You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytri_3x.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b10 = 1.;
  485. static doublereal c_b14 = 0.;
  486. /* > \brief \b DSYTRI_3X */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download DSYTRI_3X + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_
  493. 3x.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_
  496. 3x.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_
  499. 3x.f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, LDA, N, NB */
  507. /* INTEGER IPIV( * ) */
  508. /* DOUBLE PRECISION A( LDA, * ), E( * ), WORK( N+NB+1, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > DSYTRI_3X computes the inverse of a real symmetric indefinite */
  514. /* > matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK: */
  515. /* > */
  516. /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
  517. /* > */
  518. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  519. /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
  520. /* > matrix, P**T is the transpose of P, and D is symmetric and block */
  521. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  522. /* > */
  523. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] UPLO */
  528. /* > \verbatim */
  529. /* > UPLO is CHARACTER*1 */
  530. /* > Specifies whether the details of the factorization are */
  531. /* > stored as an upper or lower triangular matrix. */
  532. /* > = 'U': Upper triangle of A is stored; */
  533. /* > = 'L': Lower triangle of A is stored. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in,out] A */
  543. /* > \verbatim */
  544. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  545. /* > On entry, diagonal of the block diagonal matrix D and */
  546. /* > factors U or L as computed by DSYTRF_RK and DSYTRF_BK: */
  547. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  548. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  549. /* > (superdiagonal (or subdiagonal) elements of D */
  550. /* > should be provided on entry in array E), and */
  551. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  552. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  553. /* > */
  554. /* > On exit, if INFO = 0, the symmetric inverse of the original */
  555. /* > matrix. */
  556. /* > If UPLO = 'U': the upper triangular part of the inverse */
  557. /* > is formed and the part of A below the diagonal is not */
  558. /* > referenced; */
  559. /* > If UPLO = 'L': the lower triangular part of the inverse */
  560. /* > is formed and the part of A above the diagonal is not */
  561. /* > referenced. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] LDA */
  565. /* > \verbatim */
  566. /* > LDA is INTEGER */
  567. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] E */
  571. /* > \verbatim */
  572. /* > E is DOUBLE PRECISION array, dimension (N) */
  573. /* > On entry, contains the superdiagonal (or subdiagonal) */
  574. /* > elements of the symmetric block diagonal matrix D */
  575. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  576. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced; */
  577. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced. */
  578. /* > */
  579. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  580. /* > 1 <= k <= N, the element E(k) is not referenced in both */
  581. /* > UPLO = 'U' or UPLO = 'L' cases. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] IPIV */
  585. /* > \verbatim */
  586. /* > IPIV is INTEGER array, dimension (N) */
  587. /* > Details of the interchanges and the block structure of D */
  588. /* > as determined by DSYTRF_RK or DSYTRF_BK. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] WORK */
  592. /* > \verbatim */
  593. /* > WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] NB */
  597. /* > \verbatim */
  598. /* > NB is INTEGER */
  599. /* > Block size. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] INFO */
  603. /* > \verbatim */
  604. /* > INFO is INTEGER */
  605. /* > = 0: successful exit */
  606. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  607. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  608. /* > inverse could not be computed. */
  609. /* > \endverbatim */
  610. /* Authors: */
  611. /* ======== */
  612. /* > \author Univ. of Tennessee */
  613. /* > \author Univ. of California Berkeley */
  614. /* > \author Univ. of Colorado Denver */
  615. /* > \author NAG Ltd. */
  616. /* > \date June 2017 */
  617. /* > \ingroup doubleSYcomputational */
  618. /* > \par Contributors: */
  619. /* ================== */
  620. /* > \verbatim */
  621. /* > */
  622. /* > June 2017, Igor Kozachenko, */
  623. /* > Computer Science Division, */
  624. /* > University of California, Berkeley */
  625. /* > */
  626. /* > \endverbatim */
  627. /* ===================================================================== */
  628. /* Subroutine */ void dsytri_3x_(char *uplo, integer *n, doublereal *a,
  629. integer *lda, doublereal *e, integer *ipiv, doublereal *work, integer
  630. *nb, integer *info)
  631. {
  632. /* System generated locals */
  633. integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3;
  634. /* Local variables */
  635. integer invd;
  636. doublereal akkp1;
  637. extern /* Subroutine */ void dsyswapr_(char *, integer *, doublereal *,
  638. integer *, integer *, integer *);
  639. doublereal d__;
  640. integer i__, j, k;
  641. doublereal t;
  642. extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
  643. integer *, doublereal *, doublereal *, integer *, doublereal *,
  644. integer *, doublereal *, doublereal *, integer *);
  645. extern logical lsame_(char *, char *);
  646. extern /* Subroutine */ void dtrmm_(char *, char *, char *, char *,
  647. integer *, integer *, doublereal *, doublereal *, integer *,
  648. doublereal *, integer *);
  649. logical upper;
  650. doublereal ak, u01_i_j__;
  651. integer u11;
  652. doublereal u11_i_j__;
  653. integer ip;
  654. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  655. integer icount;
  656. extern /* Subroutine */ int dtrtri_(char *, char *, integer *, doublereal
  657. *, integer *, integer *);
  658. integer nnb, cut;
  659. doublereal akp1, u01_ip1_j__, u11_ip1_j__;
  660. /* -- LAPACK computational routine (version 3.7.1) -- */
  661. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  662. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  663. /* June 2017 */
  664. /* ===================================================================== */
  665. /* Test the input parameters. */
  666. /* Parameter adjustments */
  667. a_dim1 = *lda;
  668. a_offset = 1 + a_dim1 * 1;
  669. a -= a_offset;
  670. --e;
  671. --ipiv;
  672. work_dim1 = *n + *nb + 1;
  673. work_offset = 1 + work_dim1 * 1;
  674. work -= work_offset;
  675. /* Function Body */
  676. *info = 0;
  677. upper = lsame_(uplo, "U");
  678. if (! upper && ! lsame_(uplo, "L")) {
  679. *info = -1;
  680. } else if (*n < 0) {
  681. *info = -2;
  682. } else if (*lda < f2cmax(1,*n)) {
  683. *info = -4;
  684. }
  685. /* Quick return if possible */
  686. if (*info != 0) {
  687. i__1 = -(*info);
  688. xerbla_("DSYTRI_3X", &i__1, (ftnlen)9);
  689. return;
  690. }
  691. if (*n == 0) {
  692. return;
  693. }
  694. /* Workspace got Non-diag elements of D */
  695. i__1 = *n;
  696. for (k = 1; k <= i__1; ++k) {
  697. work[k + work_dim1] = e[k];
  698. }
  699. /* Check that the diagonal matrix D is nonsingular. */
  700. if (upper) {
  701. /* Upper triangular storage: examine D from bottom to top */
  702. for (*info = *n; *info >= 1; --(*info)) {
  703. if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
  704. return;
  705. }
  706. }
  707. } else {
  708. /* Lower triangular storage: examine D from top to bottom. */
  709. i__1 = *n;
  710. for (*info = 1; *info <= i__1; ++(*info)) {
  711. if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) {
  712. return;
  713. }
  714. }
  715. }
  716. *info = 0;
  717. /* Splitting Workspace */
  718. /* U01 is a block ( N, NB+1 ) */
  719. /* The first element of U01 is in WORK( 1, 1 ) */
  720. /* U11 is a block ( NB+1, NB+1 ) */
  721. /* The first element of U11 is in WORK( N+1, 1 ) */
  722. u11 = *n;
  723. /* INVD is a block ( N, 2 ) */
  724. /* The first element of INVD is in WORK( 1, INVD ) */
  725. invd = *nb + 2;
  726. if (upper) {
  727. /* Begin Upper */
  728. /* invA = P * inv(U**T) * inv(D) * inv(U) * P**T. */
  729. dtrtri_(uplo, "U", n, &a[a_offset], lda, info);
  730. /* inv(D) and inv(D) * inv(U) */
  731. k = 1;
  732. while(k <= *n) {
  733. if (ipiv[k] > 0) {
  734. /* 1 x 1 diagonal NNB */
  735. work[k + invd * work_dim1] = 1. / a[k + k * a_dim1];
  736. work[k + (invd + 1) * work_dim1] = 0.;
  737. } else {
  738. /* 2 x 2 diagonal NNB */
  739. t = work[k + 1 + work_dim1];
  740. ak = a[k + k * a_dim1] / t;
  741. akp1 = a[k + 1 + (k + 1) * a_dim1] / t;
  742. akkp1 = work[k + 1 + work_dim1] / t;
  743. d__ = t * (ak * akp1 - 1.);
  744. work[k + invd * work_dim1] = akp1 / d__;
  745. work[k + 1 + (invd + 1) * work_dim1] = ak / d__;
  746. work[k + (invd + 1) * work_dim1] = -akkp1 / d__;
  747. work[k + 1 + invd * work_dim1] = work[k + (invd + 1) *
  748. work_dim1];
  749. ++k;
  750. }
  751. ++k;
  752. }
  753. /* inv(U**T) = (inv(U))**T */
  754. /* inv(U**T) * inv(D) * inv(U) */
  755. cut = *n;
  756. while(cut > 0) {
  757. nnb = *nb;
  758. if (cut <= nnb) {
  759. nnb = cut;
  760. } else {
  761. icount = 0;
  762. /* count negative elements, */
  763. i__1 = cut;
  764. for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) {
  765. if (ipiv[i__] < 0) {
  766. ++icount;
  767. }
  768. }
  769. /* need a even number for a clear cut */
  770. if (icount % 2 == 1) {
  771. ++nnb;
  772. }
  773. }
  774. cut -= nnb;
  775. /* U01 Block */
  776. i__1 = cut;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. i__2 = nnb;
  779. for (j = 1; j <= i__2; ++j) {
  780. work[i__ + j * work_dim1] = a[i__ + (cut + j) * a_dim1];
  781. }
  782. }
  783. /* U11 Block */
  784. i__1 = nnb;
  785. for (i__ = 1; i__ <= i__1; ++i__) {
  786. work[u11 + i__ + i__ * work_dim1] = 1.;
  787. i__2 = i__ - 1;
  788. for (j = 1; j <= i__2; ++j) {
  789. work[u11 + i__ + j * work_dim1] = 0.;
  790. }
  791. i__2 = nnb;
  792. for (j = i__ + 1; j <= i__2; ++j) {
  793. work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j)
  794. * a_dim1];
  795. }
  796. }
  797. /* invD * U01 */
  798. i__ = 1;
  799. while(i__ <= cut) {
  800. if (ipiv[i__] > 0) {
  801. i__1 = nnb;
  802. for (j = 1; j <= i__1; ++j) {
  803. work[i__ + j * work_dim1] = work[i__ + invd *
  804. work_dim1] * work[i__ + j * work_dim1];
  805. }
  806. } else {
  807. i__1 = nnb;
  808. for (j = 1; j <= i__1; ++j) {
  809. u01_i_j__ = work[i__ + j * work_dim1];
  810. u01_ip1_j__ = work[i__ + 1 + j * work_dim1];
  811. work[i__ + j * work_dim1] = work[i__ + invd *
  812. work_dim1] * u01_i_j__ + work[i__ + (invd + 1)
  813. * work_dim1] * u01_ip1_j__;
  814. work[i__ + 1 + j * work_dim1] = work[i__ + 1 + invd *
  815. work_dim1] * u01_i_j__ + work[i__ + 1 + (invd
  816. + 1) * work_dim1] * u01_ip1_j__;
  817. }
  818. ++i__;
  819. }
  820. ++i__;
  821. }
  822. /* invD1 * U11 */
  823. i__ = 1;
  824. while(i__ <= nnb) {
  825. if (ipiv[cut + i__] > 0) {
  826. i__1 = nnb;
  827. for (j = i__; j <= i__1; ++j) {
  828. work[u11 + i__ + j * work_dim1] = work[cut + i__ +
  829. invd * work_dim1] * work[u11 + i__ + j *
  830. work_dim1];
  831. }
  832. } else {
  833. i__1 = nnb;
  834. for (j = i__; j <= i__1; ++j) {
  835. u11_i_j__ = work[u11 + i__ + j * work_dim1];
  836. u11_ip1_j__ = work[u11 + i__ + 1 + j * work_dim1];
  837. work[u11 + i__ + j * work_dim1] = work[cut + i__ +
  838. invd * work_dim1] * work[u11 + i__ + j *
  839. work_dim1] + work[cut + i__ + (invd + 1) *
  840. work_dim1] * work[u11 + i__ + 1 + j *
  841. work_dim1];
  842. work[u11 + i__ + 1 + j * work_dim1] = work[cut + i__
  843. + 1 + invd * work_dim1] * u11_i_j__ + work[
  844. cut + i__ + 1 + (invd + 1) * work_dim1] *
  845. u11_ip1_j__;
  846. }
  847. ++i__;
  848. }
  849. ++i__;
  850. }
  851. /* U11**T * invD1 * U11 -> U11 */
  852. i__1 = *n + *nb + 1;
  853. dtrmm_("L", "U", "T", "U", &nnb, &nnb, &c_b10, &a[cut + 1 + (cut
  854. + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  855. i__1 = nnb;
  856. for (i__ = 1; i__ <= i__1; ++i__) {
  857. i__2 = nnb;
  858. for (j = i__; j <= i__2; ++j) {
  859. a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j *
  860. work_dim1];
  861. }
  862. }
  863. /* U01**T * invD * U01 -> A( CUT+I, CUT+J ) */
  864. i__1 = *n + *nb + 1;
  865. i__2 = *n + *nb + 1;
  866. dgemm_("T", "N", &nnb, &nnb, &cut, &c_b10, &a[(cut + 1) * a_dim1
  867. + 1], lda, &work[work_offset], &i__1, &c_b14, &work[u11 +
  868. 1 + work_dim1], &i__2);
  869. /* U11 = U11**T * invD1 * U11 + U01**T * invD * U01 */
  870. i__1 = nnb;
  871. for (i__ = 1; i__ <= i__1; ++i__) {
  872. i__2 = nnb;
  873. for (j = i__; j <= i__2; ++j) {
  874. a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ + j *
  875. work_dim1];
  876. }
  877. }
  878. /* U01 = U00**T * invD0 * U01 */
  879. i__1 = *n + *nb + 1;
  880. dtrmm_("L", uplo, "T", "U", &cut, &nnb, &c_b10, &a[a_offset], lda,
  881. &work[work_offset], &i__1);
  882. /* Update U01 */
  883. i__1 = cut;
  884. for (i__ = 1; i__ <= i__1; ++i__) {
  885. i__2 = nnb;
  886. for (j = 1; j <= i__2; ++j) {
  887. a[i__ + (cut + j) * a_dim1] = work[i__ + j * work_dim1];
  888. }
  889. }
  890. /* Next Block */
  891. }
  892. /* Apply PERMUTATIONS P and P**T: */
  893. /* P * inv(U**T) * inv(D) * inv(U) * P**T. */
  894. /* Interchange rows and columns I and IPIV(I) in reverse order */
  895. /* from the formation order of IPIV vector for Upper case. */
  896. /* ( We can use a loop over IPIV with increment 1, */
  897. /* since the ABS value of IPIV(I) represents the row (column) */
  898. /* index of the interchange with row (column) i in both 1x1 */
  899. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  900. /* for 1x1 and 2x2 pivot cases ) */
  901. i__1 = *n;
  902. for (i__ = 1; i__ <= i__1; ++i__) {
  903. ip = (i__2 = ipiv[i__], abs(i__2));
  904. if (ip != i__) {
  905. if (i__ < ip) {
  906. dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  907. }
  908. if (i__ > ip) {
  909. dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  910. }
  911. }
  912. }
  913. } else {
  914. /* Begin Lower */
  915. /* inv A = P * inv(L**T) * inv(D) * inv(L) * P**T. */
  916. dtrtri_(uplo, "U", n, &a[a_offset], lda, info);
  917. /* inv(D) and inv(D) * inv(L) */
  918. k = *n;
  919. while(k >= 1) {
  920. if (ipiv[k] > 0) {
  921. /* 1 x 1 diagonal NNB */
  922. work[k + invd * work_dim1] = 1. / a[k + k * a_dim1];
  923. work[k + (invd + 1) * work_dim1] = 0.;
  924. } else {
  925. /* 2 x 2 diagonal NNB */
  926. t = work[k - 1 + work_dim1];
  927. ak = a[k - 1 + (k - 1) * a_dim1] / t;
  928. akp1 = a[k + k * a_dim1] / t;
  929. akkp1 = work[k - 1 + work_dim1] / t;
  930. d__ = t * (ak * akp1 - 1.);
  931. work[k - 1 + invd * work_dim1] = akp1 / d__;
  932. work[k + invd * work_dim1] = ak / d__;
  933. work[k + (invd + 1) * work_dim1] = -akkp1 / d__;
  934. work[k - 1 + (invd + 1) * work_dim1] = work[k + (invd + 1) *
  935. work_dim1];
  936. --k;
  937. }
  938. --k;
  939. }
  940. /* inv(L**T) = (inv(L))**T */
  941. /* inv(L**T) * inv(D) * inv(L) */
  942. cut = 0;
  943. while(cut < *n) {
  944. nnb = *nb;
  945. if (cut + nnb > *n) {
  946. nnb = *n - cut;
  947. } else {
  948. icount = 0;
  949. /* count negative elements, */
  950. i__1 = cut + nnb;
  951. for (i__ = cut + 1; i__ <= i__1; ++i__) {
  952. if (ipiv[i__] < 0) {
  953. ++icount;
  954. }
  955. }
  956. /* need a even number for a clear cut */
  957. if (icount % 2 == 1) {
  958. ++nnb;
  959. }
  960. }
  961. /* L21 Block */
  962. i__1 = *n - cut - nnb;
  963. for (i__ = 1; i__ <= i__1; ++i__) {
  964. i__2 = nnb;
  965. for (j = 1; j <= i__2; ++j) {
  966. work[i__ + j * work_dim1] = a[cut + nnb + i__ + (cut + j)
  967. * a_dim1];
  968. }
  969. }
  970. /* L11 Block */
  971. i__1 = nnb;
  972. for (i__ = 1; i__ <= i__1; ++i__) {
  973. work[u11 + i__ + i__ * work_dim1] = 1.;
  974. i__2 = nnb;
  975. for (j = i__ + 1; j <= i__2; ++j) {
  976. work[u11 + i__ + j * work_dim1] = 0.;
  977. }
  978. i__2 = i__ - 1;
  979. for (j = 1; j <= i__2; ++j) {
  980. work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j)
  981. * a_dim1];
  982. }
  983. }
  984. /* invD*L21 */
  985. i__ = *n - cut - nnb;
  986. while(i__ >= 1) {
  987. if (ipiv[cut + nnb + i__] > 0) {
  988. i__1 = nnb;
  989. for (j = 1; j <= i__1; ++j) {
  990. work[i__ + j * work_dim1] = work[cut + nnb + i__ +
  991. invd * work_dim1] * work[i__ + j * work_dim1];
  992. }
  993. } else {
  994. i__1 = nnb;
  995. for (j = 1; j <= i__1; ++j) {
  996. u01_i_j__ = work[i__ + j * work_dim1];
  997. u01_ip1_j__ = work[i__ - 1 + j * work_dim1];
  998. work[i__ + j * work_dim1] = work[cut + nnb + i__ +
  999. invd * work_dim1] * u01_i_j__ + work[cut +
  1000. nnb + i__ + (invd + 1) * work_dim1] *
  1001. u01_ip1_j__;
  1002. work[i__ - 1 + j * work_dim1] = work[cut + nnb + i__
  1003. - 1 + (invd + 1) * work_dim1] * u01_i_j__ +
  1004. work[cut + nnb + i__ - 1 + invd * work_dim1] *
  1005. u01_ip1_j__;
  1006. }
  1007. --i__;
  1008. }
  1009. --i__;
  1010. }
  1011. /* invD1*L11 */
  1012. i__ = nnb;
  1013. while(i__ >= 1) {
  1014. if (ipiv[cut + i__] > 0) {
  1015. i__1 = nnb;
  1016. for (j = 1; j <= i__1; ++j) {
  1017. work[u11 + i__ + j * work_dim1] = work[cut + i__ +
  1018. invd * work_dim1] * work[u11 + i__ + j *
  1019. work_dim1];
  1020. }
  1021. } else {
  1022. i__1 = nnb;
  1023. for (j = 1; j <= i__1; ++j) {
  1024. u11_i_j__ = work[u11 + i__ + j * work_dim1];
  1025. u11_ip1_j__ = work[u11 + i__ - 1 + j * work_dim1];
  1026. work[u11 + i__ + j * work_dim1] = work[cut + i__ +
  1027. invd * work_dim1] * work[u11 + i__ + j *
  1028. work_dim1] + work[cut + i__ + (invd + 1) *
  1029. work_dim1] * u11_ip1_j__;
  1030. work[u11 + i__ - 1 + j * work_dim1] = work[cut + i__
  1031. - 1 + (invd + 1) * work_dim1] * u11_i_j__ +
  1032. work[cut + i__ - 1 + invd * work_dim1] *
  1033. u11_ip1_j__;
  1034. }
  1035. --i__;
  1036. }
  1037. --i__;
  1038. }
  1039. /* L11**T * invD1 * L11 -> L11 */
  1040. i__1 = *n + *nb + 1;
  1041. dtrmm_("L", uplo, "T", "U", &nnb, &nnb, &c_b10, &a[cut + 1 + (cut
  1042. + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  1043. i__1 = nnb;
  1044. for (i__ = 1; i__ <= i__1; ++i__) {
  1045. i__2 = i__;
  1046. for (j = 1; j <= i__2; ++j) {
  1047. a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j *
  1048. work_dim1];
  1049. }
  1050. }
  1051. if (cut + nnb < *n) {
  1052. /* L21**T * invD2*L21 -> A( CUT+I, CUT+J ) */
  1053. i__1 = *n - nnb - cut;
  1054. i__2 = *n + *nb + 1;
  1055. i__3 = *n + *nb + 1;
  1056. dgemm_("T", "N", &nnb, &nnb, &i__1, &c_b10, &a[cut + nnb + 1
  1057. + (cut + 1) * a_dim1], lda, &work[work_offset], &i__2,
  1058. &c_b14, &work[u11 + 1 + work_dim1], &i__3);
  1059. /* L11 = L11**T * invD1 * L11 + U01**T * invD * U01 */
  1060. i__1 = nnb;
  1061. for (i__ = 1; i__ <= i__1; ++i__) {
  1062. i__2 = i__;
  1063. for (j = 1; j <= i__2; ++j) {
  1064. a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ +
  1065. j * work_dim1];
  1066. }
  1067. }
  1068. /* L01 = L22**T * invD2 * L21 */
  1069. i__1 = *n - nnb - cut;
  1070. i__2 = *n + *nb + 1;
  1071. dtrmm_("L", uplo, "T", "U", &i__1, &nnb, &c_b10, &a[cut + nnb
  1072. + 1 + (cut + nnb + 1) * a_dim1], lda, &work[
  1073. work_offset], &i__2);
  1074. /* Update L21 */
  1075. i__1 = *n - cut - nnb;
  1076. for (i__ = 1; i__ <= i__1; ++i__) {
  1077. i__2 = nnb;
  1078. for (j = 1; j <= i__2; ++j) {
  1079. a[cut + nnb + i__ + (cut + j) * a_dim1] = work[i__ +
  1080. j * work_dim1];
  1081. }
  1082. }
  1083. } else {
  1084. /* L11 = L11**T * invD1 * L11 */
  1085. i__1 = nnb;
  1086. for (i__ = 1; i__ <= i__1; ++i__) {
  1087. i__2 = i__;
  1088. for (j = 1; j <= i__2; ++j) {
  1089. a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ +
  1090. j * work_dim1];
  1091. }
  1092. }
  1093. }
  1094. /* Next Block */
  1095. cut += nnb;
  1096. }
  1097. /* Apply PERMUTATIONS P and P**T: */
  1098. /* P * inv(L**T) * inv(D) * inv(L) * P**T. */
  1099. /* Interchange rows and columns I and IPIV(I) in reverse order */
  1100. /* from the formation order of IPIV vector for Lower case. */
  1101. /* ( We can use a loop over IPIV with increment -1, */
  1102. /* since the ABS value of IPIV(I) represents the row (column) */
  1103. /* index of the interchange with row (column) i in both 1x1 */
  1104. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  1105. /* for 1x1 and 2x2 pivot cases ) */
  1106. for (i__ = *n; i__ >= 1; --i__) {
  1107. ip = (i__1 = ipiv[i__], abs(i__1));
  1108. if (ip != i__) {
  1109. if (i__ < ip) {
  1110. dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  1111. }
  1112. if (i__ > ip) {
  1113. dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  1114. }
  1115. }
  1116. }
  1117. }
  1118. return;
  1119. /* End of DSYTRI_3X */
  1120. } /* dsytri_3x__ */