You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatm5.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static complex c_b1 = {1.f,0.f};
  242. static complex c_b3 = {0.f,0.f};
  243. static complex c_b5 = {20.f,0.f};
  244. /* > \brief \b CLATM5 */
  245. /* =========== DOCUMENTATION =========== */
  246. /* Online html documentation available at */
  247. /* http://www.netlib.org/lapack/explore-html/ */
  248. /* Definition: */
  249. /* =========== */
  250. /* SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
  251. /* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
  252. /* QBLCKB ) */
  253. /* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
  254. /* $ PRTYPE, QBLCKA, QBLCKB */
  255. /* REAL ALPHA */
  256. /* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ), */
  257. /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
  258. /* $ L( LDL, * ), R( LDR, * ) */
  259. /* > \par Purpose: */
  260. /* ============= */
  261. /* > */
  262. /* > \verbatim */
  263. /* > */
  264. /* > CLATM5 generates matrices involved in the Generalized Sylvester */
  265. /* > equation: */
  266. /* > */
  267. /* > A * R - L * B = C */
  268. /* > D * R - L * E = F */
  269. /* > */
  270. /* > They also satisfy (the diagonalization condition) */
  271. /* > */
  272. /* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
  273. /* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
  274. /* > */
  275. /* > \endverbatim */
  276. /* Arguments: */
  277. /* ========== */
  278. /* > \param[in] PRTYPE */
  279. /* > \verbatim */
  280. /* > PRTYPE is INTEGER */
  281. /* > "Points" to a certain type of the matrices to generate */
  282. /* > (see further details). */
  283. /* > \endverbatim */
  284. /* > */
  285. /* > \param[in] M */
  286. /* > \verbatim */
  287. /* > M is INTEGER */
  288. /* > Specifies the order of A and D and the number of rows in */
  289. /* > C, F, R and L. */
  290. /* > \endverbatim */
  291. /* > */
  292. /* > \param[in] N */
  293. /* > \verbatim */
  294. /* > N is INTEGER */
  295. /* > Specifies the order of B and E and the number of columns in */
  296. /* > C, F, R and L. */
  297. /* > \endverbatim */
  298. /* > */
  299. /* > \param[out] A */
  300. /* > \verbatim */
  301. /* > A is COMPLEX array, dimension (LDA, M). */
  302. /* > On exit A M-by-M is initialized according to PRTYPE. */
  303. /* > \endverbatim */
  304. /* > */
  305. /* > \param[in] LDA */
  306. /* > \verbatim */
  307. /* > LDA is INTEGER */
  308. /* > The leading dimension of A. */
  309. /* > \endverbatim */
  310. /* > */
  311. /* > \param[out] B */
  312. /* > \verbatim */
  313. /* > B is COMPLEX array, dimension (LDB, N). */
  314. /* > On exit B N-by-N is initialized according to PRTYPE. */
  315. /* > \endverbatim */
  316. /* > */
  317. /* > \param[in] LDB */
  318. /* > \verbatim */
  319. /* > LDB is INTEGER */
  320. /* > The leading dimension of B. */
  321. /* > \endverbatim */
  322. /* > */
  323. /* > \param[out] C */
  324. /* > \verbatim */
  325. /* > C is COMPLEX array, dimension (LDC, N). */
  326. /* > On exit C M-by-N is initialized according to PRTYPE. */
  327. /* > \endverbatim */
  328. /* > */
  329. /* > \param[in] LDC */
  330. /* > \verbatim */
  331. /* > LDC is INTEGER */
  332. /* > The leading dimension of C. */
  333. /* > \endverbatim */
  334. /* > */
  335. /* > \param[out] D */
  336. /* > \verbatim */
  337. /* > D is COMPLEX array, dimension (LDD, M). */
  338. /* > On exit D M-by-M is initialized according to PRTYPE. */
  339. /* > \endverbatim */
  340. /* > */
  341. /* > \param[in] LDD */
  342. /* > \verbatim */
  343. /* > LDD is INTEGER */
  344. /* > The leading dimension of D. */
  345. /* > \endverbatim */
  346. /* > */
  347. /* > \param[out] E */
  348. /* > \verbatim */
  349. /* > E is COMPLEX array, dimension (LDE, N). */
  350. /* > On exit E N-by-N is initialized according to PRTYPE. */
  351. /* > \endverbatim */
  352. /* > */
  353. /* > \param[in] LDE */
  354. /* > \verbatim */
  355. /* > LDE is INTEGER */
  356. /* > The leading dimension of E. */
  357. /* > \endverbatim */
  358. /* > */
  359. /* > \param[out] F */
  360. /* > \verbatim */
  361. /* > F is COMPLEX array, dimension (LDF, N). */
  362. /* > On exit F M-by-N is initialized according to PRTYPE. */
  363. /* > \endverbatim */
  364. /* > */
  365. /* > \param[in] LDF */
  366. /* > \verbatim */
  367. /* > LDF is INTEGER */
  368. /* > The leading dimension of F. */
  369. /* > \endverbatim */
  370. /* > */
  371. /* > \param[out] R */
  372. /* > \verbatim */
  373. /* > R is COMPLEX array, dimension (LDR, N). */
  374. /* > On exit R M-by-N is initialized according to PRTYPE. */
  375. /* > \endverbatim */
  376. /* > */
  377. /* > \param[in] LDR */
  378. /* > \verbatim */
  379. /* > LDR is INTEGER */
  380. /* > The leading dimension of R. */
  381. /* > \endverbatim */
  382. /* > */
  383. /* > \param[out] L */
  384. /* > \verbatim */
  385. /* > L is COMPLEX array, dimension (LDL, N). */
  386. /* > On exit L M-by-N is initialized according to PRTYPE. */
  387. /* > \endverbatim */
  388. /* > */
  389. /* > \param[in] LDL */
  390. /* > \verbatim */
  391. /* > LDL is INTEGER */
  392. /* > The leading dimension of L. */
  393. /* > \endverbatim */
  394. /* > */
  395. /* > \param[in] ALPHA */
  396. /* > \verbatim */
  397. /* > ALPHA is REAL */
  398. /* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
  399. /* > \endverbatim */
  400. /* > */
  401. /* > \param[in] QBLCKA */
  402. /* > \verbatim */
  403. /* > QBLCKA is INTEGER */
  404. /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
  405. /* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
  406. /* > referenced. QBLCKA > 1. */
  407. /* > \endverbatim */
  408. /* > */
  409. /* > \param[in] QBLCKB */
  410. /* > \verbatim */
  411. /* > QBLCKB is INTEGER */
  412. /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
  413. /* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
  414. /* > referenced. QBLCKB > 1. */
  415. /* > \endverbatim */
  416. /* Authors: */
  417. /* ======== */
  418. /* > \author Univ. of Tennessee */
  419. /* > \author Univ. of California Berkeley */
  420. /* > \author Univ. of Colorado Denver */
  421. /* > \author NAG Ltd. */
  422. /* > \date June 2016 */
  423. /* > \ingroup complex_matgen */
  424. /* > \par Further Details: */
  425. /* ===================== */
  426. /* > */
  427. /* > \verbatim */
  428. /* > */
  429. /* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
  430. /* > */
  431. /* > A : if (i == j) then A(i, j) = 1.0 */
  432. /* > if (j == i + 1) then A(i, j) = -1.0 */
  433. /* > else A(i, j) = 0.0, i, j = 1...M */
  434. /* > */
  435. /* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
  436. /* > if (j == i + 1) then B(i, j) = 1.0 */
  437. /* > else B(i, j) = 0.0, i, j = 1...N */
  438. /* > */
  439. /* > D : if (i == j) then D(i, j) = 1.0 */
  440. /* > else D(i, j) = 0.0, i, j = 1...M */
  441. /* > */
  442. /* > E : if (i == j) then E(i, j) = 1.0 */
  443. /* > else E(i, j) = 0.0, i, j = 1...N */
  444. /* > */
  445. /* > L = R are chosen from [-10...10], */
  446. /* > which specifies the right hand sides (C, F). */
  447. /* > */
  448. /* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
  449. /* > */
  450. /* > A : if (i <= j) then A(i, j) = [-1...1] */
  451. /* > else A(i, j) = 0.0, i, j = 1...M */
  452. /* > */
  453. /* > if (PRTYPE = 3) then */
  454. /* > A(k + 1, k + 1) = A(k, k) */
  455. /* > A(k + 1, k) = [-1...1] */
  456. /* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
  457. /* > k = 1, M - 1, QBLCKA */
  458. /* > */
  459. /* > B : if (i <= j) then B(i, j) = [-1...1] */
  460. /* > else B(i, j) = 0.0, i, j = 1...N */
  461. /* > */
  462. /* > if (PRTYPE = 3) then */
  463. /* > B(k + 1, k + 1) = B(k, k) */
  464. /* > B(k + 1, k) = [-1...1] */
  465. /* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
  466. /* > k = 1, N - 1, QBLCKB */
  467. /* > */
  468. /* > D : if (i <= j) then D(i, j) = [-1...1]. */
  469. /* > else D(i, j) = 0.0, i, j = 1...M */
  470. /* > */
  471. /* > */
  472. /* > E : if (i <= j) then D(i, j) = [-1...1] */
  473. /* > else E(i, j) = 0.0, i, j = 1...N */
  474. /* > */
  475. /* > L, R are chosen from [-10...10], */
  476. /* > which specifies the right hand sides (C, F). */
  477. /* > */
  478. /* > PRTYPE = 4 Full */
  479. /* > A(i, j) = [-10...10] */
  480. /* > D(i, j) = [-1...1] i,j = 1...M */
  481. /* > B(i, j) = [-10...10] */
  482. /* > E(i, j) = [-1...1] i,j = 1...N */
  483. /* > R(i, j) = [-10...10] */
  484. /* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
  485. /* > */
  486. /* > L, R specifies the right hand sides (C, F). */
  487. /* > */
  488. /* > PRTYPE = 5 special case common and/or close eigs. */
  489. /* > \endverbatim */
  490. /* > */
  491. /* ===================================================================== */
  492. /* Subroutine */ void clatm5_(integer *prtype, integer *m, integer *n, complex
  493. *a, integer *lda, complex *b, integer *ldb, complex *c__, integer *
  494. ldc, complex *d__, integer *ldd, complex *e, integer *lde, complex *f,
  495. integer *ldf, complex *r__, integer *ldr, complex *l, integer *ldl,
  496. real *alpha, integer *qblcka, integer *qblckb)
  497. {
  498. /* System generated locals */
  499. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
  500. d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
  501. r_dim1, r_offset, i__1, i__2, i__3, i__4;
  502. doublereal d__1;
  503. complex q__1, q__2, q__3, q__4, q__5;
  504. /* Local variables */
  505. integer i__, j, k;
  506. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  507. integer *, complex *, complex *, integer *, complex *, integer *,
  508. complex *, complex *, integer *);
  509. complex imeps, reeps;
  510. /* -- LAPACK computational routine (version 3.7.0) -- */
  511. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  512. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  513. /* June 2016 */
  514. /* ===================================================================== */
  515. /* Parameter adjustments */
  516. a_dim1 = *lda;
  517. a_offset = 1 + a_dim1 * 1;
  518. a -= a_offset;
  519. b_dim1 = *ldb;
  520. b_offset = 1 + b_dim1 * 1;
  521. b -= b_offset;
  522. c_dim1 = *ldc;
  523. c_offset = 1 + c_dim1 * 1;
  524. c__ -= c_offset;
  525. d_dim1 = *ldd;
  526. d_offset = 1 + d_dim1 * 1;
  527. d__ -= d_offset;
  528. e_dim1 = *lde;
  529. e_offset = 1 + e_dim1 * 1;
  530. e -= e_offset;
  531. f_dim1 = *ldf;
  532. f_offset = 1 + f_dim1 * 1;
  533. f -= f_offset;
  534. r_dim1 = *ldr;
  535. r_offset = 1 + r_dim1 * 1;
  536. r__ -= r_offset;
  537. l_dim1 = *ldl;
  538. l_offset = 1 + l_dim1 * 1;
  539. l -= l_offset;
  540. /* Function Body */
  541. if (*prtype == 1) {
  542. i__1 = *m;
  543. for (i__ = 1; i__ <= i__1; ++i__) {
  544. i__2 = *m;
  545. for (j = 1; j <= i__2; ++j) {
  546. if (i__ == j) {
  547. i__3 = i__ + j * a_dim1;
  548. a[i__3].r = 1.f, a[i__3].i = 0.f;
  549. i__3 = i__ + j * d_dim1;
  550. d__[i__3].r = 1.f, d__[i__3].i = 0.f;
  551. } else if (i__ == j - 1) {
  552. i__3 = i__ + j * a_dim1;
  553. q__1.r = -1.f, q__1.i = 0.f;
  554. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  555. i__3 = i__ + j * d_dim1;
  556. d__[i__3].r = 0.f, d__[i__3].i = 0.f;
  557. } else {
  558. i__3 = i__ + j * a_dim1;
  559. a[i__3].r = 0.f, a[i__3].i = 0.f;
  560. i__3 = i__ + j * d_dim1;
  561. d__[i__3].r = 0.f, d__[i__3].i = 0.f;
  562. }
  563. /* L10: */
  564. }
  565. /* L20: */
  566. }
  567. i__1 = *n;
  568. for (i__ = 1; i__ <= i__1; ++i__) {
  569. i__2 = *n;
  570. for (j = 1; j <= i__2; ++j) {
  571. if (i__ == j) {
  572. i__3 = i__ + j * b_dim1;
  573. q__1.r = 1.f - *alpha, q__1.i = 0.f;
  574. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  575. i__3 = i__ + j * e_dim1;
  576. e[i__3].r = 1.f, e[i__3].i = 0.f;
  577. } else if (i__ == j - 1) {
  578. i__3 = i__ + j * b_dim1;
  579. b[i__3].r = 1.f, b[i__3].i = 0.f;
  580. i__3 = i__ + j * e_dim1;
  581. e[i__3].r = 0.f, e[i__3].i = 0.f;
  582. } else {
  583. i__3 = i__ + j * b_dim1;
  584. b[i__3].r = 0.f, b[i__3].i = 0.f;
  585. i__3 = i__ + j * e_dim1;
  586. e[i__3].r = 0.f, e[i__3].i = 0.f;
  587. }
  588. /* L30: */
  589. }
  590. /* L40: */
  591. }
  592. i__1 = *m;
  593. for (i__ = 1; i__ <= i__1; ++i__) {
  594. i__2 = *n;
  595. for (j = 1; j <= i__2; ++j) {
  596. i__3 = i__ + j * r_dim1;
  597. i__4 = i__ / j;
  598. q__4.r = (real) i__4, q__4.i = 0.f;
  599. c_sin(&q__3, &q__4);
  600. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  601. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  602. + q__2.i * 20.f;
  603. r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
  604. i__3 = i__ + j * l_dim1;
  605. i__4 = i__ + j * r_dim1;
  606. l[i__3].r = r__[i__4].r, l[i__3].i = r__[i__4].i;
  607. /* L50: */
  608. }
  609. /* L60: */
  610. }
  611. } else if (*prtype == 2 || *prtype == 3) {
  612. i__1 = *m;
  613. for (i__ = 1; i__ <= i__1; ++i__) {
  614. i__2 = *m;
  615. for (j = 1; j <= i__2; ++j) {
  616. if (i__ <= j) {
  617. i__3 = i__ + j * a_dim1;
  618. q__4.r = (real) i__, q__4.i = 0.f;
  619. c_sin(&q__3, &q__4);
  620. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  621. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
  622. 0.f + q__2.i * 2.f;
  623. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  624. i__3 = i__ + j * d_dim1;
  625. i__4 = i__ * j;
  626. q__4.r = (real) i__4, q__4.i = 0.f;
  627. c_sin(&q__3, &q__4);
  628. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  629. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
  630. 0.f + q__2.i * 2.f;
  631. d__[i__3].r = q__1.r, d__[i__3].i = q__1.i;
  632. } else {
  633. i__3 = i__ + j * a_dim1;
  634. a[i__3].r = 0.f, a[i__3].i = 0.f;
  635. i__3 = i__ + j * d_dim1;
  636. d__[i__3].r = 0.f, d__[i__3].i = 0.f;
  637. }
  638. /* L70: */
  639. }
  640. /* L80: */
  641. }
  642. i__1 = *n;
  643. for (i__ = 1; i__ <= i__1; ++i__) {
  644. i__2 = *n;
  645. for (j = 1; j <= i__2; ++j) {
  646. if (i__ <= j) {
  647. i__3 = i__ + j * b_dim1;
  648. i__4 = i__ + j;
  649. q__4.r = (real) i__4, q__4.i = 0.f;
  650. c_sin(&q__3, &q__4);
  651. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  652. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
  653. 0.f + q__2.i * 2.f;
  654. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  655. i__3 = i__ + j * e_dim1;
  656. q__4.r = (real) j, q__4.i = 0.f;
  657. c_sin(&q__3, &q__4);
  658. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  659. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r *
  660. 0.f + q__2.i * 2.f;
  661. e[i__3].r = q__1.r, e[i__3].i = q__1.i;
  662. } else {
  663. i__3 = i__ + j * b_dim1;
  664. b[i__3].r = 0.f, b[i__3].i = 0.f;
  665. i__3 = i__ + j * e_dim1;
  666. e[i__3].r = 0.f, e[i__3].i = 0.f;
  667. }
  668. /* L90: */
  669. }
  670. /* L100: */
  671. }
  672. i__1 = *m;
  673. for (i__ = 1; i__ <= i__1; ++i__) {
  674. i__2 = *n;
  675. for (j = 1; j <= i__2; ++j) {
  676. i__3 = i__ + j * r_dim1;
  677. i__4 = i__ * j;
  678. q__4.r = (real) i__4, q__4.i = 0.f;
  679. c_sin(&q__3, &q__4);
  680. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  681. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  682. + q__2.i * 20.f;
  683. r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
  684. i__3 = i__ + j * l_dim1;
  685. i__4 = i__ + j;
  686. q__4.r = (real) i__4, q__4.i = 0.f;
  687. c_sin(&q__3, &q__4);
  688. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  689. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  690. + q__2.i * 20.f;
  691. l[i__3].r = q__1.r, l[i__3].i = q__1.i;
  692. /* L110: */
  693. }
  694. /* L120: */
  695. }
  696. if (*prtype == 3) {
  697. if (*qblcka <= 1) {
  698. *qblcka = 2;
  699. }
  700. i__1 = *m - 1;
  701. i__2 = *qblcka;
  702. for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
  703. i__3 = k + 1 + (k + 1) * a_dim1;
  704. i__4 = k + k * a_dim1;
  705. a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
  706. i__3 = k + 1 + k * a_dim1;
  707. c_sin(&q__2, &a[k + (k + 1) * a_dim1]);
  708. q__1.r = -q__2.r, q__1.i = -q__2.i;
  709. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  710. /* L130: */
  711. }
  712. if (*qblckb <= 1) {
  713. *qblckb = 2;
  714. }
  715. i__2 = *n - 1;
  716. i__1 = *qblckb;
  717. for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
  718. i__3 = k + 1 + (k + 1) * b_dim1;
  719. i__4 = k + k * b_dim1;
  720. b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
  721. i__3 = k + 1 + k * b_dim1;
  722. c_sin(&q__2, &b[k + (k + 1) * b_dim1]);
  723. q__1.r = -q__2.r, q__1.i = -q__2.i;
  724. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  725. /* L140: */
  726. }
  727. }
  728. } else if (*prtype == 4) {
  729. i__1 = *m;
  730. for (i__ = 1; i__ <= i__1; ++i__) {
  731. i__2 = *m;
  732. for (j = 1; j <= i__2; ++j) {
  733. i__3 = i__ + j * a_dim1;
  734. i__4 = i__ * j;
  735. q__4.r = (real) i__4, q__4.i = 0.f;
  736. c_sin(&q__3, &q__4);
  737. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  738. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  739. + q__2.i * 20.f;
  740. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  741. i__3 = i__ + j * d_dim1;
  742. i__4 = i__ + j;
  743. q__4.r = (real) i__4, q__4.i = 0.f;
  744. c_sin(&q__3, &q__4);
  745. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  746. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
  747. q__2.i * 2.f;
  748. d__[i__3].r = q__1.r, d__[i__3].i = q__1.i;
  749. /* L150: */
  750. }
  751. /* L160: */
  752. }
  753. i__1 = *n;
  754. for (i__ = 1; i__ <= i__1; ++i__) {
  755. i__2 = *n;
  756. for (j = 1; j <= i__2; ++j) {
  757. i__3 = i__ + j * b_dim1;
  758. i__4 = i__ + j;
  759. q__4.r = (real) i__4, q__4.i = 0.f;
  760. c_sin(&q__3, &q__4);
  761. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  762. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  763. + q__2.i * 20.f;
  764. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  765. i__3 = i__ + j * e_dim1;
  766. i__4 = i__ * j;
  767. q__4.r = (real) i__4, q__4.i = 0.f;
  768. c_sin(&q__3, &q__4);
  769. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  770. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
  771. q__2.i * 2.f;
  772. e[i__3].r = q__1.r, e[i__3].i = q__1.i;
  773. /* L170: */
  774. }
  775. /* L180: */
  776. }
  777. i__1 = *m;
  778. for (i__ = 1; i__ <= i__1; ++i__) {
  779. i__2 = *n;
  780. for (j = 1; j <= i__2; ++j) {
  781. i__3 = i__ + j * r_dim1;
  782. i__4 = j / i__;
  783. q__4.r = (real) i__4, q__4.i = 0.f;
  784. c_sin(&q__3, &q__4);
  785. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  786. q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f
  787. + q__2.i * 20.f;
  788. r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
  789. i__3 = i__ + j * l_dim1;
  790. i__4 = i__ * j;
  791. q__4.r = (real) i__4, q__4.i = 0.f;
  792. c_sin(&q__3, &q__4);
  793. q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i;
  794. q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f +
  795. q__2.i * 2.f;
  796. l[i__3].r = q__1.r, l[i__3].i = q__1.i;
  797. /* L190: */
  798. }
  799. /* L200: */
  800. }
  801. } else if (*prtype >= 5) {
  802. q__3.r = 1.f, q__3.i = 0.f;
  803. q__2.r = q__3.r * 20.f - q__3.i * 0.f, q__2.i = q__3.r * 0.f + q__3.i
  804. * 20.f;
  805. q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha;
  806. reeps.r = q__1.r, reeps.i = q__1.i;
  807. q__2.r = -1.5f, q__2.i = 0.f;
  808. q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha;
  809. imeps.r = q__1.r, imeps.i = q__1.i;
  810. i__1 = *m;
  811. for (i__ = 1; i__ <= i__1; ++i__) {
  812. i__2 = *n;
  813. for (j = 1; j <= i__2; ++j) {
  814. i__3 = i__ + j * r_dim1;
  815. i__4 = i__ * j;
  816. q__5.r = (real) i__4, q__5.i = 0.f;
  817. c_sin(&q__4, &q__5);
  818. q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i;
  819. q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i;
  820. c_div(&q__1, &q__2, &c_b5);
  821. r__[i__3].r = q__1.r, r__[i__3].i = q__1.i;
  822. i__3 = i__ + j * l_dim1;
  823. i__4 = i__ + j;
  824. q__5.r = (real) i__4, q__5.i = 0.f;
  825. c_sin(&q__4, &q__5);
  826. q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i;
  827. q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i;
  828. c_div(&q__1, &q__2, &c_b5);
  829. l[i__3].r = q__1.r, l[i__3].i = q__1.i;
  830. /* L210: */
  831. }
  832. /* L220: */
  833. }
  834. i__1 = *m;
  835. for (i__ = 1; i__ <= i__1; ++i__) {
  836. i__2 = i__ + i__ * d_dim1;
  837. d__[i__2].r = 1.f, d__[i__2].i = 0.f;
  838. /* L230: */
  839. }
  840. i__1 = *m;
  841. for (i__ = 1; i__ <= i__1; ++i__) {
  842. if (i__ <= 4) {
  843. i__2 = i__ + i__ * a_dim1;
  844. a[i__2].r = 1.f, a[i__2].i = 0.f;
  845. if (i__ > 2) {
  846. i__2 = i__ + i__ * a_dim1;
  847. q__1.r = reeps.r + 1.f, q__1.i = reeps.i + 0.f;
  848. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  849. }
  850. if (i__ % 2 != 0 && i__ < *m) {
  851. i__2 = i__ + (i__ + 1) * a_dim1;
  852. a[i__2].r = imeps.r, a[i__2].i = imeps.i;
  853. } else if (i__ > 1) {
  854. i__2 = i__ + (i__ - 1) * a_dim1;
  855. q__1.r = -imeps.r, q__1.i = -imeps.i;
  856. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  857. }
  858. } else if (i__ <= 8) {
  859. if (i__ <= 6) {
  860. i__2 = i__ + i__ * a_dim1;
  861. a[i__2].r = reeps.r, a[i__2].i = reeps.i;
  862. } else {
  863. i__2 = i__ + i__ * a_dim1;
  864. q__1.r = -reeps.r, q__1.i = -reeps.i;
  865. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  866. }
  867. if (i__ % 2 != 0 && i__ < *m) {
  868. i__2 = i__ + (i__ + 1) * a_dim1;
  869. a[i__2].r = 1.f, a[i__2].i = 0.f;
  870. } else if (i__ > 1) {
  871. i__2 = i__ + (i__ - 1) * a_dim1;
  872. q__1.r = -1.f, q__1.i = 0.f;
  873. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  874. }
  875. } else {
  876. i__2 = i__ + i__ * a_dim1;
  877. a[i__2].r = 1.f, a[i__2].i = 0.f;
  878. if (i__ % 2 != 0 && i__ < *m) {
  879. i__2 = i__ + (i__ + 1) * a_dim1;
  880. d__1 = 2.;
  881. q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i;
  882. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  883. } else if (i__ > 1) {
  884. i__2 = i__ + (i__ - 1) * a_dim1;
  885. q__2.r = -imeps.r, q__2.i = -imeps.i;
  886. d__1 = 2.;
  887. q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
  888. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  889. }
  890. }
  891. /* L240: */
  892. }
  893. i__1 = *n;
  894. for (i__ = 1; i__ <= i__1; ++i__) {
  895. i__2 = i__ + i__ * e_dim1;
  896. e[i__2].r = 1.f, e[i__2].i = 0.f;
  897. if (i__ <= 4) {
  898. i__2 = i__ + i__ * b_dim1;
  899. q__1.r = -1.f, q__1.i = 0.f;
  900. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  901. if (i__ > 2) {
  902. i__2 = i__ + i__ * b_dim1;
  903. q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i;
  904. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  905. }
  906. if (i__ % 2 != 0 && i__ < *n) {
  907. i__2 = i__ + (i__ + 1) * b_dim1;
  908. b[i__2].r = imeps.r, b[i__2].i = imeps.i;
  909. } else if (i__ > 1) {
  910. i__2 = i__ + (i__ - 1) * b_dim1;
  911. q__1.r = -imeps.r, q__1.i = -imeps.i;
  912. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  913. }
  914. } else if (i__ <= 8) {
  915. if (i__ <= 6) {
  916. i__2 = i__ + i__ * b_dim1;
  917. b[i__2].r = reeps.r, b[i__2].i = reeps.i;
  918. } else {
  919. i__2 = i__ + i__ * b_dim1;
  920. q__1.r = -reeps.r, q__1.i = -reeps.i;
  921. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  922. }
  923. if (i__ % 2 != 0 && i__ < *n) {
  924. i__2 = i__ + (i__ + 1) * b_dim1;
  925. q__1.r = imeps.r + 1.f, q__1.i = imeps.i + 0.f;
  926. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  927. } else if (i__ > 1) {
  928. i__2 = i__ + (i__ - 1) * b_dim1;
  929. q__2.r = -1.f, q__2.i = 0.f;
  930. q__1.r = q__2.r - imeps.r, q__1.i = q__2.i - imeps.i;
  931. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  932. }
  933. } else {
  934. i__2 = i__ + i__ * b_dim1;
  935. q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i;
  936. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  937. if (i__ % 2 != 0 && i__ < *n) {
  938. i__2 = i__ + (i__ + 1) * b_dim1;
  939. d__1 = 2.;
  940. q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i;
  941. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  942. } else if (i__ > 1) {
  943. i__2 = i__ + (i__ - 1) * b_dim1;
  944. q__2.r = -imeps.r, q__2.i = -imeps.i;
  945. d__1 = 2.;
  946. q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
  947. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  948. }
  949. }
  950. /* L250: */
  951. }
  952. }
  953. /* Compute rhs (C, F) */
  954. cgemm_("N", "N", m, n, m, &c_b1, &a[a_offset], lda, &r__[r_offset], ldr, &
  955. c_b3, &c__[c_offset], ldc);
  956. q__1.r = -1.f, q__1.i = 0.f;
  957. cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &b[b_offset], ldb, &
  958. c_b1, &c__[c_offset], ldc);
  959. cgemm_("N", "N", m, n, m, &c_b1, &d__[d_offset], ldd, &r__[r_offset], ldr,
  960. &c_b3, &f[f_offset], ldf);
  961. q__1.r = -1.f, q__1.i = 0.f;
  962. cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &e[e_offset], lde, &
  963. c_b1, &f[f_offset], ldf);
  964. /* End of CLATM5 */
  965. return;
  966. } /* clatm5_ */