You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztzrzf.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. typedef int integer;
  18. typedef unsigned int uinteger;
  19. typedef char *address;
  20. typedef short int shortint;
  21. typedef float real;
  22. typedef double doublereal;
  23. typedef struct { real r, i; } complex;
  24. typedef struct { doublereal r, i; } doublecomplex;
  25. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  26. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  27. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  28. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  29. #define pCf(z) (*_pCf(z))
  30. #define pCd(z) (*_pCd(z))
  31. typedef int logical;
  32. typedef short int shortlogical;
  33. typedef char logical1;
  34. typedef char integer1;
  35. #define TRUE_ (1)
  36. #define FALSE_ (0)
  37. /* Extern is for use with -E */
  38. #ifndef Extern
  39. #define Extern extern
  40. #endif
  41. /* I/O stuff */
  42. typedef int flag;
  43. typedef int ftnlen;
  44. typedef int ftnint;
  45. /*external read, write*/
  46. typedef struct
  47. { flag cierr;
  48. ftnint ciunit;
  49. flag ciend;
  50. char *cifmt;
  51. ftnint cirec;
  52. } cilist;
  53. /*internal read, write*/
  54. typedef struct
  55. { flag icierr;
  56. char *iciunit;
  57. flag iciend;
  58. char *icifmt;
  59. ftnint icirlen;
  60. ftnint icirnum;
  61. } icilist;
  62. /*open*/
  63. typedef struct
  64. { flag oerr;
  65. ftnint ounit;
  66. char *ofnm;
  67. ftnlen ofnmlen;
  68. char *osta;
  69. char *oacc;
  70. char *ofm;
  71. ftnint orl;
  72. char *oblnk;
  73. } olist;
  74. /*close*/
  75. typedef struct
  76. { flag cerr;
  77. ftnint cunit;
  78. char *csta;
  79. } cllist;
  80. /*rewind, backspace, endfile*/
  81. typedef struct
  82. { flag aerr;
  83. ftnint aunit;
  84. } alist;
  85. /* inquire */
  86. typedef struct
  87. { flag inerr;
  88. ftnint inunit;
  89. char *infile;
  90. ftnlen infilen;
  91. ftnint *inex; /*parameters in standard's order*/
  92. ftnint *inopen;
  93. ftnint *innum;
  94. ftnint *innamed;
  95. char *inname;
  96. ftnlen innamlen;
  97. char *inacc;
  98. ftnlen inacclen;
  99. char *inseq;
  100. ftnlen inseqlen;
  101. char *indir;
  102. ftnlen indirlen;
  103. char *infmt;
  104. ftnlen infmtlen;
  105. char *inform;
  106. ftnint informlen;
  107. char *inunf;
  108. ftnlen inunflen;
  109. ftnint *inrecl;
  110. ftnint *innrec;
  111. char *inblank;
  112. ftnlen inblanklen;
  113. } inlist;
  114. #define VOID void
  115. union Multitype { /* for multiple entry points */
  116. integer1 g;
  117. shortint h;
  118. integer i;
  119. /* longint j; */
  120. real r;
  121. doublereal d;
  122. complex c;
  123. doublecomplex z;
  124. };
  125. typedef union Multitype Multitype;
  126. struct Vardesc { /* for Namelist */
  127. char *name;
  128. char *addr;
  129. ftnlen *dims;
  130. int type;
  131. };
  132. typedef struct Vardesc Vardesc;
  133. struct Namelist {
  134. char *name;
  135. Vardesc **vars;
  136. int nvars;
  137. };
  138. typedef struct Namelist Namelist;
  139. #define abs(x) ((x) >= 0 ? (x) : -(x))
  140. #define dabs(x) (fabs(x))
  141. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  142. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  143. #define dmin(a,b) (f2cmin(a,b))
  144. #define dmax(a,b) (f2cmax(a,b))
  145. #define bit_test(a,b) ((a) >> (b) & 1)
  146. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  147. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  148. #define abort_() { sig_die("Fortran abort routine called", 1); }
  149. #define c_abs(z) (cabsf(Cf(z)))
  150. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  151. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  152. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  153. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  154. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  155. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  156. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  157. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  158. #define d_abs(x) (fabs(*(x)))
  159. #define d_acos(x) (acos(*(x)))
  160. #define d_asin(x) (asin(*(x)))
  161. #define d_atan(x) (atan(*(x)))
  162. #define d_atn2(x, y) (atan2(*(x),*(y)))
  163. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  164. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  165. #define d_cos(x) (cos(*(x)))
  166. #define d_cosh(x) (cosh(*(x)))
  167. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  168. #define d_exp(x) (exp(*(x)))
  169. #define d_imag(z) (cimag(Cd(z)))
  170. #define r_imag(z) (cimag(Cf(z)))
  171. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  172. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  173. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  174. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  175. #define d_log(x) (log(*(x)))
  176. #define d_mod(x, y) (fmod(*(x), *(y)))
  177. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  178. #define d_nint(x) u_nint(*(x))
  179. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  180. #define d_sign(a,b) u_sign(*(a),*(b))
  181. #define r_sign(a,b) u_sign(*(a),*(b))
  182. #define d_sin(x) (sin(*(x)))
  183. #define d_sinh(x) (sinh(*(x)))
  184. #define d_sqrt(x) (sqrt(*(x)))
  185. #define d_tan(x) (tan(*(x)))
  186. #define d_tanh(x) (tanh(*(x)))
  187. #define i_abs(x) abs(*(x))
  188. #define i_dnnt(x) ((integer)u_nint(*(x)))
  189. #define i_len(s, n) (n)
  190. #define i_nint(x) ((integer)u_nint(*(x)))
  191. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  192. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  193. #define pow_si(B,E) spow_ui(*(B),*(E))
  194. #define pow_ri(B,E) spow_ui(*(B),*(E))
  195. #define pow_di(B,E) dpow_ui(*(B),*(E))
  196. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  197. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  198. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  199. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  200. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  201. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  202. #define sig_die(s, kill) { exit(1); }
  203. #define s_stop(s, n) {exit(0);}
  204. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  205. #define z_abs(z) (cabs(Cd(z)))
  206. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  207. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  208. #define myexit_() break;
  209. #define mycycle() continue;
  210. #define myceiling(w) {ceil(w)}
  211. #define myhuge(w) {HUGE_VAL}
  212. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  213. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  214. /* procedure parameter types for -A and -C++ */
  215. #define F2C_proc_par_types 1
  216. #ifdef __cplusplus
  217. typedef logical (*L_fp)(...);
  218. #else
  219. typedef logical (*L_fp)();
  220. #endif
  221. static float spow_ui(float x, integer n) {
  222. float pow=1.0; unsigned long int u;
  223. if(n != 0) {
  224. if(n < 0) n = -n, x = 1/x;
  225. for(u = n; ; ) {
  226. if(u & 01) pow *= x;
  227. if(u >>= 1) x *= x;
  228. else break;
  229. }
  230. }
  231. return pow;
  232. }
  233. static double dpow_ui(double x, integer n) {
  234. double pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static _Complex float cpow_ui(_Complex float x, integer n) {
  246. _Complex float pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex double zpow_ui(_Complex double x, integer n) {
  258. _Complex double pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static integer pow_ii(integer x, integer n) {
  270. integer pow; unsigned long int u;
  271. if (n <= 0) {
  272. if (n == 0 || x == 1) pow = 1;
  273. else if (x != -1) pow = x == 0 ? 1/x : 0;
  274. else n = -n;
  275. }
  276. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  277. u = n;
  278. for(pow = 1; ; ) {
  279. if(u & 01) pow *= x;
  280. if(u >>= 1) x *= x;
  281. else break;
  282. }
  283. }
  284. return pow;
  285. }
  286. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  287. {
  288. double m; integer i, mi;
  289. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  290. if (w[i-1]>m) mi=i ,m=w[i-1];
  291. return mi-s+1;
  292. }
  293. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  294. {
  295. float m; integer i, mi;
  296. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  297. if (w[i-1]>m) mi=i ,m=w[i-1];
  298. return mi-s+1;
  299. }
  300. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  301. integer n = *n_, incx = *incx_, incy = *incy_, i;
  302. _Complex float zdotc = 0.0;
  303. if (incx == 1 && incy == 1) {
  304. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  305. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  306. }
  307. } else {
  308. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  309. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  310. }
  311. }
  312. pCf(z) = zdotc;
  313. }
  314. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  315. integer n = *n_, incx = *incx_, incy = *incy_, i;
  316. _Complex double zdotc = 0.0;
  317. if (incx == 1 && incy == 1) {
  318. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  319. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  320. }
  321. } else {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  324. }
  325. }
  326. pCd(z) = zdotc;
  327. }
  328. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  329. integer n = *n_, incx = *incx_, incy = *incy_, i;
  330. _Complex float zdotc = 0.0;
  331. if (incx == 1 && incy == 1) {
  332. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  333. zdotc += Cf(&x[i]) * Cf(&y[i]);
  334. }
  335. } else {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  338. }
  339. }
  340. pCf(z) = zdotc;
  341. }
  342. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  343. integer n = *n_, incx = *incx_, incy = *incy_, i;
  344. _Complex double zdotc = 0.0;
  345. if (incx == 1 && incy == 1) {
  346. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  347. zdotc += Cd(&x[i]) * Cd(&y[i]);
  348. }
  349. } else {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  352. }
  353. }
  354. pCd(z) = zdotc;
  355. }
  356. #endif
  357. /* -- translated by f2c (version 20000121).
  358. You must link the resulting object file with the libraries:
  359. -lf2c -lm (in that order)
  360. */
  361. /* Table of constant values */
  362. static integer c__1 = 1;
  363. static integer c_n1 = -1;
  364. static integer c__3 = 3;
  365. static integer c__2 = 2;
  366. /* > \brief \b ZTZRZF */
  367. /* =========== DOCUMENTATION =========== */
  368. /* Online html documentation available at */
  369. /* http://www.netlib.org/lapack/explore-html/ */
  370. /* > \htmlonly */
  371. /* > Download ZTZRZF + dependencies */
  372. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrzf.
  373. f"> */
  374. /* > [TGZ]</a> */
  375. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrzf.
  376. f"> */
  377. /* > [ZIP]</a> */
  378. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrzf.
  379. f"> */
  380. /* > [TXT]</a> */
  381. /* > \endhtmlonly */
  382. /* Definition: */
  383. /* =========== */
  384. /* SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) */
  385. /* INTEGER INFO, LDA, LWORK, M, N */
  386. /* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */
  387. /* > \par Purpose: */
  388. /* ============= */
  389. /* > */
  390. /* > \verbatim */
  391. /* > */
  392. /* > ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */
  393. /* > to upper triangular form by means of unitary transformations. */
  394. /* > */
  395. /* > The upper trapezoidal matrix A is factored as */
  396. /* > */
  397. /* > A = ( R 0 ) * Z, */
  398. /* > */
  399. /* > where Z is an N-by-N unitary matrix and R is an M-by-M upper */
  400. /* > triangular matrix. */
  401. /* > \endverbatim */
  402. /* Arguments: */
  403. /* ========== */
  404. /* > \param[in] M */
  405. /* > \verbatim */
  406. /* > M is INTEGER */
  407. /* > The number of rows of the matrix A. M >= 0. */
  408. /* > \endverbatim */
  409. /* > */
  410. /* > \param[in] N */
  411. /* > \verbatim */
  412. /* > N is INTEGER */
  413. /* > The number of columns of the matrix A. N >= M. */
  414. /* > \endverbatim */
  415. /* > */
  416. /* > \param[in,out] A */
  417. /* > \verbatim */
  418. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  419. /* > On entry, the leading M-by-N upper trapezoidal part of the */
  420. /* > array A must contain the matrix to be factorized. */
  421. /* > On exit, the leading M-by-M upper triangular part of A */
  422. /* > contains the upper triangular matrix R, and elements M+1 to */
  423. /* > N of the first M rows of A, with the array TAU, represent the */
  424. /* > unitary matrix Z as a product of M elementary reflectors. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] LDA */
  428. /* > \verbatim */
  429. /* > LDA is INTEGER */
  430. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[out] TAU */
  434. /* > \verbatim */
  435. /* > TAU is COMPLEX*16 array, dimension (M) */
  436. /* > The scalar factors of the elementary reflectors. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[out] WORK */
  440. /* > \verbatim */
  441. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  442. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] LWORK */
  446. /* > \verbatim */
  447. /* > LWORK is INTEGER */
  448. /* > The dimension of the array WORK. LWORK >= f2cmax(1,M). */
  449. /* > For optimum performance LWORK >= M*NB, where NB is */
  450. /* > the optimal blocksize. */
  451. /* > */
  452. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  453. /* > only calculates the optimal size of the WORK array, returns */
  454. /* > this value as the first entry of the WORK array, and no error */
  455. /* > message related to LWORK is issued by XERBLA. */
  456. /* > \endverbatim */
  457. /* > */
  458. /* > \param[out] INFO */
  459. /* > \verbatim */
  460. /* > INFO is INTEGER */
  461. /* > = 0: successful exit */
  462. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  463. /* > \endverbatim */
  464. /* Authors: */
  465. /* ======== */
  466. /* > \author Univ. of Tennessee */
  467. /* > \author Univ. of California Berkeley */
  468. /* > \author Univ. of Colorado Denver */
  469. /* > \author NAG Ltd. */
  470. /* > \date April 2012 */
  471. /* > \ingroup complex16OTHERcomputational */
  472. /* > \par Contributors: */
  473. /* ================== */
  474. /* > */
  475. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  476. /* > \par Further Details: */
  477. /* ===================== */
  478. /* > */
  479. /* > \verbatim */
  480. /* > */
  481. /* > The N-by-N matrix Z can be computed by */
  482. /* > */
  483. /* > Z = Z(1)*Z(2)* ... *Z(M) */
  484. /* > */
  485. /* > where each N-by-N Z(k) is given by */
  486. /* > */
  487. /* > Z(k) = I - tau(k)*v(k)*v(k)**H */
  488. /* > */
  489. /* > with v(k) is the kth row vector of the M-by-N matrix */
  490. /* > */
  491. /* > V = ( I A(:,M+1:N) ) */
  492. /* > */
  493. /* > I is the M-by-M identity matrix, A(:,M+1:N) */
  494. /* > is the output stored in A on exit from DTZRZF, */
  495. /* > and tau(k) is the kth element of the array TAU. */
  496. /* > */
  497. /* > \endverbatim */
  498. /* > */
  499. /* ===================================================================== */
  500. /* Subroutine */ int ztzrzf_(integer *m, integer *n, doublecomplex *a,
  501. integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
  502. integer *info)
  503. {
  504. /* System generated locals */
  505. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  506. /* Local variables */
  507. integer i__, nbmin, m1, ib, nb, ki, kk, mu, nx;
  508. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  509. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  510. integer *, integer *, ftnlen, ftnlen);
  511. integer lwkmin, ldwork;
  512. extern /* Subroutine */ int zlarzb_(char *, char *, char *, char *,
  513. integer *, integer *, integer *, integer *, doublecomplex *,
  514. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  515. doublecomplex *, integer *);
  516. integer lwkopt;
  517. logical lquery;
  518. extern /* Subroutine */ int zlarzt_(char *, char *, integer *, integer *,
  519. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  520. integer *), zlatrz_(integer *, integer *, integer
  521. *, doublecomplex *, integer *, doublecomplex *, doublecomplex *);
  522. integer iws;
  523. /* -- LAPACK computational routine (version 3.7.0) -- */
  524. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  525. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  526. /* April 2012 */
  527. /* ===================================================================== */
  528. /* Test the input arguments */
  529. /* Parameter adjustments */
  530. a_dim1 = *lda;
  531. a_offset = 1 + a_dim1 * 1;
  532. a -= a_offset;
  533. --tau;
  534. --work;
  535. /* Function Body */
  536. *info = 0;
  537. lquery = *lwork == -1;
  538. if (*m < 0) {
  539. *info = -1;
  540. } else if (*n < *m) {
  541. *info = -2;
  542. } else if (*lda < f2cmax(1,*m)) {
  543. *info = -4;
  544. }
  545. if (*info == 0) {
  546. if (*m == 0 || *m == *n) {
  547. lwkopt = 1;
  548. lwkmin = 1;
  549. } else {
  550. /* Determine the block size. */
  551. nb = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  552. (ftnlen)1);
  553. lwkopt = *m * nb;
  554. lwkmin = f2cmax(1,*m);
  555. }
  556. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  557. if (*lwork < lwkmin && ! lquery) {
  558. *info = -7;
  559. }
  560. }
  561. if (*info != 0) {
  562. i__1 = -(*info);
  563. xerbla_("ZTZRZF", &i__1, (ftnlen)6);
  564. return 0;
  565. } else if (lquery) {
  566. return 0;
  567. }
  568. /* Quick return if possible */
  569. if (*m == 0) {
  570. return 0;
  571. } else if (*m == *n) {
  572. i__1 = *n;
  573. for (i__ = 1; i__ <= i__1; ++i__) {
  574. i__2 = i__;
  575. tau[i__2].r = 0., tau[i__2].i = 0.;
  576. /* L10: */
  577. }
  578. return 0;
  579. }
  580. nbmin = 2;
  581. nx = 1;
  582. iws = *m;
  583. if (nb > 1 && nb < *m) {
  584. /* Determine when to cross over from blocked to unblocked code. */
  585. /* Computing MAX */
  586. i__1 = 0, i__2 = ilaenv_(&c__3, "ZGERQF", " ", m, n, &c_n1, &c_n1, (
  587. ftnlen)6, (ftnlen)1);
  588. nx = f2cmax(i__1,i__2);
  589. if (nx < *m) {
  590. /* Determine if workspace is large enough for blocked code. */
  591. ldwork = *m;
  592. iws = ldwork * nb;
  593. if (*lwork < iws) {
  594. /* Not enough workspace to use optimal NB: reduce NB and */
  595. /* determine the minimum value of NB. */
  596. nb = *lwork / ldwork;
  597. /* Computing MAX */
  598. i__1 = 2, i__2 = ilaenv_(&c__2, "ZGERQF", " ", m, n, &c_n1, &
  599. c_n1, (ftnlen)6, (ftnlen)1);
  600. nbmin = f2cmax(i__1,i__2);
  601. }
  602. }
  603. }
  604. if (nb >= nbmin && nb < *m && nx < *m) {
  605. /* Use blocked code initially. */
  606. /* The last kk rows are handled by the block method. */
  607. /* Computing MIN */
  608. i__1 = *m + 1;
  609. m1 = f2cmin(i__1,*n);
  610. ki = (*m - nx - 1) / nb * nb;
  611. /* Computing MIN */
  612. i__1 = *m, i__2 = ki + nb;
  613. kk = f2cmin(i__1,i__2);
  614. i__1 = *m - kk + 1;
  615. i__2 = -nb;
  616. for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
  617. i__ += i__2) {
  618. /* Computing MIN */
  619. i__3 = *m - i__ + 1;
  620. ib = f2cmin(i__3,nb);
  621. /* Compute the TZ factorization of the current block */
  622. /* A(i:i+ib-1,i:n) */
  623. i__3 = *n - i__ + 1;
  624. i__4 = *n - *m;
  625. zlatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__],
  626. &work[1]);
  627. if (i__ > 1) {
  628. /* Form the triangular factor of the block reflector */
  629. /* H = H(i+ib-1) . . . H(i+1) H(i) */
  630. i__3 = *n - *m;
  631. zlarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 *
  632. a_dim1], lda, &tau[i__], &work[1], &ldwork);
  633. /* Apply H to A(1:i-1,i:n) from the right */
  634. i__3 = i__ - 1;
  635. i__4 = *n - i__ + 1;
  636. i__5 = *n - *m;
  637. zlarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3,
  638. &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[
  639. 1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1],
  640. &ldwork)
  641. ;
  642. }
  643. /* L20: */
  644. }
  645. mu = i__ + nb - 1;
  646. } else {
  647. mu = *m;
  648. }
  649. /* Use unblocked code to factor the last or only block */
  650. if (mu > 0) {
  651. i__2 = *n - *m;
  652. zlatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]);
  653. }
  654. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  655. return 0;
  656. /* End of ZTZRZF */
  657. } /* ztzrzf_ */