You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrsyl.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. typedef int integer;
  18. typedef unsigned int uinteger;
  19. typedef char *address;
  20. typedef short int shortint;
  21. typedef float real;
  22. typedef double doublereal;
  23. typedef struct { real r, i; } complex;
  24. typedef struct { doublereal r, i; } doublecomplex;
  25. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  26. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  27. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  28. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  29. #define pCf(z) (*_pCf(z))
  30. #define pCd(z) (*_pCd(z))
  31. typedef int logical;
  32. typedef short int shortlogical;
  33. typedef char logical1;
  34. typedef char integer1;
  35. #define TRUE_ (1)
  36. #define FALSE_ (0)
  37. /* Extern is for use with -E */
  38. #ifndef Extern
  39. #define Extern extern
  40. #endif
  41. /* I/O stuff */
  42. typedef int flag;
  43. typedef int ftnlen;
  44. typedef int ftnint;
  45. /*external read, write*/
  46. typedef struct
  47. { flag cierr;
  48. ftnint ciunit;
  49. flag ciend;
  50. char *cifmt;
  51. ftnint cirec;
  52. } cilist;
  53. /*internal read, write*/
  54. typedef struct
  55. { flag icierr;
  56. char *iciunit;
  57. flag iciend;
  58. char *icifmt;
  59. ftnint icirlen;
  60. ftnint icirnum;
  61. } icilist;
  62. /*open*/
  63. typedef struct
  64. { flag oerr;
  65. ftnint ounit;
  66. char *ofnm;
  67. ftnlen ofnmlen;
  68. char *osta;
  69. char *oacc;
  70. char *ofm;
  71. ftnint orl;
  72. char *oblnk;
  73. } olist;
  74. /*close*/
  75. typedef struct
  76. { flag cerr;
  77. ftnint cunit;
  78. char *csta;
  79. } cllist;
  80. /*rewind, backspace, endfile*/
  81. typedef struct
  82. { flag aerr;
  83. ftnint aunit;
  84. } alist;
  85. /* inquire */
  86. typedef struct
  87. { flag inerr;
  88. ftnint inunit;
  89. char *infile;
  90. ftnlen infilen;
  91. ftnint *inex; /*parameters in standard's order*/
  92. ftnint *inopen;
  93. ftnint *innum;
  94. ftnint *innamed;
  95. char *inname;
  96. ftnlen innamlen;
  97. char *inacc;
  98. ftnlen inacclen;
  99. char *inseq;
  100. ftnlen inseqlen;
  101. char *indir;
  102. ftnlen indirlen;
  103. char *infmt;
  104. ftnlen infmtlen;
  105. char *inform;
  106. ftnint informlen;
  107. char *inunf;
  108. ftnlen inunflen;
  109. ftnint *inrecl;
  110. ftnint *innrec;
  111. char *inblank;
  112. ftnlen inblanklen;
  113. } inlist;
  114. #define VOID void
  115. union Multitype { /* for multiple entry points */
  116. integer1 g;
  117. shortint h;
  118. integer i;
  119. /* longint j; */
  120. real r;
  121. doublereal d;
  122. complex c;
  123. doublecomplex z;
  124. };
  125. typedef union Multitype Multitype;
  126. struct Vardesc { /* for Namelist */
  127. char *name;
  128. char *addr;
  129. ftnlen *dims;
  130. int type;
  131. };
  132. typedef struct Vardesc Vardesc;
  133. struct Namelist {
  134. char *name;
  135. Vardesc **vars;
  136. int nvars;
  137. };
  138. typedef struct Namelist Namelist;
  139. #define abs(x) ((x) >= 0 ? (x) : -(x))
  140. #define dabs(x) (fabs(x))
  141. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  142. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  143. #define dmin(a,b) (f2cmin(a,b))
  144. #define dmax(a,b) (f2cmax(a,b))
  145. #define bit_test(a,b) ((a) >> (b) & 1)
  146. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  147. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  148. #define abort_() { sig_die("Fortran abort routine called", 1); }
  149. #define c_abs(z) (cabsf(Cf(z)))
  150. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  151. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  152. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  153. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  154. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  155. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  156. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  157. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  158. #define d_abs(x) (fabs(*(x)))
  159. #define d_acos(x) (acos(*(x)))
  160. #define d_asin(x) (asin(*(x)))
  161. #define d_atan(x) (atan(*(x)))
  162. #define d_atn2(x, y) (atan2(*(x),*(y)))
  163. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  164. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  165. #define d_cos(x) (cos(*(x)))
  166. #define d_cosh(x) (cosh(*(x)))
  167. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  168. #define d_exp(x) (exp(*(x)))
  169. #define d_imag(z) (cimag(Cd(z)))
  170. #define r_imag(z) (cimag(Cf(z)))
  171. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  172. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  173. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  174. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  175. #define d_log(x) (log(*(x)))
  176. #define d_mod(x, y) (fmod(*(x), *(y)))
  177. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  178. #define d_nint(x) u_nint(*(x))
  179. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  180. #define d_sign(a,b) u_sign(*(a),*(b))
  181. #define r_sign(a,b) u_sign(*(a),*(b))
  182. #define d_sin(x) (sin(*(x)))
  183. #define d_sinh(x) (sinh(*(x)))
  184. #define d_sqrt(x) (sqrt(*(x)))
  185. #define d_tan(x) (tan(*(x)))
  186. #define d_tanh(x) (tanh(*(x)))
  187. #define i_abs(x) abs(*(x))
  188. #define i_dnnt(x) ((integer)u_nint(*(x)))
  189. #define i_len(s, n) (n)
  190. #define i_nint(x) ((integer)u_nint(*(x)))
  191. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  192. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  193. #define pow_si(B,E) spow_ui(*(B),*(E))
  194. #define pow_ri(B,E) spow_ui(*(B),*(E))
  195. #define pow_di(B,E) dpow_ui(*(B),*(E))
  196. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  197. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  198. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  199. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  200. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  201. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  202. #define sig_die(s, kill) { exit(1); }
  203. #define s_stop(s, n) {exit(0);}
  204. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  205. #define z_abs(z) (cabs(Cd(z)))
  206. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  207. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  208. #define myexit_() break;
  209. #define mycycle() continue;
  210. #define myceiling(w) {ceil(w)}
  211. #define myhuge(w) {HUGE_VAL}
  212. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  213. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  214. /* procedure parameter types for -A and -C++ */
  215. #define F2C_proc_par_types 1
  216. #ifdef __cplusplus
  217. typedef logical (*L_fp)(...);
  218. #else
  219. typedef logical (*L_fp)();
  220. #endif
  221. static float spow_ui(float x, integer n) {
  222. float pow=1.0; unsigned long int u;
  223. if(n != 0) {
  224. if(n < 0) n = -n, x = 1/x;
  225. for(u = n; ; ) {
  226. if(u & 01) pow *= x;
  227. if(u >>= 1) x *= x;
  228. else break;
  229. }
  230. }
  231. return pow;
  232. }
  233. static double dpow_ui(double x, integer n) {
  234. double pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static _Complex float cpow_ui(_Complex float x, integer n) {
  246. _Complex float pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex double zpow_ui(_Complex double x, integer n) {
  258. _Complex double pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static integer pow_ii(integer x, integer n) {
  270. integer pow; unsigned long int u;
  271. if (n <= 0) {
  272. if (n == 0 || x == 1) pow = 1;
  273. else if (x != -1) pow = x == 0 ? 1/x : 0;
  274. else n = -n;
  275. }
  276. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  277. u = n;
  278. for(pow = 1; ; ) {
  279. if(u & 01) pow *= x;
  280. if(u >>= 1) x *= x;
  281. else break;
  282. }
  283. }
  284. return pow;
  285. }
  286. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  287. {
  288. double m; integer i, mi;
  289. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  290. if (w[i-1]>m) mi=i ,m=w[i-1];
  291. return mi-s+1;
  292. }
  293. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  294. {
  295. float m; integer i, mi;
  296. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  297. if (w[i-1]>m) mi=i ,m=w[i-1];
  298. return mi-s+1;
  299. }
  300. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  301. integer n = *n_, incx = *incx_, incy = *incy_, i;
  302. _Complex float zdotc = 0.0;
  303. if (incx == 1 && incy == 1) {
  304. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  305. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  306. }
  307. } else {
  308. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  309. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  310. }
  311. }
  312. pCf(z) = zdotc;
  313. }
  314. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  315. integer n = *n_, incx = *incx_, incy = *incy_, i;
  316. _Complex double zdotc = 0.0;
  317. if (incx == 1 && incy == 1) {
  318. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  319. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  320. }
  321. } else {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  324. }
  325. }
  326. pCd(z) = zdotc;
  327. }
  328. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  329. integer n = *n_, incx = *incx_, incy = *incy_, i;
  330. _Complex float zdotc = 0.0;
  331. if (incx == 1 && incy == 1) {
  332. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  333. zdotc += Cf(&x[i]) * Cf(&y[i]);
  334. }
  335. } else {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  338. }
  339. }
  340. pCf(z) = zdotc;
  341. }
  342. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  343. integer n = *n_, incx = *incx_, incy = *incy_, i;
  344. _Complex double zdotc = 0.0;
  345. if (incx == 1 && incy == 1) {
  346. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  347. zdotc += Cd(&x[i]) * Cd(&y[i]);
  348. }
  349. } else {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  352. }
  353. }
  354. pCd(z) = zdotc;
  355. }
  356. #endif
  357. /* -- translated by f2c (version 20000121).
  358. You must link the resulting object file with the libraries:
  359. -lf2c -lm (in that order)
  360. */
  361. /* Table of constant values */
  362. static integer c__1 = 1;
  363. /* > \brief \b ZTRSYL */
  364. /* =========== DOCUMENTATION =========== */
  365. /* Online html documentation available at */
  366. /* http://www.netlib.org/lapack/explore-html/ */
  367. /* > \htmlonly */
  368. /* > Download ZTRSYL + dependencies */
  369. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsyl.
  370. f"> */
  371. /* > [TGZ]</a> */
  372. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsyl.
  373. f"> */
  374. /* > [ZIP]</a> */
  375. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsyl.
  376. f"> */
  377. /* > [TXT]</a> */
  378. /* > \endhtmlonly */
  379. /* Definition: */
  380. /* =========== */
  381. /* SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  382. /* LDC, SCALE, INFO ) */
  383. /* CHARACTER TRANA, TRANB */
  384. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  385. /* DOUBLE PRECISION SCALE */
  386. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  387. /* > \par Purpose: */
  388. /* ============= */
  389. /* > */
  390. /* > \verbatim */
  391. /* > */
  392. /* > ZTRSYL solves the complex Sylvester matrix equation: */
  393. /* > */
  394. /* > op(A)*X + X*op(B) = scale*C or */
  395. /* > op(A)*X - X*op(B) = scale*C, */
  396. /* > */
  397. /* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
  398. /* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
  399. /* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
  400. /* > overflow in X. */
  401. /* > \endverbatim */
  402. /* Arguments: */
  403. /* ========== */
  404. /* > \param[in] TRANA */
  405. /* > \verbatim */
  406. /* > TRANA is CHARACTER*1 */
  407. /* > Specifies the option op(A): */
  408. /* > = 'N': op(A) = A (No transpose) */
  409. /* > = 'C': op(A) = A**H (Conjugate transpose) */
  410. /* > \endverbatim */
  411. /* > */
  412. /* > \param[in] TRANB */
  413. /* > \verbatim */
  414. /* > TRANB is CHARACTER*1 */
  415. /* > Specifies the option op(B): */
  416. /* > = 'N': op(B) = B (No transpose) */
  417. /* > = 'C': op(B) = B**H (Conjugate transpose) */
  418. /* > \endverbatim */
  419. /* > */
  420. /* > \param[in] ISGN */
  421. /* > \verbatim */
  422. /* > ISGN is INTEGER */
  423. /* > Specifies the sign in the equation: */
  424. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  425. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in] M */
  429. /* > \verbatim */
  430. /* > M is INTEGER */
  431. /* > The order of the matrix A, and the number of rows in the */
  432. /* > matrices X and C. M >= 0. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] N */
  436. /* > \verbatim */
  437. /* > N is INTEGER */
  438. /* > The order of the matrix B, and the number of columns in the */
  439. /* > matrices X and C. N >= 0. */
  440. /* > \endverbatim */
  441. /* > */
  442. /* > \param[in] A */
  443. /* > \verbatim */
  444. /* > A is COMPLEX*16 array, dimension (LDA,M) */
  445. /* > The upper triangular matrix A. */
  446. /* > \endverbatim */
  447. /* > */
  448. /* > \param[in] LDA */
  449. /* > \verbatim */
  450. /* > LDA is INTEGER */
  451. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[in] B */
  455. /* > \verbatim */
  456. /* > B is COMPLEX*16 array, dimension (LDB,N) */
  457. /* > The upper triangular matrix B. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[in] LDB */
  461. /* > \verbatim */
  462. /* > LDB is INTEGER */
  463. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[in,out] C */
  467. /* > \verbatim */
  468. /* > C is COMPLEX*16 array, dimension (LDC,N) */
  469. /* > On entry, the M-by-N right hand side matrix C. */
  470. /* > On exit, C is overwritten by the solution matrix X. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] LDC */
  474. /* > \verbatim */
  475. /* > LDC is INTEGER */
  476. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  477. /* > \endverbatim */
  478. /* > */
  479. /* > \param[out] SCALE */
  480. /* > \verbatim */
  481. /* > SCALE is DOUBLE PRECISION */
  482. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  483. /* > \endverbatim */
  484. /* > */
  485. /* > \param[out] INFO */
  486. /* > \verbatim */
  487. /* > INFO is INTEGER */
  488. /* > = 0: successful exit */
  489. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  490. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  491. /* > values were used to solve the equation (but the matrices */
  492. /* > A and B are unchanged). */
  493. /* > \endverbatim */
  494. /* Authors: */
  495. /* ======== */
  496. /* > \author Univ. of Tennessee */
  497. /* > \author Univ. of California Berkeley */
  498. /* > \author Univ. of Colorado Denver */
  499. /* > \author NAG Ltd. */
  500. /* > \date December 2016 */
  501. /* > \ingroup complex16SYcomputational */
  502. /* ===================================================================== */
  503. /* Subroutine */ int ztrsyl_(char *trana, char *tranb, integer *isgn, integer
  504. *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
  505. integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale,
  506. integer *info)
  507. {
  508. /* System generated locals */
  509. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  510. i__3, i__4;
  511. doublereal d__1, d__2;
  512. doublecomplex z__1, z__2, z__3, z__4;
  513. /* Local variables */
  514. doublereal smin;
  515. doublecomplex suml, sumr;
  516. integer j, k, l;
  517. extern logical lsame_(char *, char *);
  518. extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
  519. doublecomplex *, integer *, doublecomplex *, integer *), zdotu_(
  520. doublecomplex *, integer *, doublecomplex *, integer *,
  521. doublecomplex *, integer *);
  522. doublecomplex a11;
  523. doublereal db;
  524. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
  525. extern doublereal dlamch_(char *);
  526. doublecomplex x11;
  527. doublereal scaloc;
  528. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  529. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  530. integer *, doublereal *);
  531. doublereal bignum;
  532. extern /* Subroutine */ int zdscal_(integer *, doublereal *,
  533. doublecomplex *, integer *);
  534. extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
  535. doublecomplex *);
  536. logical notrna, notrnb;
  537. doublereal smlnum, da11;
  538. doublecomplex vec;
  539. doublereal dum[1], eps, sgn;
  540. /* -- LAPACK computational routine (version 3.7.0) -- */
  541. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  542. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  543. /* December 2016 */
  544. /* ===================================================================== */
  545. /* Decode and Test input parameters */
  546. /* Parameter adjustments */
  547. a_dim1 = *lda;
  548. a_offset = 1 + a_dim1 * 1;
  549. a -= a_offset;
  550. b_dim1 = *ldb;
  551. b_offset = 1 + b_dim1 * 1;
  552. b -= b_offset;
  553. c_dim1 = *ldc;
  554. c_offset = 1 + c_dim1 * 1;
  555. c__ -= c_offset;
  556. /* Function Body */
  557. notrna = lsame_(trana, "N");
  558. notrnb = lsame_(tranb, "N");
  559. *info = 0;
  560. if (! notrna && ! lsame_(trana, "C")) {
  561. *info = -1;
  562. } else if (! notrnb && ! lsame_(tranb, "C")) {
  563. *info = -2;
  564. } else if (*isgn != 1 && *isgn != -1) {
  565. *info = -3;
  566. } else if (*m < 0) {
  567. *info = -4;
  568. } else if (*n < 0) {
  569. *info = -5;
  570. } else if (*lda < f2cmax(1,*m)) {
  571. *info = -7;
  572. } else if (*ldb < f2cmax(1,*n)) {
  573. *info = -9;
  574. } else if (*ldc < f2cmax(1,*m)) {
  575. *info = -11;
  576. }
  577. if (*info != 0) {
  578. i__1 = -(*info);
  579. xerbla_("ZTRSYL", &i__1, (ftnlen)6);
  580. return 0;
  581. }
  582. /* Quick return if possible */
  583. *scale = 1.;
  584. if (*m == 0 || *n == 0) {
  585. return 0;
  586. }
  587. /* Set constants to control overflow */
  588. eps = dlamch_("P");
  589. smlnum = dlamch_("S");
  590. bignum = 1. / smlnum;
  591. dlabad_(&smlnum, &bignum);
  592. smlnum = smlnum * (doublereal) (*m * *n) / eps;
  593. bignum = 1. / smlnum;
  594. /* Computing MAX */
  595. d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = f2cmax(d__1,d__2), d__2 = eps * zlange_("M", n, n,
  596. &b[b_offset], ldb, dum);
  597. smin = f2cmax(d__1,d__2);
  598. sgn = (doublereal) (*isgn);
  599. if (notrna && notrnb) {
  600. /* Solve A*X + ISGN*X*B = scale*C. */
  601. /* The (K,L)th block of X is determined starting from */
  602. /* bottom-left corner column by column by */
  603. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  604. /* Where */
  605. /* M L-1 */
  606. /* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
  607. /* I=K+1 J=1 */
  608. i__1 = *n;
  609. for (l = 1; l <= i__1; ++l) {
  610. for (k = *m; k >= 1; --k) {
  611. i__2 = *m - k;
  612. /* Computing MIN */
  613. i__3 = k + 1;
  614. /* Computing MIN */
  615. i__4 = k + 1;
  616. zdotu_(&z__1, &i__2, &a[k + f2cmin(i__3,*m) * a_dim1], lda, &c__[
  617. f2cmin(i__4,*m) + l * c_dim1], &c__1);
  618. suml.r = z__1.r, suml.i = z__1.i;
  619. i__2 = l - 1;
  620. zdotu_(&z__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  621. , &c__1);
  622. sumr.r = z__1.r, sumr.i = z__1.i;
  623. i__2 = k + l * c_dim1;
  624. z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
  625. z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
  626. z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
  627. vec.r = z__1.r, vec.i = z__1.i;
  628. scaloc = 1.;
  629. i__2 = k + k * a_dim1;
  630. i__3 = l + l * b_dim1;
  631. z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i;
  632. z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i;
  633. a11.r = z__1.r, a11.i = z__1.i;
  634. da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
  635. d__2));
  636. if (da11 <= smin) {
  637. a11.r = smin, a11.i = 0.;
  638. da11 = smin;
  639. *info = 1;
  640. }
  641. db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
  642. d__2));
  643. if (da11 < 1. && db > 1.) {
  644. if (db > bignum * da11) {
  645. scaloc = 1. / db;
  646. }
  647. }
  648. z__3.r = scaloc, z__3.i = 0.;
  649. z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
  650. z__3.i + vec.i * z__3.r;
  651. zladiv_(&z__1, &z__2, &a11);
  652. x11.r = z__1.r, x11.i = z__1.i;
  653. if (scaloc != 1.) {
  654. i__2 = *n;
  655. for (j = 1; j <= i__2; ++j) {
  656. zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  657. /* L10: */
  658. }
  659. *scale *= scaloc;
  660. }
  661. i__2 = k + l * c_dim1;
  662. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  663. /* L20: */
  664. }
  665. /* L30: */
  666. }
  667. } else if (! notrna && notrnb) {
  668. /* Solve A**H *X + ISGN*X*B = scale*C. */
  669. /* The (K,L)th block of X is determined starting from */
  670. /* upper-left corner column by column by */
  671. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  672. /* Where */
  673. /* K-1 L-1 */
  674. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
  675. /* I=1 J=1 */
  676. i__1 = *n;
  677. for (l = 1; l <= i__1; ++l) {
  678. i__2 = *m;
  679. for (k = 1; k <= i__2; ++k) {
  680. i__3 = k - 1;
  681. zdotc_(&z__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
  682. c_dim1 + 1], &c__1);
  683. suml.r = z__1.r, suml.i = z__1.i;
  684. i__3 = l - 1;
  685. zdotu_(&z__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  686. , &c__1);
  687. sumr.r = z__1.r, sumr.i = z__1.i;
  688. i__3 = k + l * c_dim1;
  689. z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
  690. z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
  691. z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
  692. vec.r = z__1.r, vec.i = z__1.i;
  693. scaloc = 1.;
  694. d_cnjg(&z__2, &a[k + k * a_dim1]);
  695. i__3 = l + l * b_dim1;
  696. z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
  697. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  698. a11.r = z__1.r, a11.i = z__1.i;
  699. da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
  700. d__2));
  701. if (da11 <= smin) {
  702. a11.r = smin, a11.i = 0.;
  703. da11 = smin;
  704. *info = 1;
  705. }
  706. db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
  707. d__2));
  708. if (da11 < 1. && db > 1.) {
  709. if (db > bignum * da11) {
  710. scaloc = 1. / db;
  711. }
  712. }
  713. z__3.r = scaloc, z__3.i = 0.;
  714. z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
  715. z__3.i + vec.i * z__3.r;
  716. zladiv_(&z__1, &z__2, &a11);
  717. x11.r = z__1.r, x11.i = z__1.i;
  718. if (scaloc != 1.) {
  719. i__3 = *n;
  720. for (j = 1; j <= i__3; ++j) {
  721. zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  722. /* L40: */
  723. }
  724. *scale *= scaloc;
  725. }
  726. i__3 = k + l * c_dim1;
  727. c__[i__3].r = x11.r, c__[i__3].i = x11.i;
  728. /* L50: */
  729. }
  730. /* L60: */
  731. }
  732. } else if (! notrna && ! notrnb) {
  733. /* Solve A**H*X + ISGN*X*B**H = C. */
  734. /* The (K,L)th block of X is determined starting from */
  735. /* upper-right corner column by column by */
  736. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  737. /* Where */
  738. /* K-1 */
  739. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + */
  740. /* I=1 */
  741. /* N */
  742. /* ISGN*SUM [X(K,J)*B**H(L,J)]. */
  743. /* J=L+1 */
  744. for (l = *n; l >= 1; --l) {
  745. i__1 = *m;
  746. for (k = 1; k <= i__1; ++k) {
  747. i__2 = k - 1;
  748. zdotc_(&z__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
  749. c_dim1 + 1], &c__1);
  750. suml.r = z__1.r, suml.i = z__1.i;
  751. i__2 = *n - l;
  752. /* Computing MIN */
  753. i__3 = l + 1;
  754. /* Computing MIN */
  755. i__4 = l + 1;
  756. zdotc_(&z__1, &i__2, &c__[k + f2cmin(i__3,*n) * c_dim1], ldc, &b[
  757. l + f2cmin(i__4,*n) * b_dim1], ldb);
  758. sumr.r = z__1.r, sumr.i = z__1.i;
  759. i__2 = k + l * c_dim1;
  760. d_cnjg(&z__4, &sumr);
  761. z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
  762. z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
  763. z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
  764. vec.r = z__1.r, vec.i = z__1.i;
  765. scaloc = 1.;
  766. i__2 = k + k * a_dim1;
  767. i__3 = l + l * b_dim1;
  768. z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
  769. z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i;
  770. d_cnjg(&z__1, &z__2);
  771. a11.r = z__1.r, a11.i = z__1.i;
  772. da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
  773. d__2));
  774. if (da11 <= smin) {
  775. a11.r = smin, a11.i = 0.;
  776. da11 = smin;
  777. *info = 1;
  778. }
  779. db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
  780. d__2));
  781. if (da11 < 1. && db > 1.) {
  782. if (db > bignum * da11) {
  783. scaloc = 1. / db;
  784. }
  785. }
  786. z__3.r = scaloc, z__3.i = 0.;
  787. z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
  788. z__3.i + vec.i * z__3.r;
  789. zladiv_(&z__1, &z__2, &a11);
  790. x11.r = z__1.r, x11.i = z__1.i;
  791. if (scaloc != 1.) {
  792. i__2 = *n;
  793. for (j = 1; j <= i__2; ++j) {
  794. zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  795. /* L70: */
  796. }
  797. *scale *= scaloc;
  798. }
  799. i__2 = k + l * c_dim1;
  800. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  801. /* L80: */
  802. }
  803. /* L90: */
  804. }
  805. } else if (notrna && ! notrnb) {
  806. /* Solve A*X + ISGN*X*B**H = C. */
  807. /* The (K,L)th block of X is determined starting from */
  808. /* bottom-left corner column by column by */
  809. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  810. /* Where */
  811. /* M N */
  812. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] */
  813. /* I=K+1 J=L+1 */
  814. for (l = *n; l >= 1; --l) {
  815. for (k = *m; k >= 1; --k) {
  816. i__1 = *m - k;
  817. /* Computing MIN */
  818. i__2 = k + 1;
  819. /* Computing MIN */
  820. i__3 = k + 1;
  821. zdotu_(&z__1, &i__1, &a[k + f2cmin(i__2,*m) * a_dim1], lda, &c__[
  822. f2cmin(i__3,*m) + l * c_dim1], &c__1);
  823. suml.r = z__1.r, suml.i = z__1.i;
  824. i__1 = *n - l;
  825. /* Computing MIN */
  826. i__2 = l + 1;
  827. /* Computing MIN */
  828. i__3 = l + 1;
  829. zdotc_(&z__1, &i__1, &c__[k + f2cmin(i__2,*n) * c_dim1], ldc, &b[
  830. l + f2cmin(i__3,*n) * b_dim1], ldb);
  831. sumr.r = z__1.r, sumr.i = z__1.i;
  832. i__1 = k + l * c_dim1;
  833. d_cnjg(&z__4, &sumr);
  834. z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
  835. z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
  836. z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i;
  837. vec.r = z__1.r, vec.i = z__1.i;
  838. scaloc = 1.;
  839. i__1 = k + k * a_dim1;
  840. d_cnjg(&z__3, &b[l + l * b_dim1]);
  841. z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i;
  842. z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i;
  843. a11.r = z__1.r, a11.i = z__1.i;
  844. da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
  845. d__2));
  846. if (da11 <= smin) {
  847. a11.r = smin, a11.i = 0.;
  848. da11 = smin;
  849. *info = 1;
  850. }
  851. db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
  852. d__2));
  853. if (da11 < 1. && db > 1.) {
  854. if (db > bignum * da11) {
  855. scaloc = 1. / db;
  856. }
  857. }
  858. z__3.r = scaloc, z__3.i = 0.;
  859. z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
  860. z__3.i + vec.i * z__3.r;
  861. zladiv_(&z__1, &z__2, &a11);
  862. x11.r = z__1.r, x11.i = z__1.i;
  863. if (scaloc != 1.) {
  864. i__1 = *n;
  865. for (j = 1; j <= i__1; ++j) {
  866. zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  867. /* L100: */
  868. }
  869. *scale *= scaloc;
  870. }
  871. i__1 = k + l * c_dim1;
  872. c__[i__1].r = x11.r, c__[i__1].i = x11.i;
  873. /* L110: */
  874. }
  875. /* L120: */
  876. }
  877. }
  878. return 0;
  879. /* End of ZTRSYL */
  880. } /* ztrsyl_ */