You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaein.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse
  488. iteration. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLAEIN + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
  507. /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
  508. /* LOGICAL NOINIT, RIGHTV */
  509. /* INTEGER INFO, LDB, LDH, N */
  510. /* DOUBLE PRECISION BIGNUM, EPS3, SMLNUM, WI, WR */
  511. /* DOUBLE PRECISION B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
  512. /* $ WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DLAEIN uses inverse iteration to find a right or left eigenvector */
  519. /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
  520. /* > matrix H. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] RIGHTV */
  525. /* > \verbatim */
  526. /* > RIGHTV is LOGICAL */
  527. /* > = .TRUE. : compute right eigenvector; */
  528. /* > = .FALSE.: compute left eigenvector. */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] NOINIT */
  532. /* > \verbatim */
  533. /* > NOINIT is LOGICAL */
  534. /* > = .TRUE. : no initial vector supplied in (VR,VI). */
  535. /* > = .FALSE.: initial vector supplied in (VR,VI). */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix H. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] H */
  545. /* > \verbatim */
  546. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  547. /* > The upper Hessenberg matrix H. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] LDH */
  551. /* > \verbatim */
  552. /* > LDH is INTEGER */
  553. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] WR */
  557. /* > \verbatim */
  558. /* > WR is DOUBLE PRECISION */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] WI */
  562. /* > \verbatim */
  563. /* > WI is DOUBLE PRECISION */
  564. /* > The real and imaginary parts of the eigenvalue of H whose */
  565. /* > corresponding right or left eigenvector is to be computed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] VR */
  569. /* > \verbatim */
  570. /* > VR is DOUBLE PRECISION array, dimension (N) */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] VI */
  574. /* > \verbatim */
  575. /* > VI is DOUBLE PRECISION array, dimension (N) */
  576. /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
  577. /* > a real starting vector for inverse iteration using the real */
  578. /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
  579. /* > must contain the real and imaginary parts of a complex */
  580. /* > starting vector for inverse iteration using the complex */
  581. /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */
  582. /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */
  583. /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
  584. /* > VR and VI contain the real and imaginary parts of the */
  585. /* > computed complex eigenvector. The eigenvector is normalized */
  586. /* > so that the component of largest magnitude has magnitude 1; */
  587. /* > here the magnitude of a complex number (x,y) is taken to be */
  588. /* > |x| + |y|. */
  589. /* > VI is not referenced if WI = 0.0. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] B */
  593. /* > \verbatim */
  594. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDB */
  598. /* > \verbatim */
  599. /* > LDB is INTEGER */
  600. /* > The leading dimension of the array B. LDB >= N+1. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] EPS3 */
  609. /* > \verbatim */
  610. /* > EPS3 is DOUBLE PRECISION */
  611. /* > A small machine-dependent value which is used to perturb */
  612. /* > close eigenvalues, and to replace zero pivots. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] SMLNUM */
  616. /* > \verbatim */
  617. /* > SMLNUM is DOUBLE PRECISION */
  618. /* > A machine-dependent value close to the underflow threshold. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] BIGNUM */
  622. /* > \verbatim */
  623. /* > BIGNUM is DOUBLE PRECISION */
  624. /* > A machine-dependent value close to the overflow threshold. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit */
  631. /* > = 1: inverse iteration did not converge; VR is set to the */
  632. /* > last iterate, and so is VI if WI.ne.0.0. */
  633. /* > \endverbatim */
  634. /* Authors: */
  635. /* ======== */
  636. /* > \author Univ. of Tennessee */
  637. /* > \author Univ. of California Berkeley */
  638. /* > \author Univ. of Colorado Denver */
  639. /* > \author NAG Ltd. */
  640. /* > \date December 2016 */
  641. /* > \ingroup doubleOTHERauxiliary */
  642. /* ===================================================================== */
  643. /* Subroutine */ void dlaein_(logical *rightv, logical *noinit, integer *n,
  644. doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi,
  645. doublereal *vr, doublereal *vi, doublereal *b, integer *ldb,
  646. doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *
  647. bignum, integer *info)
  648. {
  649. /* System generated locals */
  650. integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
  651. doublereal d__1, d__2, d__3, d__4;
  652. /* Local variables */
  653. integer ierr;
  654. doublereal temp, norm, vmax;
  655. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  656. integer i__, j;
  657. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  658. integer *);
  659. doublereal scale, w, x, y;
  660. extern doublereal dasum_(integer *, doublereal *, integer *);
  661. char trans[1];
  662. doublereal vcrit;
  663. integer i1, i2, i3;
  664. doublereal rootn, vnorm, w1;
  665. extern doublereal dlapy2_(doublereal *, doublereal *);
  666. doublereal ei, ej, absbii, absbjj, xi;
  667. extern integer idamax_(integer *, doublereal *, integer *);
  668. extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
  669. doublereal *, doublereal *, doublereal *, doublereal *);
  670. doublereal xr;
  671. extern /* Subroutine */ void dlatrs_(char *, char *, char *, char *,
  672. integer *, doublereal *, integer *, doublereal *, doublereal *,
  673. doublereal *, integer *);
  674. char normin[1];
  675. doublereal nrmsml, growto, rec;
  676. integer its;
  677. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  678. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  679. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  680. /* December 2016 */
  681. /* ===================================================================== */
  682. /* Parameter adjustments */
  683. h_dim1 = *ldh;
  684. h_offset = 1 + h_dim1 * 1;
  685. h__ -= h_offset;
  686. --vr;
  687. --vi;
  688. b_dim1 = *ldb;
  689. b_offset = 1 + b_dim1 * 1;
  690. b -= b_offset;
  691. --work;
  692. /* Function Body */
  693. *info = 0;
  694. /* GROWTO is the threshold used in the acceptance test for an */
  695. /* eigenvector. */
  696. rootn = sqrt((doublereal) (*n));
  697. growto = .1 / rootn;
  698. /* Computing MAX */
  699. d__1 = 1., d__2 = *eps3 * rootn;
  700. nrmsml = f2cmax(d__1,d__2) * *smlnum;
  701. /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
  702. /* the imaginary parts of the diagonal elements are not stored). */
  703. i__1 = *n;
  704. for (j = 1; j <= i__1; ++j) {
  705. i__2 = j - 1;
  706. for (i__ = 1; i__ <= i__2; ++i__) {
  707. b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
  708. /* L10: */
  709. }
  710. b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
  711. /* L20: */
  712. }
  713. if (*wi == 0.) {
  714. /* Real eigenvalue. */
  715. if (*noinit) {
  716. /* Set initial vector. */
  717. i__1 = *n;
  718. for (i__ = 1; i__ <= i__1; ++i__) {
  719. vr[i__] = *eps3;
  720. /* L30: */
  721. }
  722. } else {
  723. /* Scale supplied initial vector. */
  724. vnorm = dnrm2_(n, &vr[1], &c__1);
  725. d__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
  726. dscal_(n, &d__1, &vr[1], &c__1);
  727. }
  728. if (*rightv) {
  729. /* LU decomposition with partial pivoting of B, replacing zero */
  730. /* pivots by EPS3. */
  731. i__1 = *n - 1;
  732. for (i__ = 1; i__ <= i__1; ++i__) {
  733. ei = h__[i__ + 1 + i__ * h_dim1];
  734. if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {
  735. /* Interchange rows and eliminate. */
  736. x = b[i__ + i__ * b_dim1] / ei;
  737. b[i__ + i__ * b_dim1] = ei;
  738. i__2 = *n;
  739. for (j = i__ + 1; j <= i__2; ++j) {
  740. temp = b[i__ + 1 + j * b_dim1];
  741. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
  742. temp;
  743. b[i__ + j * b_dim1] = temp;
  744. /* L40: */
  745. }
  746. } else {
  747. /* Eliminate without interchange. */
  748. if (b[i__ + i__ * b_dim1] == 0.) {
  749. b[i__ + i__ * b_dim1] = *eps3;
  750. }
  751. x = ei / b[i__ + i__ * b_dim1];
  752. if (x != 0.) {
  753. i__2 = *n;
  754. for (j = i__ + 1; j <= i__2; ++j) {
  755. b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
  756. ;
  757. /* L50: */
  758. }
  759. }
  760. }
  761. /* L60: */
  762. }
  763. if (b[*n + *n * b_dim1] == 0.) {
  764. b[*n + *n * b_dim1] = *eps3;
  765. }
  766. *(unsigned char *)trans = 'N';
  767. } else {
  768. /* UL decomposition with partial pivoting of B, replacing zero */
  769. /* pivots by EPS3. */
  770. for (j = *n; j >= 2; --j) {
  771. ej = h__[j + (j - 1) * h_dim1];
  772. if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {
  773. /* Interchange columns and eliminate. */
  774. x = b[j + j * b_dim1] / ej;
  775. b[j + j * b_dim1] = ej;
  776. i__1 = j - 1;
  777. for (i__ = 1; i__ <= i__1; ++i__) {
  778. temp = b[i__ + (j - 1) * b_dim1];
  779. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
  780. temp;
  781. b[i__ + j * b_dim1] = temp;
  782. /* L70: */
  783. }
  784. } else {
  785. /* Eliminate without interchange. */
  786. if (b[j + j * b_dim1] == 0.) {
  787. b[j + j * b_dim1] = *eps3;
  788. }
  789. x = ej / b[j + j * b_dim1];
  790. if (x != 0.) {
  791. i__1 = j - 1;
  792. for (i__ = 1; i__ <= i__1; ++i__) {
  793. b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
  794. b_dim1];
  795. /* L80: */
  796. }
  797. }
  798. }
  799. /* L90: */
  800. }
  801. if (b[b_dim1 + 1] == 0.) {
  802. b[b_dim1 + 1] = *eps3;
  803. }
  804. *(unsigned char *)trans = 'T';
  805. }
  806. *(unsigned char *)normin = 'N';
  807. i__1 = *n;
  808. for (its = 1; its <= i__1; ++its) {
  809. /* Solve U*x = scale*v for a right eigenvector */
  810. /* or U**T*x = scale*v for a left eigenvector, */
  811. /* overwriting x on v. */
  812. dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
  813. vr[1], &scale, &work[1], &ierr);
  814. *(unsigned char *)normin = 'Y';
  815. /* Test for sufficient growth in the norm of v. */
  816. vnorm = dasum_(n, &vr[1], &c__1);
  817. if (vnorm >= growto * scale) {
  818. goto L120;
  819. }
  820. /* Choose new orthogonal starting vector and try again. */
  821. temp = *eps3 / (rootn + 1.);
  822. vr[1] = *eps3;
  823. i__2 = *n;
  824. for (i__ = 2; i__ <= i__2; ++i__) {
  825. vr[i__] = temp;
  826. /* L100: */
  827. }
  828. vr[*n - its + 1] -= *eps3 * rootn;
  829. /* L110: */
  830. }
  831. /* Failure to find eigenvector in N iterations. */
  832. *info = 1;
  833. L120:
  834. /* Normalize eigenvector. */
  835. i__ = idamax_(n, &vr[1], &c__1);
  836. d__2 = 1. / (d__1 = vr[i__], abs(d__1));
  837. dscal_(n, &d__2, &vr[1], &c__1);
  838. } else {
  839. /* Complex eigenvalue. */
  840. if (*noinit) {
  841. /* Set initial vector. */
  842. i__1 = *n;
  843. for (i__ = 1; i__ <= i__1; ++i__) {
  844. vr[i__] = *eps3;
  845. vi[i__] = 0.;
  846. /* L130: */
  847. }
  848. } else {
  849. /* Scale supplied initial vector. */
  850. d__1 = dnrm2_(n, &vr[1], &c__1);
  851. d__2 = dnrm2_(n, &vi[1], &c__1);
  852. norm = dlapy2_(&d__1, &d__2);
  853. rec = *eps3 * rootn / f2cmax(norm,nrmsml);
  854. dscal_(n, &rec, &vr[1], &c__1);
  855. dscal_(n, &rec, &vi[1], &c__1);
  856. }
  857. if (*rightv) {
  858. /* LU decomposition with partial pivoting of B, replacing zero */
  859. /* pivots by EPS3. */
  860. /* The imaginary part of the (i,j)-th element of U is stored in */
  861. /* B(j+1,i). */
  862. b[b_dim1 + 2] = -(*wi);
  863. i__1 = *n;
  864. for (i__ = 2; i__ <= i__1; ++i__) {
  865. b[i__ + 1 + b_dim1] = 0.;
  866. /* L140: */
  867. }
  868. i__1 = *n - 1;
  869. for (i__ = 1; i__ <= i__1; ++i__) {
  870. absbii = dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
  871. b_dim1]);
  872. ei = h__[i__ + 1 + i__ * h_dim1];
  873. if (absbii < abs(ei)) {
  874. /* Interchange rows and eliminate. */
  875. xr = b[i__ + i__ * b_dim1] / ei;
  876. xi = b[i__ + 1 + i__ * b_dim1] / ei;
  877. b[i__ + i__ * b_dim1] = ei;
  878. b[i__ + 1 + i__ * b_dim1] = 0.;
  879. i__2 = *n;
  880. for (j = i__ + 1; j <= i__2; ++j) {
  881. temp = b[i__ + 1 + j * b_dim1];
  882. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
  883. temp;
  884. b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
  885. b_dim1] - xi * temp;
  886. b[i__ + j * b_dim1] = temp;
  887. b[j + 1 + i__ * b_dim1] = 0.;
  888. /* L150: */
  889. }
  890. b[i__ + 2 + i__ * b_dim1] = -(*wi);
  891. b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
  892. b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
  893. } else {
  894. /* Eliminate without interchanging rows. */
  895. if (absbii == 0.) {
  896. b[i__ + i__ * b_dim1] = *eps3;
  897. b[i__ + 1 + i__ * b_dim1] = 0.;
  898. absbii = *eps3;
  899. }
  900. ei = ei / absbii / absbii;
  901. xr = b[i__ + i__ * b_dim1] * ei;
  902. xi = -b[i__ + 1 + i__ * b_dim1] * ei;
  903. i__2 = *n;
  904. for (j = i__ + 1; j <= i__2; ++j) {
  905. b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
  906. xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
  907. * b_dim1];
  908. b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
  909. b_dim1] - xi * b[i__ + j * b_dim1];
  910. /* L160: */
  911. }
  912. b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
  913. }
  914. /* Compute 1-norm of offdiagonal elements of i-th row. */
  915. i__2 = *n - i__;
  916. i__3 = *n - i__;
  917. work[i__] = dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
  918. + dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
  919. /* L170: */
  920. }
  921. if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {
  922. b[*n + *n * b_dim1] = *eps3;
  923. }
  924. work[*n] = 0.;
  925. i1 = *n;
  926. i2 = 1;
  927. i3 = -1;
  928. } else {
  929. /* UL decomposition with partial pivoting of conjg(B), */
  930. /* replacing zero pivots by EPS3. */
  931. /* The imaginary part of the (i,j)-th element of U is stored in */
  932. /* B(j+1,i). */
  933. b[*n + 1 + *n * b_dim1] = *wi;
  934. i__1 = *n - 1;
  935. for (j = 1; j <= i__1; ++j) {
  936. b[*n + 1 + j * b_dim1] = 0.;
  937. /* L180: */
  938. }
  939. for (j = *n; j >= 2; --j) {
  940. ej = h__[j + (j - 1) * h_dim1];
  941. absbjj = dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
  942. if (absbjj < abs(ej)) {
  943. /* Interchange columns and eliminate */
  944. xr = b[j + j * b_dim1] / ej;
  945. xi = b[j + 1 + j * b_dim1] / ej;
  946. b[j + j * b_dim1] = ej;
  947. b[j + 1 + j * b_dim1] = 0.;
  948. i__1 = j - 1;
  949. for (i__ = 1; i__ <= i__1; ++i__) {
  950. temp = b[i__ + (j - 1) * b_dim1];
  951. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
  952. temp;
  953. b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
  954. temp;
  955. b[i__ + j * b_dim1] = temp;
  956. b[j + 1 + i__ * b_dim1] = 0.;
  957. /* L190: */
  958. }
  959. b[j + 1 + (j - 1) * b_dim1] = *wi;
  960. b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
  961. b[j + (j - 1) * b_dim1] -= xr * *wi;
  962. } else {
  963. /* Eliminate without interchange. */
  964. if (absbjj == 0.) {
  965. b[j + j * b_dim1] = *eps3;
  966. b[j + 1 + j * b_dim1] = 0.;
  967. absbjj = *eps3;
  968. }
  969. ej = ej / absbjj / absbjj;
  970. xr = b[j + j * b_dim1] * ej;
  971. xi = -b[j + 1 + j * b_dim1] * ej;
  972. i__1 = j - 1;
  973. for (i__ = 1; i__ <= i__1; ++i__) {
  974. b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
  975. - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
  976. i__ * b_dim1];
  977. b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
  978. xi * b[i__ + j * b_dim1];
  979. /* L200: */
  980. }
  981. b[j + (j - 1) * b_dim1] += *wi;
  982. }
  983. /* Compute 1-norm of offdiagonal elements of j-th column. */
  984. i__1 = j - 1;
  985. i__2 = j - 1;
  986. work[j] = dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + dasum_(&
  987. i__2, &b[j + 1 + b_dim1], ldb);
  988. /* L210: */
  989. }
  990. if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {
  991. b[b_dim1 + 1] = *eps3;
  992. }
  993. work[1] = 0.;
  994. i1 = 1;
  995. i2 = *n;
  996. i3 = 1;
  997. }
  998. i__1 = *n;
  999. for (its = 1; its <= i__1; ++its) {
  1000. scale = 1.;
  1001. vmax = 1.;
  1002. vcrit = *bignum;
  1003. /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
  1004. /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
  1005. /* overwriting (xr,xi) on (vr,vi). */
  1006. i__2 = i2;
  1007. i__3 = i3;
  1008. for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
  1009. {
  1010. if (work[i__] > vcrit) {
  1011. rec = 1. / vmax;
  1012. dscal_(n, &rec, &vr[1], &c__1);
  1013. dscal_(n, &rec, &vi[1], &c__1);
  1014. scale *= rec;
  1015. vmax = 1.;
  1016. vcrit = *bignum;
  1017. }
  1018. xr = vr[i__];
  1019. xi = vi[i__];
  1020. if (*rightv) {
  1021. i__4 = *n;
  1022. for (j = i__ + 1; j <= i__4; ++j) {
  1023. xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
  1024. * b_dim1] * vi[j];
  1025. xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
  1026. * b_dim1] * vr[j];
  1027. /* L220: */
  1028. }
  1029. } else {
  1030. i__4 = i__ - 1;
  1031. for (j = 1; j <= i__4; ++j) {
  1032. xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
  1033. * b_dim1] * vi[j];
  1034. xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
  1035. * b_dim1] * vr[j];
  1036. /* L230: */
  1037. }
  1038. }
  1039. w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__
  1040. + 1 + i__ * b_dim1], abs(d__2));
  1041. if (w > *smlnum) {
  1042. if (w < 1.) {
  1043. w1 = abs(xr) + abs(xi);
  1044. if (w1 > w * *bignum) {
  1045. rec = 1. / w1;
  1046. dscal_(n, &rec, &vr[1], &c__1);
  1047. dscal_(n, &rec, &vi[1], &c__1);
  1048. xr = vr[i__];
  1049. xi = vi[i__];
  1050. scale *= rec;
  1051. vmax *= rec;
  1052. }
  1053. }
  1054. /* Divide by diagonal element of B. */
  1055. dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
  1056. i__ * b_dim1], &vr[i__], &vi[i__]);
  1057. /* Computing MAX */
  1058. d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(
  1059. d__2));
  1060. vmax = f2cmax(d__3,vmax);
  1061. vcrit = *bignum / vmax;
  1062. } else {
  1063. i__4 = *n;
  1064. for (j = 1; j <= i__4; ++j) {
  1065. vr[j] = 0.;
  1066. vi[j] = 0.;
  1067. /* L240: */
  1068. }
  1069. vr[i__] = 1.;
  1070. vi[i__] = 1.;
  1071. scale = 0.;
  1072. vmax = 1.;
  1073. vcrit = *bignum;
  1074. }
  1075. /* L250: */
  1076. }
  1077. /* Test for sufficient growth in the norm of (VR,VI). */
  1078. vnorm = dasum_(n, &vr[1], &c__1) + dasum_(n, &vi[1], &c__1);
  1079. if (vnorm >= growto * scale) {
  1080. goto L280;
  1081. }
  1082. /* Choose a new orthogonal starting vector and try again. */
  1083. y = *eps3 / (rootn + 1.);
  1084. vr[1] = *eps3;
  1085. vi[1] = 0.;
  1086. i__3 = *n;
  1087. for (i__ = 2; i__ <= i__3; ++i__) {
  1088. vr[i__] = y;
  1089. vi[i__] = 0.;
  1090. /* L260: */
  1091. }
  1092. vr[*n - its + 1] -= *eps3 * rootn;
  1093. /* L270: */
  1094. }
  1095. /* Failure to find eigenvector in N iterations */
  1096. *info = 1;
  1097. L280:
  1098. /* Normalize eigenvector. */
  1099. vnorm = 0.;
  1100. i__1 = *n;
  1101. for (i__ = 1; i__ <= i__1; ++i__) {
  1102. /* Computing MAX */
  1103. d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]
  1104. , abs(d__2));
  1105. vnorm = f2cmax(d__3,d__4);
  1106. /* L290: */
  1107. }
  1108. d__1 = 1. / vnorm;
  1109. dscal_(n, &d__1, &vr[1], &c__1);
  1110. d__1 = 1. / vnorm;
  1111. dscal_(n, &d__1, &vi[1], &c__1);
  1112. }
  1113. return;
  1114. /* End of DLAEIN */
  1115. } /* dlaein_ */