You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd2by1.c 45 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static logical c_false = FALSE_;
  489. /* > \brief \b SORCSD2BY1 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SORCSD2BY1 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2
  496. by1.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2
  499. by1.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2
  502. by1.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */
  508. /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */
  509. /* LDV1T, WORK, LWORK, IWORK, INFO ) */
  510. /* CHARACTER JOBU1, JOBU2, JOBV1T */
  511. /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */
  512. /* $ M, P, Q */
  513. /* REAL THETA(*) */
  514. /* REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */
  515. /* $ X11(LDX11,*), X21(LDX21,*) */
  516. /* INTEGER IWORK(*) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* >\verbatim */
  521. /* > */
  522. /* > SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */
  523. /* > orthonormal columns that has been partitioned into a 2-by-1 block */
  524. /* > structure: */
  525. /* > */
  526. /* > [ I1 0 0 ] */
  527. /* > [ 0 C 0 ] */
  528. /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */
  529. /* > X = [-----] = [---------] [----------] V1**T . */
  530. /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */
  531. /* > [ 0 S 0 ] */
  532. /* > [ 0 0 I2] */
  533. /* > */
  534. /* > X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P, */
  535. /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */
  536. /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */
  537. /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */
  538. /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */
  539. /* > \endverbatim */
  540. /* Arguments: */
  541. /* ========== */
  542. /* > \param[in] JOBU1 */
  543. /* > \verbatim */
  544. /* > JOBU1 is CHARACTER */
  545. /* > = 'Y': U1 is computed; */
  546. /* > otherwise: U1 is not computed. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] JOBU2 */
  550. /* > \verbatim */
  551. /* > JOBU2 is CHARACTER */
  552. /* > = 'Y': U2 is computed; */
  553. /* > otherwise: U2 is not computed. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] JOBV1T */
  557. /* > \verbatim */
  558. /* > JOBV1T is CHARACTER */
  559. /* > = 'Y': V1T is computed; */
  560. /* > otherwise: V1T is not computed. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] M */
  564. /* > \verbatim */
  565. /* > M is INTEGER */
  566. /* > The number of rows in X. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] P */
  570. /* > \verbatim */
  571. /* > P is INTEGER */
  572. /* > The number of rows in X11. 0 <= P <= M. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] Q */
  576. /* > \verbatim */
  577. /* > Q is INTEGER */
  578. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] X11 */
  582. /* > \verbatim */
  583. /* > X11 is REAL array, dimension (LDX11,Q) */
  584. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDX11 */
  588. /* > \verbatim */
  589. /* > LDX11 is INTEGER */
  590. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] X21 */
  594. /* > \verbatim */
  595. /* > X21 is REAL array, dimension (LDX21,Q) */
  596. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDX21 */
  600. /* > \verbatim */
  601. /* > LDX21 is INTEGER */
  602. /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] THETA */
  606. /* > \verbatim */
  607. /* > THETA is REAL array, dimension (R), in which R = */
  608. /* > MIN(P,M-P,Q,M-Q). */
  609. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  610. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] U1 */
  614. /* > \verbatim */
  615. /* > U1 is REAL array, dimension (P) */
  616. /* > If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDU1 */
  620. /* > \verbatim */
  621. /* > LDU1 is INTEGER */
  622. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  623. /* > MAX(1,P). */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] U2 */
  627. /* > \verbatim */
  628. /* > U2 is REAL array, dimension (M-P) */
  629. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal */
  630. /* > matrix U2. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDU2 */
  634. /* > \verbatim */
  635. /* > LDU2 is INTEGER */
  636. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  637. /* > MAX(1,M-P). */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] V1T */
  641. /* > \verbatim */
  642. /* > V1T is REAL array, dimension (Q) */
  643. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal */
  644. /* > matrix V1**T. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDV1T */
  648. /* > \verbatim */
  649. /* > LDV1T is INTEGER */
  650. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  651. /* > MAX(1,Q). */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] WORK */
  655. /* > \verbatim */
  656. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  657. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  658. /* > If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), */
  659. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  660. /* > define the matrix in intermediate bidiagonal-block form */
  661. /* > remaining after nonconvergence. INFO specifies the number */
  662. /* > of nonzero PHI's. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LWORK */
  666. /* > \verbatim */
  667. /* > LWORK is INTEGER */
  668. /* > The dimension of the array WORK. */
  669. /* > */
  670. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  671. /* > only calculates the optimal size of the WORK array, returns */
  672. /* > this value as the first entry of the work array, and no error */
  673. /* > message related to LWORK is issued by XERBLA. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] IWORK */
  677. /* > \verbatim */
  678. /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] INFO */
  682. /* > \verbatim */
  683. /* > INFO is INTEGER */
  684. /* > = 0: successful exit. */
  685. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  686. /* > > 0: SBBCSD did not converge. See the description of WORK */
  687. /* > above for details. */
  688. /* > \endverbatim */
  689. /* > \par References: */
  690. /* ================ */
  691. /* > */
  692. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  693. /* > Algorithms, 50(1):33-65, 2009. */
  694. /* Authors: */
  695. /* ======== */
  696. /* > \author Univ. of Tennessee */
  697. /* > \author Univ. of California Berkeley */
  698. /* > \author Univ. of Colorado Denver */
  699. /* > \author NAG Ltd. */
  700. /* > \date July 2012 */
  701. /* > \ingroup realOTHERcomputational */
  702. /* ===================================================================== */
  703. /* Subroutine */ int sorcsd2by1_(char *jobu1, char *jobu2, char *jobv1t,
  704. integer *m, integer *p, integer *q, real *x11, integer *ldx11, real *
  705. x21, integer *ldx21, real *theta, real *u1, integer *ldu1, real *u2,
  706. integer *ldu2, real *v1t, integer *ldv1t, real *work, integer *lwork,
  707. integer *iwork, integer *info)
  708. {
  709. /* System generated locals */
  710. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  711. x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3;
  712. /* Local variables */
  713. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi,
  714. lworkmin, lworkopt, i__, j, r__;
  715. extern logical lsame_(char *, char *);
  716. integer childinfo;
  717. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  718. integer *);
  719. integer lorglqmin, lorgqrmin, lorglqopt, itaup1, itaup2, itauq1,
  720. lorgqropt;
  721. logical wantu1, wantu2;
  722. integer ibbcsd, lbbcsd;
  723. extern /* Subroutine */ int sbbcsd_(char *, char *, char *, char *, char *
  724. , integer *, integer *, integer *, real *, real *, real *,
  725. integer *, real *, integer *, real *, integer *, real *, integer *
  726. , real *, real *, real *, real *, real *, real *, real *, real *,
  727. real *, integer *, integer *);
  728. integer iorbdb, lorbdb;
  729. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slacpy_(
  730. char *, integer *, integer *, real *, integer *, real *, integer *
  731. );
  732. integer iorglq;
  733. extern /* Subroutine */ int slapmr_(logical *, integer *, integer *, real
  734. *, integer *, integer *);
  735. integer lorglq;
  736. extern /* Subroutine */ int slapmt_(logical *, integer *, integer *, real
  737. *, integer *, integer *);
  738. integer iorgqr, lorgqr;
  739. extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real
  740. *, integer *, real *, real *, integer *, integer *), sorgqr_(
  741. integer *, integer *, integer *, real *, integer *, real *, real *
  742. , integer *, integer *);
  743. logical lquery;
  744. extern /* Subroutine */ int sorbdb1_(integer *, integer *, integer *,
  745. real *, integer *, real *, integer *, real *, real *, real *,
  746. real *, real *, real *, integer *, integer *), sorbdb2_(integer *,
  747. integer *, integer *, real *, integer *, real *, integer *, real
  748. *, real *, real *, real *, real *, real *, integer *, integer *),
  749. sorbdb3_(integer *, integer *, integer *, real *, integer *, real
  750. *, integer *, real *, real *, real *, real *, real *, real *,
  751. integer *, integer *), sorbdb4_(integer *, integer *, integer *,
  752. real *, integer *, real *, integer *, real *, real *, real *,
  753. real *, real *, real *, real *, integer *, integer *);
  754. logical wantv1t;
  755. real dum1[1], dum2[1] /* was [1][1] */;
  756. /* -- LAPACK computational routine (version 3.7.1) -- */
  757. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  758. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  759. /* July 2012 */
  760. /* ===================================================================== */
  761. /* Test input arguments */
  762. /* Parameter adjustments */
  763. x11_dim1 = *ldx11;
  764. x11_offset = 1 + x11_dim1 * 1;
  765. x11 -= x11_offset;
  766. x21_dim1 = *ldx21;
  767. x21_offset = 1 + x21_dim1 * 1;
  768. x21 -= x21_offset;
  769. --theta;
  770. u1_dim1 = *ldu1;
  771. u1_offset = 1 + u1_dim1 * 1;
  772. u1 -= u1_offset;
  773. u2_dim1 = *ldu2;
  774. u2_offset = 1 + u2_dim1 * 1;
  775. u2 -= u2_offset;
  776. v1t_dim1 = *ldv1t;
  777. v1t_offset = 1 + v1t_dim1 * 1;
  778. v1t -= v1t_offset;
  779. --work;
  780. --iwork;
  781. /* Function Body */
  782. *info = 0;
  783. wantu1 = lsame_(jobu1, "Y");
  784. wantu2 = lsame_(jobu2, "Y");
  785. wantv1t = lsame_(jobv1t, "Y");
  786. lquery = *lwork == -1;
  787. if (*m < 0) {
  788. *info = -4;
  789. } else if (*p < 0 || *p > *m) {
  790. *info = -5;
  791. } else if (*q < 0 || *q > *m) {
  792. *info = -6;
  793. } else if (*ldx11 < f2cmax(1,*p)) {
  794. *info = -8;
  795. } else /* if(complicated condition) */ {
  796. /* Computing MAX */
  797. i__1 = 1, i__2 = *m - *p;
  798. if (*ldx21 < f2cmax(i__1,i__2)) {
  799. *info = -10;
  800. } else if (wantu1 && *ldu1 < f2cmax(1,*p)) {
  801. *info = -13;
  802. } else /* if(complicated condition) */ {
  803. /* Computing MAX */
  804. i__1 = 1, i__2 = *m - *p;
  805. if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) {
  806. *info = -15;
  807. } else if (wantv1t && *ldv1t < f2cmax(1,*q)) {
  808. *info = -17;
  809. }
  810. }
  811. }
  812. /* Computing MIN */
  813. i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q),
  814. i__2 = *m - *q;
  815. r__ = f2cmin(i__1,i__2);
  816. /* Compute workspace */
  817. /* WORK layout: */
  818. /* |-------------------------------------------------------| */
  819. /* | LWORKOPT (1) | */
  820. /* |-------------------------------------------------------| */
  821. /* | PHI (MAX(1,R-1)) | */
  822. /* |-------------------------------------------------------| */
  823. /* | TAUP1 (MAX(1,P)) | B11D (R) | */
  824. /* | TAUP2 (MAX(1,M-P)) | B11E (R-1) | */
  825. /* | TAUQ1 (MAX(1,Q)) | B12D (R) | */
  826. /* |-----------------------------------------| B12E (R-1) | */
  827. /* | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) | */
  828. /* | | | | B21E (R-1) | */
  829. /* | | | | B22D (R) | */
  830. /* | | | | B22E (R-1) | */
  831. /* | | | | SBBCSD WORK | */
  832. /* |-------------------------------------------------------| */
  833. if (*info == 0) {
  834. iphi = 2;
  835. /* Computing MAX */
  836. i__1 = 1, i__2 = r__ - 1;
  837. ib11d = iphi + f2cmax(i__1,i__2);
  838. ib11e = ib11d + f2cmax(1,r__);
  839. /* Computing MAX */
  840. i__1 = 1, i__2 = r__ - 1;
  841. ib12d = ib11e + f2cmax(i__1,i__2);
  842. ib12e = ib12d + f2cmax(1,r__);
  843. /* Computing MAX */
  844. i__1 = 1, i__2 = r__ - 1;
  845. ib21d = ib12e + f2cmax(i__1,i__2);
  846. ib21e = ib21d + f2cmax(1,r__);
  847. /* Computing MAX */
  848. i__1 = 1, i__2 = r__ - 1;
  849. ib22d = ib21e + f2cmax(i__1,i__2);
  850. ib22e = ib22d + f2cmax(1,r__);
  851. /* Computing MAX */
  852. i__1 = 1, i__2 = r__ - 1;
  853. ibbcsd = ib22e + f2cmax(i__1,i__2);
  854. /* Computing MAX */
  855. i__1 = 1, i__2 = r__ - 1;
  856. itaup1 = iphi + f2cmax(i__1,i__2);
  857. itaup2 = itaup1 + f2cmax(1,*p);
  858. /* Computing MAX */
  859. i__1 = 1, i__2 = *m - *p;
  860. itauq1 = itaup2 + f2cmax(i__1,i__2);
  861. iorbdb = itauq1 + f2cmax(1,*q);
  862. iorgqr = itauq1 + f2cmax(1,*q);
  863. iorglq = itauq1 + f2cmax(1,*q);
  864. lorgqrmin = 1;
  865. lorgqropt = 1;
  866. lorglqmin = 1;
  867. lorglqopt = 1;
  868. if (r__ == *q) {
  869. sorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  870. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  871. &childinfo);
  872. lorbdb = (integer) work[1];
  873. if (wantu1 && *p > 0) {
  874. sorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  875. &childinfo);
  876. lorgqrmin = f2cmax(lorgqrmin,*p);
  877. /* Computing MAX */
  878. i__1 = lorgqropt, i__2 = (integer) work[1];
  879. lorgqropt = f2cmax(i__1,i__2);
  880. }
  881. if (wantu2 && *m - *p > 0) {
  882. i__1 = *m - *p;
  883. i__2 = *m - *p;
  884. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  885. &c_n1, &childinfo);
  886. /* Computing MAX */
  887. i__1 = lorgqrmin, i__2 = *m - *p;
  888. lorgqrmin = f2cmax(i__1,i__2);
  889. /* Computing MAX */
  890. i__1 = lorgqropt, i__2 = (integer) work[1];
  891. lorgqropt = f2cmax(i__1,i__2);
  892. }
  893. if (wantv1t && *q > 0) {
  894. i__1 = *q - 1;
  895. i__2 = *q - 1;
  896. i__3 = *q - 1;
  897. sorglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, dum1, &
  898. work[1], &c_n1, &childinfo);
  899. /* Computing MAX */
  900. i__1 = lorglqmin, i__2 = *q - 1;
  901. lorglqmin = f2cmax(i__1,i__2);
  902. /* Computing MAX */
  903. i__1 = lorglqopt, i__2 = (integer) work[1];
  904. lorglqopt = f2cmax(i__1,i__2);
  905. }
  906. sbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum1,
  907. &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  908. v1t_offset], ldv1t, dum2, &c__1, dum1, dum1, dum1, dum1,
  909. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  910. lbbcsd = (integer) work[1];
  911. } else if (r__ == *p) {
  912. sorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  913. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  914. &childinfo);
  915. lorbdb = (integer) work[1];
  916. if (wantu1 && *p > 0) {
  917. i__1 = *p - 1;
  918. i__2 = *p - 1;
  919. i__3 = *p - 1;
  920. sorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1,
  921. dum1, &work[1], &c_n1, &childinfo);
  922. /* Computing MAX */
  923. i__1 = lorgqrmin, i__2 = *p - 1;
  924. lorgqrmin = f2cmax(i__1,i__2);
  925. /* Computing MAX */
  926. i__1 = lorgqropt, i__2 = (integer) work[1];
  927. lorgqropt = f2cmax(i__1,i__2);
  928. }
  929. if (wantu2 && *m - *p > 0) {
  930. i__1 = *m - *p;
  931. i__2 = *m - *p;
  932. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  933. &c_n1, &childinfo);
  934. /* Computing MAX */
  935. i__1 = lorgqrmin, i__2 = *m - *p;
  936. lorgqrmin = f2cmax(i__1,i__2);
  937. /* Computing MAX */
  938. i__1 = lorgqropt, i__2 = (integer) work[1];
  939. lorgqropt = f2cmax(i__1,i__2);
  940. }
  941. if (wantv1t && *q > 0) {
  942. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  943. c_n1, &childinfo);
  944. lorglqmin = f2cmax(lorglqmin,*q);
  945. /* Computing MAX */
  946. i__1 = lorglqopt, i__2 = (integer) work[1];
  947. lorglqopt = f2cmax(i__1,i__2);
  948. }
  949. sbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum1,
  950. &v1t[v1t_offset], ldv1t, dum2, &c__1, &u1[u1_offset],
  951. ldu1, &u2[u2_offset], ldu2, dum1, dum1, dum1, dum1, dum1,
  952. dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  953. lbbcsd = (integer) work[1];
  954. } else if (r__ == *m - *p) {
  955. sorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  956. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  957. &childinfo);
  958. lorbdb = (integer) work[1];
  959. if (wantu1 && *p > 0) {
  960. sorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  961. &childinfo);
  962. lorgqrmin = f2cmax(lorgqrmin,*p);
  963. /* Computing MAX */
  964. i__1 = lorgqropt, i__2 = (integer) work[1];
  965. lorgqropt = f2cmax(i__1,i__2);
  966. }
  967. if (wantu2 && *m - *p > 0) {
  968. i__1 = *m - *p - 1;
  969. i__2 = *m - *p - 1;
  970. i__3 = *m - *p - 1;
  971. sorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2,
  972. dum1, &work[1], &c_n1, &childinfo);
  973. /* Computing MAX */
  974. i__1 = lorgqrmin, i__2 = *m - *p - 1;
  975. lorgqrmin = f2cmax(i__1,i__2);
  976. /* Computing MAX */
  977. i__1 = lorgqropt, i__2 = (integer) work[1];
  978. lorgqropt = f2cmax(i__1,i__2);
  979. }
  980. if (wantv1t && *q > 0) {
  981. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  982. c_n1, &childinfo);
  983. lorglqmin = f2cmax(lorglqmin,*q);
  984. /* Computing MAX */
  985. i__1 = lorglqopt, i__2 = (integer) work[1];
  986. lorglqopt = f2cmax(i__1,i__2);
  987. }
  988. i__1 = *m - *q;
  989. i__2 = *m - *p;
  990. sbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1]
  991. , dum1, dum2, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  992. u2_offset], ldu2, &u1[u1_offset], ldu1, dum1, dum1, dum1,
  993. dum1, dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  994. lbbcsd = (integer) work[1];
  995. } else {
  996. sorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  997. ldx21, &theta[1], dum1, dum1, dum1, dum1, dum1, &work[1],
  998. &c_n1, &childinfo);
  999. lorbdb = *m + (integer) work[1];
  1000. if (wantu1 && *p > 0) {
  1001. i__1 = *m - *q;
  1002. sorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, dum1, &work[1], &
  1003. c_n1, &childinfo);
  1004. lorgqrmin = f2cmax(lorgqrmin,*p);
  1005. /* Computing MAX */
  1006. i__1 = lorgqropt, i__2 = (integer) work[1];
  1007. lorgqropt = f2cmax(i__1,i__2);
  1008. }
  1009. if (wantu2 && *m - *p > 0) {
  1010. i__1 = *m - *p;
  1011. i__2 = *m - *p;
  1012. i__3 = *m - *q;
  1013. sorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, dum1, &
  1014. work[1], &c_n1, &childinfo);
  1015. /* Computing MAX */
  1016. i__1 = lorgqrmin, i__2 = *m - *p;
  1017. lorgqrmin = f2cmax(i__1,i__2);
  1018. /* Computing MAX */
  1019. i__1 = lorgqropt, i__2 = (integer) work[1];
  1020. lorgqropt = f2cmax(i__1,i__2);
  1021. }
  1022. if (wantv1t && *q > 0) {
  1023. sorglq_(q, q, q, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  1024. c_n1, &childinfo);
  1025. lorglqmin = f2cmax(lorglqmin,*q);
  1026. /* Computing MAX */
  1027. i__1 = lorglqopt, i__2 = (integer) work[1];
  1028. lorglqopt = f2cmax(i__1,i__2);
  1029. }
  1030. i__1 = *m - *p;
  1031. i__2 = *m - *q;
  1032. sbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1]
  1033. , dum1, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum2,
  1034. &c__1, &v1t[v1t_offset], ldv1t, dum1, dum1, dum1, dum1,
  1035. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  1036. lbbcsd = (integer) work[1];
  1037. }
  1038. /* Computing MAX */
  1039. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax(
  1040. i__1,i__2), i__2 = iorglq + lorglqmin - 1, i__1 = f2cmax(i__1,
  1041. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1042. lworkmin = f2cmax(i__1,i__2);
  1043. /* Computing MAX */
  1044. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax(
  1045. i__1,i__2), i__2 = iorglq + lorglqopt - 1, i__1 = f2cmax(i__1,
  1046. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1047. lworkopt = f2cmax(i__1,i__2);
  1048. work[1] = (real) lworkopt;
  1049. if (*lwork < lworkmin && ! lquery) {
  1050. *info = -19;
  1051. }
  1052. }
  1053. if (*info != 0) {
  1054. i__1 = -(*info);
  1055. xerbla_("SORCSD2BY1", &i__1, (ftnlen)10);
  1056. return 0;
  1057. } else if (lquery) {
  1058. return 0;
  1059. }
  1060. lorgqr = *lwork - iorgqr + 1;
  1061. lorglq = *lwork - iorglq + 1;
  1062. /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */
  1063. /* in which R = MIN(P,M-P,Q,M-Q) */
  1064. if (r__ == *q) {
  1065. /* Case 1: R = Q */
  1066. /* Simultaneously bidiagonalize X11 and X21 */
  1067. sorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1068. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1069. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1070. /* Accumulate Householder reflectors */
  1071. if (wantu1 && *p > 0) {
  1072. slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1073. sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1074. iorgqr], &lorgqr, &childinfo);
  1075. }
  1076. if (wantu2 && *m - *p > 0) {
  1077. i__1 = *m - *p;
  1078. slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1079. ldu2);
  1080. i__1 = *m - *p;
  1081. i__2 = *m - *p;
  1082. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1083. work[iorgqr], &lorgqr, &childinfo);
  1084. }
  1085. if (wantv1t && *q > 0) {
  1086. v1t[v1t_dim1 + 1] = 1.f;
  1087. i__1 = *q;
  1088. for (j = 2; j <= i__1; ++j) {
  1089. v1t[j * v1t_dim1 + 1] = 0.f;
  1090. v1t[j + v1t_dim1] = 0.f;
  1091. }
  1092. i__1 = *q - 1;
  1093. i__2 = *q - 1;
  1094. slacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[
  1095. (v1t_dim1 << 1) + 2], ldv1t);
  1096. i__1 = *q - 1;
  1097. i__2 = *q - 1;
  1098. i__3 = *q - 1;
  1099. sorglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1100. work[itauq1], &work[iorglq], &lorglq, &childinfo);
  1101. }
  1102. /* Simultaneously diagonalize X11 and X21. */
  1103. sbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &work[
  1104. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1105. v1t_offset], ldv1t, dum2, &c__1, &work[ib11d], &work[ib11e], &
  1106. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1107. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1108. /* Permute rows and columns to place zero submatrices in */
  1109. /* preferred positions */
  1110. if (*q > 0 && wantu2) {
  1111. i__1 = *q;
  1112. for (i__ = 1; i__ <= i__1; ++i__) {
  1113. iwork[i__] = *m - *p - *q + i__;
  1114. }
  1115. i__1 = *m - *p;
  1116. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1117. iwork[i__] = i__ - *q;
  1118. }
  1119. i__1 = *m - *p;
  1120. i__2 = *m - *p;
  1121. slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1122. }
  1123. } else if (r__ == *p) {
  1124. /* Case 2: R = P */
  1125. /* Simultaneously bidiagonalize X11 and X21 */
  1126. sorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1127. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1128. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1129. /* Accumulate Householder reflectors */
  1130. if (wantu1 && *p > 0) {
  1131. u1[u1_dim1 + 1] = 1.f;
  1132. i__1 = *p;
  1133. for (j = 2; j <= i__1; ++j) {
  1134. u1[j * u1_dim1 + 1] = 0.f;
  1135. u1[j + u1_dim1] = 0.f;
  1136. }
  1137. i__1 = *p - 1;
  1138. i__2 = *p - 1;
  1139. slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1140. u1_dim1 << 1) + 2], ldu1);
  1141. i__1 = *p - 1;
  1142. i__2 = *p - 1;
  1143. i__3 = *p - 1;
  1144. sorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[
  1145. itaup1], &work[iorgqr], &lorgqr, &childinfo);
  1146. }
  1147. if (wantu2 && *m - *p > 0) {
  1148. i__1 = *m - *p;
  1149. slacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1150. ldu2);
  1151. i__1 = *m - *p;
  1152. i__2 = *m - *p;
  1153. sorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1154. work[iorgqr], &lorgqr, &childinfo);
  1155. }
  1156. if (wantv1t && *q > 0) {
  1157. slacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset],
  1158. ldv1t);
  1159. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1160. iorglq], &lorglq, &childinfo);
  1161. }
  1162. /* Simultaneously diagonalize X11 and X21. */
  1163. sbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &work[
  1164. iphi], &v1t[v1t_offset], ldv1t, dum1, &c__1, &u1[u1_offset],
  1165. ldu1, &u2[u2_offset], ldu2, &work[ib11d], &work[ib11e], &work[
  1166. ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[ib22d]
  1167. , &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1168. /* Permute rows and columns to place identity submatrices in */
  1169. /* preferred positions */
  1170. if (*q > 0 && wantu2) {
  1171. i__1 = *q;
  1172. for (i__ = 1; i__ <= i__1; ++i__) {
  1173. iwork[i__] = *m - *p - *q + i__;
  1174. }
  1175. i__1 = *m - *p;
  1176. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1177. iwork[i__] = i__ - *q;
  1178. }
  1179. i__1 = *m - *p;
  1180. i__2 = *m - *p;
  1181. slapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1182. }
  1183. } else if (r__ == *m - *p) {
  1184. /* Case 3: R = M-P */
  1185. /* Simultaneously bidiagonalize X11 and X21 */
  1186. sorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1187. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1188. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1189. /* Accumulate Householder reflectors */
  1190. if (wantu1 && *p > 0) {
  1191. slacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1192. sorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1193. iorgqr], &lorgqr, &childinfo);
  1194. }
  1195. if (wantu2 && *m - *p > 0) {
  1196. u2[u2_dim1 + 1] = 1.f;
  1197. i__1 = *m - *p;
  1198. for (j = 2; j <= i__1; ++j) {
  1199. u2[j * u2_dim1 + 1] = 0.f;
  1200. u2[j + u2_dim1] = 0.f;
  1201. }
  1202. i__1 = *m - *p - 1;
  1203. i__2 = *m - *p - 1;
  1204. slacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1205. u2_dim1 << 1) + 2], ldu2);
  1206. i__1 = *m - *p - 1;
  1207. i__2 = *m - *p - 1;
  1208. i__3 = *m - *p - 1;
  1209. sorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[
  1210. itaup2], &work[iorgqr], &lorgqr, &childinfo);
  1211. }
  1212. if (wantv1t && *q > 0) {
  1213. i__1 = *m - *p;
  1214. slacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1215. ldv1t);
  1216. sorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1217. iorglq], &lorglq, &childinfo);
  1218. }
  1219. /* Simultaneously diagonalize X11 and X21. */
  1220. i__1 = *m - *q;
  1221. i__2 = *m - *p;
  1222. sbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], &
  1223. work[iphi], dum1, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1224. u2_offset], ldu2, &u1[u1_offset], ldu1, &work[ib11d], &work[
  1225. ib11e], &work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e]
  1226. , &work[ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &
  1227. childinfo);
  1228. /* Permute rows and columns to place identity submatrices in */
  1229. /* preferred positions */
  1230. if (*q > r__) {
  1231. i__1 = r__;
  1232. for (i__ = 1; i__ <= i__1; ++i__) {
  1233. iwork[i__] = *q - r__ + i__;
  1234. }
  1235. i__1 = *q;
  1236. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1237. iwork[i__] = i__ - r__;
  1238. }
  1239. if (wantu1) {
  1240. slapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]);
  1241. }
  1242. if (wantv1t) {
  1243. slapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1244. }
  1245. }
  1246. } else {
  1247. /* Case 4: R = M-Q */
  1248. /* Simultaneously bidiagonalize X11 and X21 */
  1249. i__1 = lorbdb - *m;
  1250. sorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1251. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1252. itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo)
  1253. ;
  1254. /* Accumulate Householder reflectors */
  1255. if (wantu1 && *p > 0) {
  1256. scopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1);
  1257. i__1 = *p;
  1258. for (j = 2; j <= i__1; ++j) {
  1259. u1[j * u1_dim1 + 1] = 0.f;
  1260. }
  1261. i__1 = *p - 1;
  1262. i__2 = *m - *q - 1;
  1263. slacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1264. u1_dim1 << 1) + 2], ldu1);
  1265. i__1 = *m - *q;
  1266. sorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1267. iorgqr], &lorgqr, &childinfo);
  1268. }
  1269. if (wantu2 && *m - *p > 0) {
  1270. i__1 = *m - *p;
  1271. scopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1);
  1272. i__1 = *m - *p;
  1273. for (j = 2; j <= i__1; ++j) {
  1274. u2[j * u2_dim1 + 1] = 0.f;
  1275. }
  1276. i__1 = *m - *p - 1;
  1277. i__2 = *m - *q - 1;
  1278. slacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1279. u2_dim1 << 1) + 2], ldu2);
  1280. i__1 = *m - *p;
  1281. i__2 = *m - *p;
  1282. i__3 = *m - *q;
  1283. sorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2],
  1284. &work[iorgqr], &lorgqr, &childinfo);
  1285. }
  1286. if (wantv1t && *q > 0) {
  1287. i__1 = *m - *q;
  1288. slacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1289. ldv1t);
  1290. i__1 = *p - (*m - *q);
  1291. i__2 = *q - (*m - *q);
  1292. slacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) *
  1293. x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) *
  1294. v1t_dim1], ldv1t);
  1295. i__1 = -(*p) + *q;
  1296. i__2 = *q - *p;
  1297. slacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1]
  1298. , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t);
  1299. sorglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1300. iorglq], &lorglq, &childinfo);
  1301. }
  1302. /* Simultaneously diagonalize X11 and X21. */
  1303. i__1 = *m - *p;
  1304. i__2 = *m - *q;
  1305. sbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], &
  1306. work[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum1,
  1307. &c__1, &v1t[v1t_offset], ldv1t, &work[ib11d], &work[ib11e], &
  1308. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1309. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1310. /* Permute rows and columns to place identity submatrices in */
  1311. /* preferred positions */
  1312. if (*p > r__) {
  1313. i__1 = r__;
  1314. for (i__ = 1; i__ <= i__1; ++i__) {
  1315. iwork[i__] = *p - r__ + i__;
  1316. }
  1317. i__1 = *p;
  1318. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1319. iwork[i__] = i__ - r__;
  1320. }
  1321. if (wantu1) {
  1322. slapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]);
  1323. }
  1324. if (wantv1t) {
  1325. slapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1326. }
  1327. }
  1328. }
  1329. return 0;
  1330. /* End of SORCSD2BY1 */
  1331. } /* sorcsd2by1_ */