You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdsdc.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__9 = 9;
  485. static integer c__0 = 0;
  486. static doublereal c_b15 = 1.;
  487. static integer c__1 = 1;
  488. static doublereal c_b29 = 0.;
  489. /* > \brief \b DBDSDC */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DBDSDC + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, */
  508. /* WORK, IWORK, INFO ) */
  509. /* CHARACTER COMPQ, UPLO */
  510. /* INTEGER INFO, LDU, LDVT, N */
  511. /* INTEGER IQ( * ), IWORK( * ) */
  512. /* DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ), */
  513. /* $ VT( LDVT, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DBDSDC computes the singular value decomposition (SVD) of a real */
  520. /* > N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
  521. /* > using a divide and conquer method, where S is a diagonal matrix */
  522. /* > with non-negative diagonal elements (the singular values of B), and */
  523. /* > U and VT are orthogonal matrices of left and right singular vectors, */
  524. /* > respectively. DBDSDC can be used to compute all singular values, */
  525. /* > and optionally, singular vectors or singular vectors in compact form. */
  526. /* > */
  527. /* > This code makes very mild assumptions about floating point */
  528. /* > arithmetic. It will work on machines with a guard digit in */
  529. /* > add/subtract, or on those binary machines without guard digits */
  530. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  531. /* > It could conceivably fail on hexadecimal or decimal machines */
  532. /* > without guard digits, but we know of none. See DLASD3 for details. */
  533. /* > */
  534. /* > The code currently calls DLASDQ if singular values only are desired. */
  535. /* > However, it can be slightly modified to compute singular values */
  536. /* > using the divide and conquer method. */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] UPLO */
  541. /* > \verbatim */
  542. /* > UPLO is CHARACTER*1 */
  543. /* > = 'U': B is upper bidiagonal. */
  544. /* > = 'L': B is lower bidiagonal. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] COMPQ */
  548. /* > \verbatim */
  549. /* > COMPQ is CHARACTER*1 */
  550. /* > Specifies whether singular vectors are to be computed */
  551. /* > as follows: */
  552. /* > = 'N': Compute singular values only; */
  553. /* > = 'P': Compute singular values and compute singular */
  554. /* > vectors in compact form; */
  555. /* > = 'I': Compute singular values and singular vectors. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix B. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] D */
  565. /* > \verbatim */
  566. /* > D is DOUBLE PRECISION array, dimension (N) */
  567. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  568. /* > On exit, if INFO=0, the singular values of B. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] E */
  572. /* > \verbatim */
  573. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  574. /* > On entry, the elements of E contain the offdiagonal */
  575. /* > elements of the bidiagonal matrix whose SVD is desired. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] U */
  580. /* > \verbatim */
  581. /* > U is DOUBLE PRECISION array, dimension (LDU,N) */
  582. /* > If COMPQ = 'I', then: */
  583. /* > On exit, if INFO = 0, U contains the left singular vectors */
  584. /* > of the bidiagonal matrix. */
  585. /* > For other values of COMPQ, U is not referenced. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDU */
  589. /* > \verbatim */
  590. /* > LDU is INTEGER */
  591. /* > The leading dimension of the array U. LDU >= 1. */
  592. /* > If singular vectors are desired, then LDU >= f2cmax( 1, N ). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] VT */
  596. /* > \verbatim */
  597. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  598. /* > If COMPQ = 'I', then: */
  599. /* > On exit, if INFO = 0, VT**T contains the right singular */
  600. /* > vectors of the bidiagonal matrix. */
  601. /* > For other values of COMPQ, VT is not referenced. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] LDVT */
  605. /* > \verbatim */
  606. /* > LDVT is INTEGER */
  607. /* > The leading dimension of the array VT. LDVT >= 1. */
  608. /* > If singular vectors are desired, then LDVT >= f2cmax( 1, N ). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] Q */
  612. /* > \verbatim */
  613. /* > Q is DOUBLE PRECISION array, dimension (LDQ) */
  614. /* > If COMPQ = 'P', then: */
  615. /* > On exit, if INFO = 0, Q and IQ contain the left */
  616. /* > and right singular vectors in a compact form, */
  617. /* > requiring O(N log N) space instead of 2*N**2. */
  618. /* > In particular, Q contains all the DOUBLE PRECISION data in */
  619. /* > LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
  620. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  621. /* > is equal to the maximum size of the subproblems at the */
  622. /* > bottom of the computation tree (usually about 25). */
  623. /* > For other values of COMPQ, Q is not referenced. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] IQ */
  627. /* > \verbatim */
  628. /* > IQ is INTEGER array, dimension (LDIQ) */
  629. /* > If COMPQ = 'P', then: */
  630. /* > On exit, if INFO = 0, Q and IQ contain the left */
  631. /* > and right singular vectors in a compact form, */
  632. /* > requiring O(N log N) space instead of 2*N**2. */
  633. /* > In particular, IQ contains all INTEGER data in */
  634. /* > LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
  635. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  636. /* > is equal to the maximum size of the subproblems at the */
  637. /* > bottom of the computation tree (usually about 25). */
  638. /* > For other values of COMPQ, IQ is not referenced. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] WORK */
  642. /* > \verbatim */
  643. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  644. /* > If COMPQ = 'N' then LWORK >= (4 * N). */
  645. /* > If COMPQ = 'P' then LWORK >= (6 * N). */
  646. /* > If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] IWORK */
  650. /* > \verbatim */
  651. /* > IWORK is INTEGER array, dimension (8*N) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] INFO */
  655. /* > \verbatim */
  656. /* > INFO is INTEGER */
  657. /* > = 0: successful exit. */
  658. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  659. /* > > 0: The algorithm failed to compute a singular value. */
  660. /* > The update process of divide and conquer failed. */
  661. /* > \endverbatim */
  662. /* Authors: */
  663. /* ======== */
  664. /* > \author Univ. of Tennessee */
  665. /* > \author Univ. of California Berkeley */
  666. /* > \author Univ. of Colorado Denver */
  667. /* > \author NAG Ltd. */
  668. /* > \date June 2016 */
  669. /* > \ingroup auxOTHERcomputational */
  670. /* > \par Contributors: */
  671. /* ================== */
  672. /* > */
  673. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  674. /* > California at Berkeley, USA */
  675. /* > */
  676. /* ===================================================================== */
  677. /* Subroutine */ void dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
  678. d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
  679. integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
  680. iwork, integer *info)
  681. {
  682. /* System generated locals */
  683. integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
  684. doublereal d__1;
  685. /* Local variables */
  686. integer difl, difr, ierr, perm, mlvl, sqre, i__, j, k;
  687. doublereal p, r__;
  688. integer z__;
  689. extern logical lsame_(char *, char *);
  690. extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *,
  691. integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
  692. , doublereal *, integer *), dswap_(integer *, doublereal *,
  693. integer *, doublereal *, integer *);
  694. integer poles, iuplo, nsize, start;
  695. extern /* Subroutine */ void dlasd0_(integer *, integer *, doublereal *,
  696. doublereal *, doublereal *, integer *, doublereal *, integer *,
  697. integer *, integer *, doublereal *, integer *);
  698. integer ic, ii, kk;
  699. doublereal cs;
  700. extern doublereal dlamch_(char *);
  701. extern /* Subroutine */ void dlasda_(integer *, integer *, integer *,
  702. integer *, doublereal *, doublereal *, doublereal *, integer *,
  703. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  704. doublereal *, integer *, integer *, integer *, integer *,
  705. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  706. integer *);
  707. integer is, iu;
  708. doublereal sn;
  709. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  710. doublereal *, doublereal *, integer *, integer *, doublereal *,
  711. integer *, integer *), dlasdq_(char *, integer *, integer
  712. *, integer *, integer *, integer *, doublereal *, doublereal *,
  713. doublereal *, integer *, doublereal *, integer *, doublereal *,
  714. integer *, doublereal *, integer *), dlaset_(char *,
  715. integer *, integer *, doublereal *, doublereal *, doublereal *,
  716. integer *), dlartg_(doublereal *, doublereal *,
  717. doublereal *, doublereal *, doublereal *);
  718. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  719. integer *, integer *, ftnlen, ftnlen);
  720. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  721. integer givcol;
  722. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  723. integer icompq;
  724. doublereal orgnrm;
  725. integer givnum, givptr, nm1, qstart, smlsiz, wstart, smlszp;
  726. doublereal eps;
  727. integer ivt;
  728. /* -- LAPACK computational routine (version 3.7.1) -- */
  729. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  730. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  731. /* June 2016 */
  732. /* ===================================================================== */
  733. /* Changed dimension statement in comment describing E from (N) to */
  734. /* (N-1). Sven, 17 Feb 05. */
  735. /* ===================================================================== */
  736. /* Test the input parameters. */
  737. /* Parameter adjustments */
  738. --d__;
  739. --e;
  740. u_dim1 = *ldu;
  741. u_offset = 1 + u_dim1 * 1;
  742. u -= u_offset;
  743. vt_dim1 = *ldvt;
  744. vt_offset = 1 + vt_dim1 * 1;
  745. vt -= vt_offset;
  746. --q;
  747. --iq;
  748. --work;
  749. --iwork;
  750. /* Function Body */
  751. *info = 0;
  752. iuplo = 0;
  753. if (lsame_(uplo, "U")) {
  754. iuplo = 1;
  755. }
  756. if (lsame_(uplo, "L")) {
  757. iuplo = 2;
  758. }
  759. if (lsame_(compq, "N")) {
  760. icompq = 0;
  761. } else if (lsame_(compq, "P")) {
  762. icompq = 1;
  763. } else if (lsame_(compq, "I")) {
  764. icompq = 2;
  765. } else {
  766. icompq = -1;
  767. }
  768. if (iuplo == 0) {
  769. *info = -1;
  770. } else if (icompq < 0) {
  771. *info = -2;
  772. } else if (*n < 0) {
  773. *info = -3;
  774. } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
  775. *info = -7;
  776. } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
  777. *info = -9;
  778. }
  779. if (*info != 0) {
  780. i__1 = -(*info);
  781. xerbla_("DBDSDC", &i__1, (ftnlen)6);
  782. return;
  783. }
  784. /* Quick return if possible */
  785. if (*n == 0) {
  786. return;
  787. }
  788. smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
  789. ftnlen)6, (ftnlen)1);
  790. if (*n == 1) {
  791. if (icompq == 1) {
  792. q[1] = d_sign(&c_b15, &d__[1]);
  793. q[smlsiz * *n + 1] = 1.;
  794. } else if (icompq == 2) {
  795. u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
  796. vt[vt_dim1 + 1] = 1.;
  797. }
  798. d__[1] = abs(d__[1]);
  799. return;
  800. }
  801. nm1 = *n - 1;
  802. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  803. /* by applying Givens rotations on the left */
  804. wstart = 1;
  805. qstart = 3;
  806. if (icompq == 1) {
  807. dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
  808. i__1 = *n - 1;
  809. dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
  810. }
  811. if (iuplo == 2) {
  812. qstart = 5;
  813. if (icompq == 2) {
  814. wstart = (*n << 1) - 1;
  815. }
  816. i__1 = *n - 1;
  817. for (i__ = 1; i__ <= i__1; ++i__) {
  818. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  819. d__[i__] = r__;
  820. e[i__] = sn * d__[i__ + 1];
  821. d__[i__ + 1] = cs * d__[i__ + 1];
  822. if (icompq == 1) {
  823. q[i__ + (*n << 1)] = cs;
  824. q[i__ + *n * 3] = sn;
  825. } else if (icompq == 2) {
  826. work[i__] = cs;
  827. work[nm1 + i__] = -sn;
  828. }
  829. /* L10: */
  830. }
  831. }
  832. /* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
  833. if (icompq == 0) {
  834. /* Ignore WSTART, instead using WORK( 1 ), since the two vectors */
  835. /* for CS and -SN above are added only if ICOMPQ == 2, */
  836. /* and adding them exceeds documented WORK size of 4*n. */
  837. dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
  838. vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  839. 1], info);
  840. goto L40;
  841. }
  842. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  843. /* the problem with another solver. */
  844. if (*n <= smlsiz) {
  845. if (icompq == 2) {
  846. dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  847. dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  848. dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
  849. , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  850. wstart], info);
  851. } else if (icompq == 1) {
  852. iu = 1;
  853. ivt = iu + *n;
  854. dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
  855. dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
  856. dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
  857. qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
  858. iu + (qstart - 1) * *n], n, &work[wstart], info);
  859. }
  860. goto L40;
  861. }
  862. if (icompq == 2) {
  863. dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  864. dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  865. }
  866. /* Scale. */
  867. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  868. if (orgnrm == 0.) {
  869. return;
  870. }
  871. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
  872. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
  873. ierr);
  874. eps = dlamch_("Epsilon") * .9;
  875. mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
  876. log(2.)) + 1;
  877. smlszp = smlsiz + 1;
  878. if (icompq == 1) {
  879. iu = 1;
  880. ivt = smlsiz + 1;
  881. difl = ivt + smlszp;
  882. difr = difl + mlvl;
  883. z__ = difr + (mlvl << 1);
  884. ic = z__ + mlvl;
  885. is = ic + 1;
  886. poles = is + 1;
  887. givnum = poles + (mlvl << 1);
  888. k = 1;
  889. givptr = 2;
  890. perm = 3;
  891. givcol = perm + mlvl;
  892. }
  893. i__1 = *n;
  894. for (i__ = 1; i__ <= i__1; ++i__) {
  895. if ((d__1 = d__[i__], abs(d__1)) < eps) {
  896. d__[i__] = d_sign(&eps, &d__[i__]);
  897. }
  898. /* L20: */
  899. }
  900. start = 1;
  901. sqre = 0;
  902. i__1 = nm1;
  903. for (i__ = 1; i__ <= i__1; ++i__) {
  904. if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
  905. /* Subproblem found. First determine its size and then */
  906. /* apply divide and conquer on it. */
  907. if (i__ < nm1) {
  908. /* A subproblem with E(I) small for I < NM1. */
  909. nsize = i__ - start + 1;
  910. } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
  911. /* A subproblem with E(NM1) not too small but I = NM1. */
  912. nsize = *n - start + 1;
  913. } else {
  914. /* A subproblem with E(NM1) small. This implies an */
  915. /* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
  916. /* first. */
  917. nsize = i__ - start + 1;
  918. if (icompq == 2) {
  919. u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
  920. vt[*n + *n * vt_dim1] = 1.;
  921. } else if (icompq == 1) {
  922. q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
  923. q[*n + (smlsiz + qstart - 1) * *n] = 1.;
  924. }
  925. d__[*n] = (d__1 = d__[*n], abs(d__1));
  926. }
  927. if (icompq == 2) {
  928. dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
  929. start * u_dim1], ldu, &vt[start + start * vt_dim1],
  930. ldvt, &smlsiz, &iwork[1], &work[wstart], info);
  931. } else {
  932. dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
  933. start], &q[start + (iu + qstart - 2) * *n], n, &q[
  934. start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
  935. &q[start + (difl + qstart - 2) * *n], &q[start + (
  936. difr + qstart - 2) * *n], &q[start + (z__ + qstart -
  937. 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
  938. start + givptr * *n], &iq[start + givcol * *n], n, &
  939. iq[start + perm * *n], &q[start + (givnum + qstart -
  940. 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
  941. start + (is + qstart - 2) * *n], &work[wstart], &
  942. iwork[1], info);
  943. }
  944. if (*info != 0) {
  945. return;
  946. }
  947. start = i__ + 1;
  948. }
  949. /* L30: */
  950. }
  951. /* Unscale */
  952. dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
  953. L40:
  954. /* Use Selection Sort to minimize swaps of singular vectors */
  955. i__1 = *n;
  956. for (ii = 2; ii <= i__1; ++ii) {
  957. i__ = ii - 1;
  958. kk = i__;
  959. p = d__[i__];
  960. i__2 = *n;
  961. for (j = ii; j <= i__2; ++j) {
  962. if (d__[j] > p) {
  963. kk = j;
  964. p = d__[j];
  965. }
  966. /* L50: */
  967. }
  968. if (kk != i__) {
  969. d__[kk] = d__[i__];
  970. d__[i__] = p;
  971. if (icompq == 1) {
  972. iq[i__] = kk;
  973. } else if (icompq == 2) {
  974. dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
  975. c__1);
  976. dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
  977. }
  978. } else if (icompq == 1) {
  979. iq[i__] = i__;
  980. }
  981. /* L60: */
  982. }
  983. /* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
  984. if (icompq == 1) {
  985. if (iuplo == 1) {
  986. iq[*n] = 1;
  987. } else {
  988. iq[*n] = 0;
  989. }
  990. }
  991. /* If B is lower bidiagonal, update U by those Givens rotations */
  992. /* which rotated B to be upper bidiagonal */
  993. if (iuplo == 2 && icompq == 2) {
  994. dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
  995. }
  996. return;
  997. /* End of DBDSDC */
  998. } /* dbdsdc_ */