You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaed4.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation. */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download DLAED4 + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.
  490. f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.
  493. f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.
  496. f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO ) */
  502. /* INTEGER I, INFO, N */
  503. /* DOUBLE PRECISION DLAM, RHO */
  504. /* DOUBLE PRECISION D( * ), DELTA( * ), Z( * ) */
  505. /* > \par Purpose: */
  506. /* ============= */
  507. /* > */
  508. /* > \verbatim */
  509. /* > */
  510. /* > This subroutine computes the I-th updated eigenvalue of a symmetric */
  511. /* > rank-one modification to a diagonal matrix whose elements are */
  512. /* > given in the array d, and that */
  513. /* > */
  514. /* > D(i) < D(j) for i < j */
  515. /* > */
  516. /* > and that RHO > 0. This is arranged by the calling routine, and is */
  517. /* > no loss in generality. The rank-one modified system is thus */
  518. /* > */
  519. /* > diag( D ) + RHO * Z * Z_transpose. */
  520. /* > */
  521. /* > where we assume the Euclidean norm of Z is 1. */
  522. /* > */
  523. /* > The method consists of approximating the rational functions in the */
  524. /* > secular equation by simpler interpolating rational functions. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] N */
  529. /* > \verbatim */
  530. /* > N is INTEGER */
  531. /* > The length of all arrays. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] I */
  535. /* > \verbatim */
  536. /* > I is INTEGER */
  537. /* > The index of the eigenvalue to be computed. 1 <= I <= N. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] D */
  541. /* > \verbatim */
  542. /* > D is DOUBLE PRECISION array, dimension (N) */
  543. /* > The original eigenvalues. It is assumed that they are in */
  544. /* > order, D(I) < D(J) for I < J. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] Z */
  548. /* > \verbatim */
  549. /* > Z is DOUBLE PRECISION array, dimension (N) */
  550. /* > The components of the updating vector. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] DELTA */
  554. /* > \verbatim */
  555. /* > DELTA is DOUBLE PRECISION array, dimension (N) */
  556. /* > If N > 2, DELTA contains (D(j) - lambda_I) in its j-th */
  557. /* > component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 */
  558. /* > for detail. The vector DELTA contains the information necessary */
  559. /* > to construct the eigenvectors by DLAED3 and DLAED9. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] RHO */
  563. /* > \verbatim */
  564. /* > RHO is DOUBLE PRECISION */
  565. /* > The scalar in the symmetric updating formula. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] DLAM */
  569. /* > \verbatim */
  570. /* > DLAM is DOUBLE PRECISION */
  571. /* > The computed lambda_I, the I-th updated eigenvalue. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] INFO */
  575. /* > \verbatim */
  576. /* > INFO is INTEGER */
  577. /* > = 0: successful exit */
  578. /* > > 0: if INFO = 1, the updating process failed. */
  579. /* > \endverbatim */
  580. /* > \par Internal Parameters: */
  581. /* ========================= */
  582. /* > */
  583. /* > \verbatim */
  584. /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */
  585. /* > whether D(i) or D(i+1) is treated as the origin. */
  586. /* > */
  587. /* > ORGATI = .true. origin at i */
  588. /* > ORGATI = .false. origin at i+1 */
  589. /* > */
  590. /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
  591. /* > if we are working with THREE poles! */
  592. /* > */
  593. /* > MAXIT is the maximum number of iterations allowed for each */
  594. /* > eigenvalue. */
  595. /* > \endverbatim */
  596. /* Authors: */
  597. /* ======== */
  598. /* > \author Univ. of Tennessee */
  599. /* > \author Univ. of California Berkeley */
  600. /* > \author Univ. of Colorado Denver */
  601. /* > \author NAG Ltd. */
  602. /* > \date December 2016 */
  603. /* > \ingroup auxOTHERcomputational */
  604. /* > \par Contributors: */
  605. /* ================== */
  606. /* > */
  607. /* > Ren-Cang Li, Computer Science Division, University of California */
  608. /* > at Berkeley, USA */
  609. /* > */
  610. /* ===================================================================== */
  611. /* Subroutine */ void dlaed4_(integer *n, integer *i__, doublereal *d__,
  612. doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam,
  613. integer *info)
  614. {
  615. /* System generated locals */
  616. integer i__1;
  617. doublereal d__1;
  618. /* Local variables */
  619. doublereal dphi, dpsi;
  620. integer iter;
  621. doublereal temp, prew, temp1, a, b, c__;
  622. integer j;
  623. doublereal w, dltlb, dltub, midpt;
  624. integer niter;
  625. logical swtch;
  626. extern /* Subroutine */ void dlaed5_(integer *, doublereal *, doublereal *,
  627. doublereal *, doublereal *, doublereal *), dlaed6_(integer *,
  628. logical *, doublereal *, doublereal *, doublereal *, doublereal *,
  629. doublereal *, integer *);
  630. logical swtch3;
  631. integer ii;
  632. extern doublereal dlamch_(char *);
  633. doublereal dw, zz[3];
  634. logical orgati;
  635. doublereal erretm, rhoinv;
  636. integer ip1;
  637. doublereal del, eta, phi, eps, tau, psi;
  638. integer iim1, iip1;
  639. /* -- LAPACK computational routine (version 3.7.0) -- */
  640. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  641. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  642. /* December 2016 */
  643. /* ===================================================================== */
  644. /* Since this routine is called in an inner loop, we do no argument */
  645. /* checking. */
  646. /* Quick return for N=1 and 2. */
  647. /* Parameter adjustments */
  648. --delta;
  649. --z__;
  650. --d__;
  651. /* Function Body */
  652. *info = 0;
  653. if (*n == 1) {
  654. /* Presumably, I=1 upon entry */
  655. *dlam = d__[1] + *rho * z__[1] * z__[1];
  656. delta[1] = 1.;
  657. return;
  658. }
  659. if (*n == 2) {
  660. dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
  661. return;
  662. }
  663. /* Compute machine epsilon */
  664. eps = dlamch_("Epsilon");
  665. rhoinv = 1. / *rho;
  666. /* The case I = N */
  667. if (*i__ == *n) {
  668. /* Initialize some basic variables */
  669. ii = *n - 1;
  670. niter = 1;
  671. /* Calculate initial guess */
  672. midpt = *rho / 2.;
  673. /* If ||Z||_2 is not one, then TEMP should be set to */
  674. /* RHO * ||Z||_2^2 / TWO */
  675. i__1 = *n;
  676. for (j = 1; j <= i__1; ++j) {
  677. delta[j] = d__[j] - d__[*i__] - midpt;
  678. /* L10: */
  679. }
  680. psi = 0.;
  681. i__1 = *n - 2;
  682. for (j = 1; j <= i__1; ++j) {
  683. psi += z__[j] * z__[j] / delta[j];
  684. /* L20: */
  685. }
  686. c__ = rhoinv + psi;
  687. w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
  688. n];
  689. if (w <= 0.) {
  690. temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho)
  691. + z__[*n] * z__[*n] / *rho;
  692. if (c__ <= temp) {
  693. tau = *rho;
  694. } else {
  695. del = d__[*n] - d__[*n - 1];
  696. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
  697. ;
  698. b = z__[*n] * z__[*n] * del;
  699. if (a < 0.) {
  700. tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  701. } else {
  702. tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  703. }
  704. }
  705. /* It can be proved that */
  706. /* D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
  707. dltlb = midpt;
  708. dltub = *rho;
  709. } else {
  710. del = d__[*n] - d__[*n - 1];
  711. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
  712. b = z__[*n] * z__[*n] * del;
  713. if (a < 0.) {
  714. tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  715. } else {
  716. tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  717. }
  718. /* It can be proved that */
  719. /* D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
  720. dltlb = 0.;
  721. dltub = midpt;
  722. }
  723. i__1 = *n;
  724. for (j = 1; j <= i__1; ++j) {
  725. delta[j] = d__[j] - d__[*i__] - tau;
  726. /* L30: */
  727. }
  728. /* Evaluate PSI and the derivative DPSI */
  729. dpsi = 0.;
  730. psi = 0.;
  731. erretm = 0.;
  732. i__1 = ii;
  733. for (j = 1; j <= i__1; ++j) {
  734. temp = z__[j] / delta[j];
  735. psi += z__[j] * temp;
  736. dpsi += temp * temp;
  737. erretm += psi;
  738. /* L40: */
  739. }
  740. erretm = abs(erretm);
  741. /* Evaluate PHI and the derivative DPHI */
  742. temp = z__[*n] / delta[*n];
  743. phi = z__[*n] * temp;
  744. dphi = temp * temp;
  745. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
  746. + dphi);
  747. w = rhoinv + phi + psi;
  748. /* Test for convergence */
  749. if (abs(w) <= eps * erretm) {
  750. *dlam = d__[*i__] + tau;
  751. goto L250;
  752. }
  753. if (w <= 0.) {
  754. dltlb = f2cmax(dltlb,tau);
  755. } else {
  756. dltub = f2cmin(dltub,tau);
  757. }
  758. /* Calculate the new step */
  759. ++niter;
  760. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  761. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
  762. dpsi + dphi);
  763. b = delta[*n - 1] * delta[*n] * w;
  764. if (c__ < 0.) {
  765. c__ = abs(c__);
  766. }
  767. if (c__ == 0.) {
  768. /* ETA = B/A */
  769. /* ETA = RHO - TAU */
  770. eta = dltub - tau;
  771. } else if (a >= 0.) {
  772. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
  773. * 2.);
  774. } else {
  775. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
  776. );
  777. }
  778. /* Note, eta should be positive if w is negative, and */
  779. /* eta should be negative otherwise. However, */
  780. /* if for some reason caused by roundoff, eta*w > 0, */
  781. /* we simply use one Newton step instead. This way */
  782. /* will guarantee eta*w < 0. */
  783. if (w * eta > 0.) {
  784. eta = -w / (dpsi + dphi);
  785. }
  786. temp = tau + eta;
  787. if (temp > dltub || temp < dltlb) {
  788. if (w < 0.) {
  789. eta = (dltub - tau) / 2.;
  790. } else {
  791. eta = (dltlb - tau) / 2.;
  792. }
  793. }
  794. i__1 = *n;
  795. for (j = 1; j <= i__1; ++j) {
  796. delta[j] -= eta;
  797. /* L50: */
  798. }
  799. tau += eta;
  800. /* Evaluate PSI and the derivative DPSI */
  801. dpsi = 0.;
  802. psi = 0.;
  803. erretm = 0.;
  804. i__1 = ii;
  805. for (j = 1; j <= i__1; ++j) {
  806. temp = z__[j] / delta[j];
  807. psi += z__[j] * temp;
  808. dpsi += temp * temp;
  809. erretm += psi;
  810. /* L60: */
  811. }
  812. erretm = abs(erretm);
  813. /* Evaluate PHI and the derivative DPHI */
  814. temp = z__[*n] / delta[*n];
  815. phi = z__[*n] * temp;
  816. dphi = temp * temp;
  817. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
  818. + dphi);
  819. w = rhoinv + phi + psi;
  820. /* Main loop to update the values of the array DELTA */
  821. iter = niter + 1;
  822. for (niter = iter; niter <= 30; ++niter) {
  823. /* Test for convergence */
  824. if (abs(w) <= eps * erretm) {
  825. *dlam = d__[*i__] + tau;
  826. goto L250;
  827. }
  828. if (w <= 0.) {
  829. dltlb = f2cmax(dltlb,tau);
  830. } else {
  831. dltub = f2cmin(dltub,tau);
  832. }
  833. /* Calculate the new step */
  834. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  835. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] *
  836. (dpsi + dphi);
  837. b = delta[*n - 1] * delta[*n] * w;
  838. if (a >= 0.) {
  839. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  840. c__ * 2.);
  841. } else {
  842. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
  843. d__1))));
  844. }
  845. /* Note, eta should be positive if w is negative, and */
  846. /* eta should be negative otherwise. However, */
  847. /* if for some reason caused by roundoff, eta*w > 0, */
  848. /* we simply use one Newton step instead. This way */
  849. /* will guarantee eta*w < 0. */
  850. if (w * eta > 0.) {
  851. eta = -w / (dpsi + dphi);
  852. }
  853. temp = tau + eta;
  854. if (temp > dltub || temp < dltlb) {
  855. if (w < 0.) {
  856. eta = (dltub - tau) / 2.;
  857. } else {
  858. eta = (dltlb - tau) / 2.;
  859. }
  860. }
  861. i__1 = *n;
  862. for (j = 1; j <= i__1; ++j) {
  863. delta[j] -= eta;
  864. /* L70: */
  865. }
  866. tau += eta;
  867. /* Evaluate PSI and the derivative DPSI */
  868. dpsi = 0.;
  869. psi = 0.;
  870. erretm = 0.;
  871. i__1 = ii;
  872. for (j = 1; j <= i__1; ++j) {
  873. temp = z__[j] / delta[j];
  874. psi += z__[j] * temp;
  875. dpsi += temp * temp;
  876. erretm += psi;
  877. /* L80: */
  878. }
  879. erretm = abs(erretm);
  880. /* Evaluate PHI and the derivative DPHI */
  881. temp = z__[*n] / delta[*n];
  882. phi = z__[*n] * temp;
  883. dphi = temp * temp;
  884. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
  885. dpsi + dphi);
  886. w = rhoinv + phi + psi;
  887. /* L90: */
  888. }
  889. /* Return with INFO = 1, NITER = MAXIT and not converged */
  890. *info = 1;
  891. *dlam = d__[*i__] + tau;
  892. goto L250;
  893. /* End for the case I = N */
  894. } else {
  895. /* The case for I < N */
  896. niter = 1;
  897. ip1 = *i__ + 1;
  898. /* Calculate initial guess */
  899. del = d__[ip1] - d__[*i__];
  900. midpt = del / 2.;
  901. i__1 = *n;
  902. for (j = 1; j <= i__1; ++j) {
  903. delta[j] = d__[j] - d__[*i__] - midpt;
  904. /* L100: */
  905. }
  906. psi = 0.;
  907. i__1 = *i__ - 1;
  908. for (j = 1; j <= i__1; ++j) {
  909. psi += z__[j] * z__[j] / delta[j];
  910. /* L110: */
  911. }
  912. phi = 0.;
  913. i__1 = *i__ + 2;
  914. for (j = *n; j >= i__1; --j) {
  915. phi += z__[j] * z__[j] / delta[j];
  916. /* L120: */
  917. }
  918. c__ = rhoinv + psi + phi;
  919. w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] /
  920. delta[ip1];
  921. if (w > 0.) {
  922. /* d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
  923. /* We choose d(i) as origin. */
  924. orgati = TRUE_;
  925. a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
  926. b = z__[*i__] * z__[*i__] * del;
  927. if (a > 0.) {
  928. tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  929. d__1))));
  930. } else {
  931. tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  932. c__ * 2.);
  933. }
  934. dltlb = 0.;
  935. dltub = midpt;
  936. } else {
  937. /* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
  938. /* We choose d(i+1) as origin. */
  939. orgati = FALSE_;
  940. a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
  941. b = z__[ip1] * z__[ip1] * del;
  942. if (a < 0.) {
  943. tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
  944. d__1))));
  945. } else {
  946. tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
  947. (c__ * 2.);
  948. }
  949. dltlb = -midpt;
  950. dltub = 0.;
  951. }
  952. if (orgati) {
  953. i__1 = *n;
  954. for (j = 1; j <= i__1; ++j) {
  955. delta[j] = d__[j] - d__[*i__] - tau;
  956. /* L130: */
  957. }
  958. } else {
  959. i__1 = *n;
  960. for (j = 1; j <= i__1; ++j) {
  961. delta[j] = d__[j] - d__[ip1] - tau;
  962. /* L140: */
  963. }
  964. }
  965. if (orgati) {
  966. ii = *i__;
  967. } else {
  968. ii = *i__ + 1;
  969. }
  970. iim1 = ii - 1;
  971. iip1 = ii + 1;
  972. /* Evaluate PSI and the derivative DPSI */
  973. dpsi = 0.;
  974. psi = 0.;
  975. erretm = 0.;
  976. i__1 = iim1;
  977. for (j = 1; j <= i__1; ++j) {
  978. temp = z__[j] / delta[j];
  979. psi += z__[j] * temp;
  980. dpsi += temp * temp;
  981. erretm += psi;
  982. /* L150: */
  983. }
  984. erretm = abs(erretm);
  985. /* Evaluate PHI and the derivative DPHI */
  986. dphi = 0.;
  987. phi = 0.;
  988. i__1 = iip1;
  989. for (j = *n; j >= i__1; --j) {
  990. temp = z__[j] / delta[j];
  991. phi += z__[j] * temp;
  992. dphi += temp * temp;
  993. erretm += phi;
  994. /* L160: */
  995. }
  996. w = rhoinv + phi + psi;
  997. /* W is the value of the secular function with */
  998. /* its ii-th element removed. */
  999. swtch3 = FALSE_;
  1000. if (orgati) {
  1001. if (w < 0.) {
  1002. swtch3 = TRUE_;
  1003. }
  1004. } else {
  1005. if (w > 0.) {
  1006. swtch3 = TRUE_;
  1007. }
  1008. }
  1009. if (ii == 1 || ii == *n) {
  1010. swtch3 = FALSE_;
  1011. }
  1012. temp = z__[ii] / delta[ii];
  1013. dw = dpsi + dphi + temp * temp;
  1014. temp = z__[ii] * temp;
  1015. w += temp;
  1016. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
  1017. abs(tau) * dw;
  1018. /* Test for convergence */
  1019. if (abs(w) <= eps * erretm) {
  1020. if (orgati) {
  1021. *dlam = d__[*i__] + tau;
  1022. } else {
  1023. *dlam = d__[ip1] + tau;
  1024. }
  1025. goto L250;
  1026. }
  1027. if (w <= 0.) {
  1028. dltlb = f2cmax(dltlb,tau);
  1029. } else {
  1030. dltub = f2cmin(dltub,tau);
  1031. }
  1032. /* Calculate the new step */
  1033. ++niter;
  1034. if (! swtch3) {
  1035. if (orgati) {
  1036. /* Computing 2nd power */
  1037. d__1 = z__[*i__] / delta[*i__];
  1038. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 *
  1039. d__1);
  1040. } else {
  1041. /* Computing 2nd power */
  1042. d__1 = z__[ip1] / delta[ip1];
  1043. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 *
  1044. d__1);
  1045. }
  1046. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
  1047. dw;
  1048. b = delta[*i__] * delta[ip1] * w;
  1049. if (c__ == 0.) {
  1050. if (a == 0.) {
  1051. if (orgati) {
  1052. a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
  1053. (dpsi + dphi);
  1054. } else {
  1055. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
  1056. (dpsi + dphi);
  1057. }
  1058. }
  1059. eta = b / a;
  1060. } else if (a <= 0.) {
  1061. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  1062. c__ * 2.);
  1063. } else {
  1064. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  1065. d__1))));
  1066. }
  1067. } else {
  1068. /* Interpolation using THREE most relevant poles */
  1069. temp = rhoinv + psi + phi;
  1070. if (orgati) {
  1071. temp1 = z__[iim1] / delta[iim1];
  1072. temp1 *= temp1;
  1073. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
  1074. iip1]) * temp1;
  1075. zz[0] = z__[iim1] * z__[iim1];
  1076. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
  1077. } else {
  1078. temp1 = z__[iip1] / delta[iip1];
  1079. temp1 *= temp1;
  1080. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
  1081. iim1]) * temp1;
  1082. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
  1083. zz[2] = z__[iip1] * z__[iip1];
  1084. }
  1085. zz[1] = z__[ii] * z__[ii];
  1086. dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
  1087. if (*info != 0) {
  1088. goto L250;
  1089. }
  1090. }
  1091. /* Note, eta should be positive if w is negative, and */
  1092. /* eta should be negative otherwise. However, */
  1093. /* if for some reason caused by roundoff, eta*w > 0, */
  1094. /* we simply use one Newton step instead. This way */
  1095. /* will guarantee eta*w < 0. */
  1096. if (w * eta >= 0.) {
  1097. eta = -w / dw;
  1098. }
  1099. temp = tau + eta;
  1100. if (temp > dltub || temp < dltlb) {
  1101. if (w < 0.) {
  1102. eta = (dltub - tau) / 2.;
  1103. } else {
  1104. eta = (dltlb - tau) / 2.;
  1105. }
  1106. }
  1107. prew = w;
  1108. i__1 = *n;
  1109. for (j = 1; j <= i__1; ++j) {
  1110. delta[j] -= eta;
  1111. /* L180: */
  1112. }
  1113. /* Evaluate PSI and the derivative DPSI */
  1114. dpsi = 0.;
  1115. psi = 0.;
  1116. erretm = 0.;
  1117. i__1 = iim1;
  1118. for (j = 1; j <= i__1; ++j) {
  1119. temp = z__[j] / delta[j];
  1120. psi += z__[j] * temp;
  1121. dpsi += temp * temp;
  1122. erretm += psi;
  1123. /* L190: */
  1124. }
  1125. erretm = abs(erretm);
  1126. /* Evaluate PHI and the derivative DPHI */
  1127. dphi = 0.;
  1128. phi = 0.;
  1129. i__1 = iip1;
  1130. for (j = *n; j >= i__1; --j) {
  1131. temp = z__[j] / delta[j];
  1132. phi += z__[j] * temp;
  1133. dphi += temp * temp;
  1134. erretm += phi;
  1135. /* L200: */
  1136. }
  1137. temp = z__[ii] / delta[ii];
  1138. dw = dpsi + dphi + temp * temp;
  1139. temp = z__[ii] * temp;
  1140. w = rhoinv + phi + psi + temp;
  1141. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
  1142. d__1 = tau + eta, abs(d__1)) * dw;
  1143. swtch = FALSE_;
  1144. if (orgati) {
  1145. if (-w > abs(prew) / 10.) {
  1146. swtch = TRUE_;
  1147. }
  1148. } else {
  1149. if (w > abs(prew) / 10.) {
  1150. swtch = TRUE_;
  1151. }
  1152. }
  1153. tau += eta;
  1154. /* Main loop to update the values of the array DELTA */
  1155. iter = niter + 1;
  1156. for (niter = iter; niter <= 30; ++niter) {
  1157. /* Test for convergence */
  1158. if (abs(w) <= eps * erretm) {
  1159. if (orgati) {
  1160. *dlam = d__[*i__] + tau;
  1161. } else {
  1162. *dlam = d__[ip1] + tau;
  1163. }
  1164. goto L250;
  1165. }
  1166. if (w <= 0.) {
  1167. dltlb = f2cmax(dltlb,tau);
  1168. } else {
  1169. dltub = f2cmin(dltub,tau);
  1170. }
  1171. /* Calculate the new step */
  1172. if (! swtch3) {
  1173. if (! swtch) {
  1174. if (orgati) {
  1175. /* Computing 2nd power */
  1176. d__1 = z__[*i__] / delta[*i__];
  1177. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
  1178. d__1 * d__1);
  1179. } else {
  1180. /* Computing 2nd power */
  1181. d__1 = z__[ip1] / delta[ip1];
  1182. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
  1183. (d__1 * d__1);
  1184. }
  1185. } else {
  1186. temp = z__[ii] / delta[ii];
  1187. if (orgati) {
  1188. dpsi += temp * temp;
  1189. } else {
  1190. dphi += temp * temp;
  1191. }
  1192. c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
  1193. }
  1194. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
  1195. * dw;
  1196. b = delta[*i__] * delta[ip1] * w;
  1197. if (c__ == 0.) {
  1198. if (a == 0.) {
  1199. if (! swtch) {
  1200. if (orgati) {
  1201. a = z__[*i__] * z__[*i__] + delta[ip1] *
  1202. delta[ip1] * (dpsi + dphi);
  1203. } else {
  1204. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
  1205. *i__] * (dpsi + dphi);
  1206. }
  1207. } else {
  1208. a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
  1209. * delta[ip1] * dphi;
  1210. }
  1211. }
  1212. eta = b / a;
  1213. } else if (a <= 0.) {
  1214. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
  1215. / (c__ * 2.);
  1216. } else {
  1217. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
  1218. abs(d__1))));
  1219. }
  1220. } else {
  1221. /* Interpolation using THREE most relevant poles */
  1222. temp = rhoinv + psi + phi;
  1223. if (swtch) {
  1224. c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
  1225. zz[0] = delta[iim1] * delta[iim1] * dpsi;
  1226. zz[2] = delta[iip1] * delta[iip1] * dphi;
  1227. } else {
  1228. if (orgati) {
  1229. temp1 = z__[iim1] / delta[iim1];
  1230. temp1 *= temp1;
  1231. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
  1232. - d__[iip1]) * temp1;
  1233. zz[0] = z__[iim1] * z__[iim1];
  1234. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
  1235. dphi);
  1236. } else {
  1237. temp1 = z__[iip1] / delta[iip1];
  1238. temp1 *= temp1;
  1239. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
  1240. - d__[iim1]) * temp1;
  1241. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
  1242. temp1));
  1243. zz[2] = z__[iip1] * z__[iip1];
  1244. }
  1245. }
  1246. dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
  1247. info);
  1248. if (*info != 0) {
  1249. goto L250;
  1250. }
  1251. }
  1252. /* Note, eta should be positive if w is negative, and */
  1253. /* eta should be negative otherwise. However, */
  1254. /* if for some reason caused by roundoff, eta*w > 0, */
  1255. /* we simply use one Newton step instead. This way */
  1256. /* will guarantee eta*w < 0. */
  1257. if (w * eta >= 0.) {
  1258. eta = -w / dw;
  1259. }
  1260. temp = tau + eta;
  1261. if (temp > dltub || temp < dltlb) {
  1262. if (w < 0.) {
  1263. eta = (dltub - tau) / 2.;
  1264. } else {
  1265. eta = (dltlb - tau) / 2.;
  1266. }
  1267. }
  1268. i__1 = *n;
  1269. for (j = 1; j <= i__1; ++j) {
  1270. delta[j] -= eta;
  1271. /* L210: */
  1272. }
  1273. tau += eta;
  1274. prew = w;
  1275. /* Evaluate PSI and the derivative DPSI */
  1276. dpsi = 0.;
  1277. psi = 0.;
  1278. erretm = 0.;
  1279. i__1 = iim1;
  1280. for (j = 1; j <= i__1; ++j) {
  1281. temp = z__[j] / delta[j];
  1282. psi += z__[j] * temp;
  1283. dpsi += temp * temp;
  1284. erretm += psi;
  1285. /* L220: */
  1286. }
  1287. erretm = abs(erretm);
  1288. /* Evaluate PHI and the derivative DPHI */
  1289. dphi = 0.;
  1290. phi = 0.;
  1291. i__1 = iip1;
  1292. for (j = *n; j >= i__1; --j) {
  1293. temp = z__[j] / delta[j];
  1294. phi += z__[j] * temp;
  1295. dphi += temp * temp;
  1296. erretm += phi;
  1297. /* L230: */
  1298. }
  1299. temp = z__[ii] / delta[ii];
  1300. dw = dpsi + dphi + temp * temp;
  1301. temp = z__[ii] * temp;
  1302. w = rhoinv + phi + psi + temp;
  1303. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
  1304. + abs(tau) * dw;
  1305. if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
  1306. swtch = ! swtch;
  1307. }
  1308. /* L240: */
  1309. }
  1310. /* Return with INFO = 1, NITER = MAXIT and not converged */
  1311. *info = 1;
  1312. if (orgati) {
  1313. *dlam = d__[*i__] + tau;
  1314. } else {
  1315. *dlam = d__[ip1] + tau;
  1316. }
  1317. }
  1318. L250:
  1319. return;
  1320. /* End of DLAED4 */
  1321. } /* dlaed4_ */