You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasda.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__0 = 0;
  487. static doublereal c_b11 = 0.;
  488. static doublereal c_b12 = 1.;
  489. static integer c__1 = 1;
  490. static integer c__2 = 2;
  491. /* > \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with d
  492. iagonal d and off-diagonal e. Used by sbdsdc. */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DLASDA + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, */
  511. /* DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, */
  512. /* PERM, GIVNUM, C, S, WORK, IWORK, INFO ) */
  513. /* INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE */
  514. /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
  515. /* $ K( * ), PERM( LDGCOL, * ) */
  516. /* DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), */
  517. /* $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), */
  518. /* $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), */
  519. /* $ Z( LDU, * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > Using a divide and conquer approach, DLASDA computes the singular */
  526. /* > value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
  527. /* > B with diagonal D and offdiagonal E, where M = N + SQRE. The */
  528. /* > algorithm computes the singular values in the SVD B = U * S * VT. */
  529. /* > The orthogonal matrices U and VT are optionally computed in */
  530. /* > compact form. */
  531. /* > */
  532. /* > A related subroutine, DLASD0, computes the singular values and */
  533. /* > the singular vectors in explicit form. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] ICOMPQ */
  538. /* > \verbatim */
  539. /* > ICOMPQ is INTEGER */
  540. /* > Specifies whether singular vectors are to be computed */
  541. /* > in compact form, as follows */
  542. /* > = 0: Compute singular values only. */
  543. /* > = 1: Compute singular vectors of upper bidiagonal */
  544. /* > matrix in compact form. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] SMLSIZ */
  548. /* > \verbatim */
  549. /* > SMLSIZ is INTEGER */
  550. /* > The maximum size of the subproblems at the bottom of the */
  551. /* > computation tree. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > The row dimension of the upper bidiagonal matrix. This is */
  558. /* > also the dimension of the main diagonal array D. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] SQRE */
  562. /* > \verbatim */
  563. /* > SQRE is INTEGER */
  564. /* > Specifies the column dimension of the bidiagonal matrix. */
  565. /* > = 0: The bidiagonal matrix has column dimension M = N; */
  566. /* > = 1: The bidiagonal matrix has column dimension M = N + 1. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in,out] D */
  570. /* > \verbatim */
  571. /* > D is DOUBLE PRECISION array, dimension ( N ) */
  572. /* > On entry D contains the main diagonal of the bidiagonal */
  573. /* > matrix. On exit D, if INFO = 0, contains its singular values. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] E */
  577. /* > \verbatim */
  578. /* > E is DOUBLE PRECISION array, dimension ( M-1 ) */
  579. /* > Contains the subdiagonal entries of the bidiagonal matrix. */
  580. /* > On exit, E has been destroyed. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] U */
  584. /* > \verbatim */
  585. /* > U is DOUBLE PRECISION array, */
  586. /* > dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
  587. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
  588. /* > singular vector matrices of all subproblems at the bottom */
  589. /* > level. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDU */
  593. /* > \verbatim */
  594. /* > LDU is INTEGER, LDU = > N. */
  595. /* > The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
  596. /* > GIVNUM, and Z. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] VT */
  600. /* > \verbatim */
  601. /* > VT is DOUBLE PRECISION array, */
  602. /* > dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
  603. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right */
  604. /* > singular vector matrices of all subproblems at the bottom */
  605. /* > level. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] K */
  609. /* > \verbatim */
  610. /* > K is INTEGER array, */
  611. /* > dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
  612. /* > If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
  613. /* > secular equation on the computation tree. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] DIFL */
  617. /* > \verbatim */
  618. /* > DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ), */
  619. /* > where NLVL = floor(log_2 (N/SMLSIZ))). */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] DIFR */
  623. /* > \verbatim */
  624. /* > DIFR is DOUBLE PRECISION array, */
  625. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
  626. /* > dimension ( N ) if ICOMPQ = 0. */
  627. /* > If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
  628. /* > record distances between singular values on the I-th */
  629. /* > level and singular values on the (I -1)-th level, and */
  630. /* > DIFR(1:N, 2 * I ) contains the normalizing factors for */
  631. /* > the right singular vector matrix. See DLASD8 for details. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] Z */
  635. /* > \verbatim */
  636. /* > Z is DOUBLE PRECISION array, */
  637. /* > dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
  638. /* > dimension ( N ) if ICOMPQ = 0. */
  639. /* > The first K elements of Z(1, I) contain the components of */
  640. /* > the deflation-adjusted updating row vector for subproblems */
  641. /* > on the I-th level. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] POLES */
  645. /* > \verbatim */
  646. /* > POLES is DOUBLE PRECISION array, */
  647. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
  648. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
  649. /* > POLES(1, 2*I) contain the new and old singular values */
  650. /* > involved in the secular equations on the I-th level. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] GIVPTR */
  654. /* > \verbatim */
  655. /* > GIVPTR is INTEGER array, */
  656. /* > dimension ( N ) if ICOMPQ = 1, and not referenced if */
  657. /* > ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
  658. /* > the number of Givens rotations performed on the I-th */
  659. /* > problem on the computation tree. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] GIVCOL */
  663. /* > \verbatim */
  664. /* > GIVCOL is INTEGER array, */
  665. /* > dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
  666. /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
  667. /* > GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
  668. /* > of Givens rotations performed on the I-th level on the */
  669. /* > computation tree. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in] LDGCOL */
  673. /* > \verbatim */
  674. /* > LDGCOL is INTEGER, LDGCOL = > N. */
  675. /* > The leading dimension of arrays GIVCOL and PERM. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] PERM */
  679. /* > \verbatim */
  680. /* > PERM is INTEGER array, */
  681. /* > dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced */
  682. /* > if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
  683. /* > permutations done on the I-th level of the computation tree. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] GIVNUM */
  687. /* > \verbatim */
  688. /* > GIVNUM is DOUBLE PRECISION array, */
  689. /* > dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not */
  690. /* > referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
  691. /* > GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
  692. /* > values of Givens rotations performed on the I-th level on */
  693. /* > the computation tree. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[out] C */
  697. /* > \verbatim */
  698. /* > C is DOUBLE PRECISION array, */
  699. /* > dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
  700. /* > If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
  701. /* > C( I ) contains the C-value of a Givens rotation related to */
  702. /* > the right null space of the I-th subproblem. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] S */
  706. /* > \verbatim */
  707. /* > S is DOUBLE PRECISION array, dimension ( N ) if */
  708. /* > ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
  709. /* > and the I-th subproblem is not square, on exit, S( I ) */
  710. /* > contains the S-value of a Givens rotation related to */
  711. /* > the right null space of the I-th subproblem. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] WORK */
  715. /* > \verbatim */
  716. /* > WORK is DOUBLE PRECISION array, dimension */
  717. /* > (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
  718. /* > \endverbatim */
  719. /* > */
  720. /* > \param[out] IWORK */
  721. /* > \verbatim */
  722. /* > IWORK is INTEGER array, dimension (7*N) */
  723. /* > \endverbatim */
  724. /* > */
  725. /* > \param[out] INFO */
  726. /* > \verbatim */
  727. /* > INFO is INTEGER */
  728. /* > = 0: successful exit. */
  729. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  730. /* > > 0: if INFO = 1, a singular value did not converge */
  731. /* > \endverbatim */
  732. /* Authors: */
  733. /* ======== */
  734. /* > \author Univ. of Tennessee */
  735. /* > \author Univ. of California Berkeley */
  736. /* > \author Univ. of Colorado Denver */
  737. /* > \author NAG Ltd. */
  738. /* > \date June 2017 */
  739. /* > \ingroup OTHERauxiliary */
  740. /* > \par Contributors: */
  741. /* ================== */
  742. /* > */
  743. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  744. /* > California at Berkeley, USA */
  745. /* > */
  746. /* ===================================================================== */
  747. /* Subroutine */ void dlasda_(integer *icompq, integer *smlsiz, integer *n,
  748. integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer
  749. *ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr,
  750. doublereal *z__, doublereal *poles, integer *givptr, integer *givcol,
  751. integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__,
  752. doublereal *s, doublereal *work, integer *iwork, integer *info)
  753. {
  754. /* System generated locals */
  755. integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
  756. difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
  757. poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
  758. z_dim1, z_offset, i__1, i__2;
  759. /* Local variables */
  760. doublereal beta;
  761. integer idxq, nlvl, i__, j, m;
  762. doublereal alpha;
  763. integer inode, ndiml, ndimr, idxqi, itemp;
  764. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  765. doublereal *, integer *);
  766. integer sqrei, i1;
  767. extern /* Subroutine */ void dlasd6_(integer *, integer *, integer *,
  768. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  769. doublereal *, integer *, integer *, integer *, integer *,
  770. integer *, doublereal *, integer *, doublereal *, doublereal *,
  771. doublereal *, doublereal *, integer *, doublereal *, doublereal *,
  772. doublereal *, integer *, integer *);
  773. integer ic, nwork1, lf, nd, nwork2, ll, nl, vf, nr, vl;
  774. extern /* Subroutine */ void dlasdq_(char *, integer *, integer *, integer
  775. *, integer *, integer *, doublereal *, doublereal *, doublereal *,
  776. integer *, doublereal *, integer *, doublereal *, integer *,
  777. doublereal *, integer *), dlasdt_(integer *, integer *,
  778. integer *, integer *, integer *, integer *, integer *), dlaset_(
  779. char *, integer *, integer *, doublereal *, doublereal *,
  780. doublereal *, integer *);
  781. extern int xerbla_(char *, integer *, ftnlen);
  782. integer im1, smlszp, ncc, nlf, nrf, vfi, iwk, vli, lvl, nru, ndb1, nlp1,
  783. lvl2, nrp1;
  784. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  785. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  786. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  787. /* June 2017 */
  788. /* ===================================================================== */
  789. /* Test the input parameters. */
  790. /* Parameter adjustments */
  791. --d__;
  792. --e;
  793. givnum_dim1 = *ldu;
  794. givnum_offset = 1 + givnum_dim1 * 1;
  795. givnum -= givnum_offset;
  796. poles_dim1 = *ldu;
  797. poles_offset = 1 + poles_dim1 * 1;
  798. poles -= poles_offset;
  799. z_dim1 = *ldu;
  800. z_offset = 1 + z_dim1 * 1;
  801. z__ -= z_offset;
  802. difr_dim1 = *ldu;
  803. difr_offset = 1 + difr_dim1 * 1;
  804. difr -= difr_offset;
  805. difl_dim1 = *ldu;
  806. difl_offset = 1 + difl_dim1 * 1;
  807. difl -= difl_offset;
  808. vt_dim1 = *ldu;
  809. vt_offset = 1 + vt_dim1 * 1;
  810. vt -= vt_offset;
  811. u_dim1 = *ldu;
  812. u_offset = 1 + u_dim1 * 1;
  813. u -= u_offset;
  814. --k;
  815. --givptr;
  816. perm_dim1 = *ldgcol;
  817. perm_offset = 1 + perm_dim1 * 1;
  818. perm -= perm_offset;
  819. givcol_dim1 = *ldgcol;
  820. givcol_offset = 1 + givcol_dim1 * 1;
  821. givcol -= givcol_offset;
  822. --c__;
  823. --s;
  824. --work;
  825. --iwork;
  826. /* Function Body */
  827. *info = 0;
  828. if (*icompq < 0 || *icompq > 1) {
  829. *info = -1;
  830. } else if (*smlsiz < 3) {
  831. *info = -2;
  832. } else if (*n < 0) {
  833. *info = -3;
  834. } else if (*sqre < 0 || *sqre > 1) {
  835. *info = -4;
  836. } else if (*ldu < *n + *sqre) {
  837. *info = -8;
  838. } else if (*ldgcol < *n) {
  839. *info = -17;
  840. }
  841. if (*info != 0) {
  842. i__1 = -(*info);
  843. xerbla_("DLASDA", &i__1, (ftnlen)6);
  844. return;
  845. }
  846. m = *n + *sqre;
  847. /* If the input matrix is too small, call DLASDQ to find the SVD. */
  848. if (*n <= *smlsiz) {
  849. if (*icompq == 0) {
  850. dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
  851. vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
  852. work[1], info);
  853. } else {
  854. dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
  855. , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1],
  856. info);
  857. }
  858. return;
  859. }
  860. /* Book-keeping and set up the computation tree. */
  861. inode = 1;
  862. ndiml = inode + *n;
  863. ndimr = ndiml + *n;
  864. idxq = ndimr + *n;
  865. iwk = idxq + *n;
  866. ncc = 0;
  867. nru = 0;
  868. smlszp = *smlsiz + 1;
  869. vf = 1;
  870. vl = vf + m;
  871. nwork1 = vl + m;
  872. nwork2 = nwork1 + smlszp * smlszp;
  873. dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
  874. smlsiz);
  875. /* for the nodes on bottom level of the tree, solve */
  876. /* their subproblems by DLASDQ. */
  877. ndb1 = (nd + 1) / 2;
  878. i__1 = nd;
  879. for (i__ = ndb1; i__ <= i__1; ++i__) {
  880. /* IC : center row of each node */
  881. /* NL : number of rows of left subproblem */
  882. /* NR : number of rows of right subproblem */
  883. /* NLF: starting row of the left subproblem */
  884. /* NRF: starting row of the right subproblem */
  885. i1 = i__ - 1;
  886. ic = iwork[inode + i1];
  887. nl = iwork[ndiml + i1];
  888. nlp1 = nl + 1;
  889. nr = iwork[ndimr + i1];
  890. nlf = ic - nl;
  891. nrf = ic + 1;
  892. idxqi = idxq + nlf - 2;
  893. vfi = vf + nlf - 1;
  894. vli = vl + nlf - 1;
  895. sqrei = 1;
  896. if (*icompq == 0) {
  897. dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
  898. dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
  899. work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2],
  900. &nl, &work[nwork2], info);
  901. itemp = nwork1 + nl * smlszp;
  902. dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
  903. dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
  904. } else {
  905. dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
  906. dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1],
  907. ldu);
  908. dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
  909. vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf +
  910. u_dim1], ldu, &work[nwork1], info);
  911. dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
  912. dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
  913. ;
  914. }
  915. if (*info != 0) {
  916. return;
  917. }
  918. i__2 = nl;
  919. for (j = 1; j <= i__2; ++j) {
  920. iwork[idxqi + j] = j;
  921. /* L10: */
  922. }
  923. if (i__ == nd && *sqre == 0) {
  924. sqrei = 0;
  925. } else {
  926. sqrei = 1;
  927. }
  928. idxqi += nlp1;
  929. vfi += nlp1;
  930. vli += nlp1;
  931. nrp1 = nr + sqrei;
  932. if (*icompq == 0) {
  933. dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
  934. dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
  935. work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2],
  936. &nr, &work[nwork2], info);
  937. itemp = nwork1 + (nrp1 - 1) * smlszp;
  938. dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
  939. dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
  940. } else {
  941. dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
  942. dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1],
  943. ldu);
  944. dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
  945. vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf +
  946. u_dim1], ldu, &work[nwork1], info);
  947. dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
  948. dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
  949. ;
  950. }
  951. if (*info != 0) {
  952. return;
  953. }
  954. i__2 = nr;
  955. for (j = 1; j <= i__2; ++j) {
  956. iwork[idxqi + j] = j;
  957. /* L20: */
  958. }
  959. /* L30: */
  960. }
  961. /* Now conquer each subproblem bottom-up. */
  962. j = pow_ii(c__2, nlvl);
  963. for (lvl = nlvl; lvl >= 1; --lvl) {
  964. lvl2 = (lvl << 1) - 1;
  965. /* Find the first node LF and last node LL on */
  966. /* the current level LVL. */
  967. if (lvl == 1) {
  968. lf = 1;
  969. ll = 1;
  970. } else {
  971. i__1 = lvl - 1;
  972. lf = pow_ii(c__2, i__1);
  973. ll = (lf << 1) - 1;
  974. }
  975. i__1 = ll;
  976. for (i__ = lf; i__ <= i__1; ++i__) {
  977. im1 = i__ - 1;
  978. ic = iwork[inode + im1];
  979. nl = iwork[ndiml + im1];
  980. nr = iwork[ndimr + im1];
  981. nlf = ic - nl;
  982. nrf = ic + 1;
  983. if (i__ == ll) {
  984. sqrei = *sqre;
  985. } else {
  986. sqrei = 1;
  987. }
  988. vfi = vf + nlf - 1;
  989. vli = vl + nlf - 1;
  990. idxqi = idxq + nlf - 1;
  991. alpha = d__[ic];
  992. beta = e[ic];
  993. if (*icompq == 0) {
  994. dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
  995. work[vli], &alpha, &beta, &iwork[idxqi], &perm[
  996. perm_offset], &givptr[1], &givcol[givcol_offset],
  997. ldgcol, &givnum[givnum_offset], ldu, &poles[
  998. poles_offset], &difl[difl_offset], &difr[difr_offset],
  999. &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1],
  1000. &iwork[iwk], info);
  1001. } else {
  1002. --j;
  1003. dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
  1004. work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf +
  1005. lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 *
  1006. givcol_dim1], ldgcol, &givnum[nlf + lvl2 *
  1007. givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
  1008. difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 *
  1009. difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j],
  1010. &s[j], &work[nwork1], &iwork[iwk], info);
  1011. }
  1012. if (*info != 0) {
  1013. return;
  1014. }
  1015. /* L40: */
  1016. }
  1017. /* L50: */
  1018. }
  1019. return;
  1020. /* End of DLASDA */
  1021. } /* dlasda_ */