0;
  677. lquery = *tsize == -1 || *tsize == -2 || *lwork == -1 || *lwork == -2;
  678. mint = FALSE_;
  679. minw = FALSE_;
  680. if (*tsize == -2 || *lwork == -2) {
  681. if (*tsize != -1) {
  682. mint = TRUE_;
  683. }
  684. if (*lwork != -1) {
  685. minw = TRUE_;
  686. }
  687. }
  688. /* Determine the block size */
  689. if (f2cmin(*m,*n) > 0) {
  690. mb = ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__1, &c_n1, (ftnlen)6, (
  691. ftnlen)1);
  692. nb = ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__2, &c_n1, (ftnlen)6, (
  693. ftnlen)1);
  694. } else {
  695. mb = 1;
  696. nb = *n;
  697. }
  698. if (mb > f2cmin(*m,*n) || mb < 1) {
  699. mb = 1;
  700. }
  701. if (nb > *n || nb <= *m) {
  702. nb = *n;
  703. }
  704. mintsz = *m + 5;
  705. if (nb > *m && *n > *m) {
  706. if ((*n - *m) % (nb - *m) == 0) {
  707. nblcks = (*n - *m) / (nb - *m);
  708. } else {
  709. nblcks = (*n - *m) / (nb - *m) + 1;
  710. }
  711. } else {
  712. nblcks = 1;
  713. }
  714. /* Determine if the workspace size satisfies minimal size */
  715. if (*n <= *m || nb <= *m || nb >= *n) {
  716. lwmin = f2cmax(1,*n);
  717. /* Computing MAX */
  718. i__1 = 1, i__2 = mb * *n;
  719. lwopt = f2cmax(i__1,i__2);
  720. } else {
  721. lwmin = f2cmax(1,*m);
  722. /* Computing MAX */
  723. i__1 = 1, i__2 = mb * *m;
  724. lwopt = f2cmax(i__1,i__2);
  725. }
  726. lminws = FALSE_;
  727. /* Computing MAX */
  728. i__1 = 1, i__2 = mb * *m * nblcks + 5;
  729. if ((*tsize < f2cmax(i__1,i__2) || *lwork < lwopt) && *lwork >= lwmin && *
  730. tsize >= mintsz && ! lquery) {
  731. /* Computing MAX */
  732. i__1 = 1, i__2 = mb * *m * nblcks + 5;
  733. if (*tsize < f2cmax(i__1,i__2)) {
  734. lminws = TRUE_;
  735. mb = 1;
  736. nb = *n;
  737. }
  738. if (*lwork < lwopt) {
  739. lminws = TRUE_;
  740. mb = 1;
  741. }
  742. }
  743. if (*n <= *m || nb <= *m || nb >= *n) {
  744. /* Computing MAX */
  745. i__1 = 1, i__2 = mb * *n;
  746. lwreq = f2cmax(i__1,i__2);
  747. } else {
  748. /* Computing MAX */
  749. i__1 = 1, i__2 = mb * *m;
  750. lwreq = f2cmax(i__1,i__2);
  751. }
  752. if (*m < 0) {
  753. *info = -1;
  754. } else if (*n < 0) {
  755. *info = -2;
  756. } else if (*lda < f2cmax(1,*m)) {
  757. *info = -4;
  758. } else /* if(complicated condition) */ {
  759. /* Computing MAX */
  760. i__1 = 1, i__2 = mb * *m * nblcks + 5;
  761. if (*tsize < f2cmax(i__1,i__2) && ! lquery && ! lminws) {
  762. *info = -6;
  763. } else if (*lwork < lwreq && ! lquery && ! lminws) {
  764. *info = -8;
  765. }
  766. }
  767. if (*info == 0) {
  768. if (mint) {
  769. t[1].r = (real) mintsz, t[1].i = 0.f;
  770. } else {
  771. i__1 = mb * *m * nblcks + 5;
  772. t[1].r = (real) i__1, t[1].i = 0.f;
  773. }
  774. t[2].r = (real) mb, t[2].i = 0.f;
  775. t[3].r = (real) nb, t[3].i = 0.f;
  776. if (minw) {
  777. work[1].r = (real) lwmin, work[1].i = 0.f;
  778. } else {
  779. work[1].r = (real) lwreq, work[1].i = 0.f;
  780. }
  781. }
  782. if (*info != 0) {
  783. i__1 = -(*info);
  784. xerbla_("CGELQ", &i__1, (ftnlen)5);
  785. return;
  786. } else if (lquery) {
  787. return;
  788. }
  789. /* Quick return if possible */
  790. if (f2cmin(*m,*n) == 0) {
  791. return;
  792. }
  793. /* The LQ Decomposition */
  794. if (*n <= *m || nb <= *m || nb >= *n) {
  795. cgelqt_(m, n, &mb, &a[a_offset], lda, &t[6], &mb, &work[1], info);
  796. } else {
  797. claswlq_(m, n, &mb, &nb, &a[a_offset], lda, &t[6], &mb, &work[1],
  798. lwork, info);
  799. }
  800. work[1].r = (real) lwreq, work[1].i = 0.f;
  801. return;
  802. /* End of CGELQ */
  803. } /* cgelq_ */