You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrsen.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. typedef int integer;
  18. typedef unsigned int uinteger;
  19. typedef char *address;
  20. typedef short int shortint;
  21. typedef float real;
  22. typedef double doublereal;
  23. typedef struct { real r, i; } complex;
  24. typedef struct { doublereal r, i; } doublecomplex;
  25. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  26. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  27. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  28. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  29. #define pCf(z) (*_pCf(z))
  30. #define pCd(z) (*_pCd(z))
  31. typedef int logical;
  32. typedef short int shortlogical;
  33. typedef char logical1;
  34. typedef char integer1;
  35. #define TRUE_ (1)
  36. #define FALSE_ (0)
  37. /* Extern is for use with -E */
  38. #ifndef Extern
  39. #define Extern extern
  40. #endif
  41. /* I/O stuff */
  42. typedef int flag;
  43. typedef int ftnlen;
  44. typedef int ftnint;
  45. /*external read, write*/
  46. typedef struct
  47. { flag cierr;
  48. ftnint ciunit;
  49. flag ciend;
  50. char *cifmt;
  51. ftnint cirec;
  52. } cilist;
  53. /*internal read, write*/
  54. typedef struct
  55. { flag icierr;
  56. char *iciunit;
  57. flag iciend;
  58. char *icifmt;
  59. ftnint icirlen;
  60. ftnint icirnum;
  61. } icilist;
  62. /*open*/
  63. typedef struct
  64. { flag oerr;
  65. ftnint ounit;
  66. char *ofnm;
  67. ftnlen ofnmlen;
  68. char *osta;
  69. char *oacc;
  70. char *ofm;
  71. ftnint orl;
  72. char *oblnk;
  73. } olist;
  74. /*close*/
  75. typedef struct
  76. { flag cerr;
  77. ftnint cunit;
  78. char *csta;
  79. } cllist;
  80. /*rewind, backspace, endfile*/
  81. typedef struct
  82. { flag aerr;
  83. ftnint aunit;
  84. } alist;
  85. /* inquire */
  86. typedef struct
  87. { flag inerr;
  88. ftnint inunit;
  89. char *infile;
  90. ftnlen infilen;
  91. ftnint *inex; /*parameters in standard's order*/
  92. ftnint *inopen;
  93. ftnint *innum;
  94. ftnint *innamed;
  95. char *inname;
  96. ftnlen innamlen;
  97. char *inacc;
  98. ftnlen inacclen;
  99. char *inseq;
  100. ftnlen inseqlen;
  101. char *indir;
  102. ftnlen indirlen;
  103. char *infmt;
  104. ftnlen infmtlen;
  105. char *inform;
  106. ftnint informlen;
  107. char *inunf;
  108. ftnlen inunflen;
  109. ftnint *inrecl;
  110. ftnint *innrec;
  111. char *inblank;
  112. ftnlen inblanklen;
  113. } inlist;
  114. #define VOID void
  115. union Multitype { /* for multiple entry points */
  116. integer1 g;
  117. shortint h;
  118. integer i;
  119. /* longint j; */
  120. real r;
  121. doublereal d;
  122. complex c;
  123. doublecomplex z;
  124. };
  125. typedef union Multitype Multitype;
  126. struct Vardesc { /* for Namelist */
  127. char *name;
  128. char *addr;
  129. ftnlen *dims;
  130. int type;
  131. };
  132. typedef struct Vardesc Vardesc;
  133. struct Namelist {
  134. char *name;
  135. Vardesc **vars;
  136. int nvars;
  137. };
  138. typedef struct Namelist Namelist;
  139. #define abs(x) ((x) >= 0 ? (x) : -(x))
  140. #define dabs(x) (fabs(x))
  141. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  142. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  143. #define dmin(a,b) (f2cmin(a,b))
  144. #define dmax(a,b) (f2cmax(a,b))
  145. #define bit_test(a,b) ((a) >> (b) & 1)
  146. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  147. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  148. #define abort_() { sig_die("Fortran abort routine called", 1); }
  149. #define c_abs(z) (cabsf(Cf(z)))
  150. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  151. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  152. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  153. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  154. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  155. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  156. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  157. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  158. #define d_abs(x) (fabs(*(x)))
  159. #define d_acos(x) (acos(*(x)))
  160. #define d_asin(x) (asin(*(x)))
  161. #define d_atan(x) (atan(*(x)))
  162. #define d_atn2(x, y) (atan2(*(x),*(y)))
  163. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  164. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  165. #define d_cos(x) (cos(*(x)))
  166. #define d_cosh(x) (cosh(*(x)))
  167. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  168. #define d_exp(x) (exp(*(x)))
  169. #define d_imag(z) (cimag(Cd(z)))
  170. #define r_imag(z) (cimag(Cf(z)))
  171. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  172. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  173. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  174. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  175. #define d_log(x) (log(*(x)))
  176. #define d_mod(x, y) (fmod(*(x), *(y)))
  177. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  178. #define d_nint(x) u_nint(*(x))
  179. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  180. #define d_sign(a,b) u_sign(*(a),*(b))
  181. #define r_sign(a,b) u_sign(*(a),*(b))
  182. #define d_sin(x) (sin(*(x)))
  183. #define d_sinh(x) (sinh(*(x)))
  184. #define d_sqrt(x) (sqrt(*(x)))
  185. #define d_tan(x) (tan(*(x)))
  186. #define d_tanh(x) (tanh(*(x)))
  187. #define i_abs(x) abs(*(x))
  188. #define i_dnnt(x) ((integer)u_nint(*(x)))
  189. #define i_len(s, n) (n)
  190. #define i_nint(x) ((integer)u_nint(*(x)))
  191. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  192. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  193. #define pow_si(B,E) spow_ui(*(B),*(E))
  194. #define pow_ri(B,E) spow_ui(*(B),*(E))
  195. #define pow_di(B,E) dpow_ui(*(B),*(E))
  196. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  197. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  198. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  199. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  200. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  201. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  202. #define sig_die(s, kill) { exit(1); }
  203. #define s_stop(s, n) {exit(0);}
  204. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  205. #define z_abs(z) (cabs(Cd(z)))
  206. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  207. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  208. #define myexit_() break;
  209. #define mycycle() continue;
  210. #define myceiling(w) {ceil(w)}
  211. #define myhuge(w) {HUGE_VAL}
  212. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  213. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  214. /* procedure parameter types for -A and -C++ */
  215. #define F2C_proc_par_types 1
  216. #ifdef __cplusplus
  217. typedef logical (*L_fp)(...);
  218. #else
  219. typedef logical (*L_fp)();
  220. #endif
  221. static float spow_ui(float x, integer n) {
  222. float pow=1.0; unsigned long int u;
  223. if(n != 0) {
  224. if(n < 0) n = -n, x = 1/x;
  225. for(u = n; ; ) {
  226. if(u & 01) pow *= x;
  227. if(u >>= 1) x *= x;
  228. else break;
  229. }
  230. }
  231. return pow;
  232. }
  233. static double dpow_ui(double x, integer n) {
  234. double pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static _Complex float cpow_ui(_Complex float x, integer n) {
  246. _Complex float pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex double zpow_ui(_Complex double x, integer n) {
  258. _Complex double pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static integer pow_ii(integer x, integer n) {
  270. integer pow; unsigned long int u;
  271. if (n <= 0) {
  272. if (n == 0 || x == 1) pow = 1;
  273. else if (x != -1) pow = x == 0 ? 1/x : 0;
  274. else n = -n;
  275. }
  276. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  277. u = n;
  278. for(pow = 1; ; ) {
  279. if(u & 01) pow *= x;
  280. if(u >>= 1) x *= x;
  281. else break;
  282. }
  283. }
  284. return pow;
  285. }
  286. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  287. {
  288. double m; integer i, mi;
  289. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  290. if (w[i-1]>m) mi=i ,m=w[i-1];
  291. return mi-s+1;
  292. }
  293. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  294. {
  295. float m; integer i, mi;
  296. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  297. if (w[i-1]>m) mi=i ,m=w[i-1];
  298. return mi-s+1;
  299. }
  300. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  301. integer n = *n_, incx = *incx_, incy = *incy_, i;
  302. _Complex float zdotc = 0.0;
  303. if (incx == 1 && incy == 1) {
  304. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  305. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  306. }
  307. } else {
  308. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  309. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  310. }
  311. }
  312. pCf(z) = zdotc;
  313. }
  314. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  315. integer n = *n_, incx = *incx_, incy = *incy_, i;
  316. _Complex double zdotc = 0.0;
  317. if (incx == 1 && incy == 1) {
  318. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  319. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  320. }
  321. } else {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  324. }
  325. }
  326. pCd(z) = zdotc;
  327. }
  328. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  329. integer n = *n_, incx = *incx_, incy = *incy_, i;
  330. _Complex float zdotc = 0.0;
  331. if (incx == 1 && incy == 1) {
  332. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  333. zdotc += Cf(&x[i]) * Cf(&y[i]);
  334. }
  335. } else {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  338. }
  339. }
  340. pCf(z) = zdotc;
  341. }
  342. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  343. integer n = *n_, incx = *incx_, incy = *incy_, i;
  344. _Complex double zdotc = 0.0;
  345. if (incx == 1 && incy == 1) {
  346. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  347. zdotc += Cd(&x[i]) * Cd(&y[i]);
  348. }
  349. } else {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  352. }
  353. }
  354. pCd(z) = zdotc;
  355. }
  356. #endif
  357. /* -- translated by f2c (version 20000121).
  358. You must link the resulting object file with the libraries:
  359. -lf2c -lm (in that order)
  360. */
  361. /* Table of constant values */
  362. static integer c_n1 = -1;
  363. /* > \brief \b ZTRSEN */
  364. /* =========== DOCUMENTATION =========== */
  365. /* Online html documentation available at */
  366. /* http://www.netlib.org/lapack/explore-html/ */
  367. /* > \htmlonly */
  368. /* > Download ZTRSEN + dependencies */
  369. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsen.
  370. f"> */
  371. /* > [TGZ]</a> */
  372. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsen.
  373. f"> */
  374. /* > [ZIP]</a> */
  375. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsen.
  376. f"> */
  377. /* > [TXT]</a> */
  378. /* > \endhtmlonly */
  379. /* Definition: */
  380. /* =========== */
  381. /* SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S, */
  382. /* SEP, WORK, LWORK, INFO ) */
  383. /* CHARACTER COMPQ, JOB */
  384. /* INTEGER INFO, LDQ, LDT, LWORK, M, N */
  385. /* DOUBLE PRECISION S, SEP */
  386. /* LOGICAL SELECT( * ) */
  387. /* COMPLEX*16 Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * ) */
  388. /* > \par Purpose: */
  389. /* ============= */
  390. /* > */
  391. /* > \verbatim */
  392. /* > */
  393. /* > ZTRSEN reorders the Schur factorization of a complex matrix */
  394. /* > A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in */
  395. /* > the leading positions on the diagonal of the upper triangular matrix */
  396. /* > T, and the leading columns of Q form an orthonormal basis of the */
  397. /* > corresponding right invariant subspace. */
  398. /* > */
  399. /* > Optionally the routine computes the reciprocal condition numbers of */
  400. /* > the cluster of eigenvalues and/or the invariant subspace. */
  401. /* > \endverbatim */
  402. /* Arguments: */
  403. /* ========== */
  404. /* > \param[in] JOB */
  405. /* > \verbatim */
  406. /* > JOB is CHARACTER*1 */
  407. /* > Specifies whether condition numbers are required for the */
  408. /* > cluster of eigenvalues (S) or the invariant subspace (SEP): */
  409. /* > = 'N': none; */
  410. /* > = 'E': for eigenvalues only (S); */
  411. /* > = 'V': for invariant subspace only (SEP); */
  412. /* > = 'B': for both eigenvalues and invariant subspace (S and */
  413. /* > SEP). */
  414. /* > \endverbatim */
  415. /* > */
  416. /* > \param[in] COMPQ */
  417. /* > \verbatim */
  418. /* > COMPQ is CHARACTER*1 */
  419. /* > = 'V': update the matrix Q of Schur vectors; */
  420. /* > = 'N': do not update Q. */
  421. /* > \endverbatim */
  422. /* > */
  423. /* > \param[in] SELECT */
  424. /* > \verbatim */
  425. /* > SELECT is LOGICAL array, dimension (N) */
  426. /* > SELECT specifies the eigenvalues in the selected cluster. To */
  427. /* > select the j-th eigenvalue, SELECT(j) must be set to .TRUE.. */
  428. /* > \endverbatim */
  429. /* > */
  430. /* > \param[in] N */
  431. /* > \verbatim */
  432. /* > N is INTEGER */
  433. /* > The order of the matrix T. N >= 0. */
  434. /* > \endverbatim */
  435. /* > */
  436. /* > \param[in,out] T */
  437. /* > \verbatim */
  438. /* > T is COMPLEX*16 array, dimension (LDT,N) */
  439. /* > On entry, the upper triangular matrix T. */
  440. /* > On exit, T is overwritten by the reordered matrix T, with the */
  441. /* > selected eigenvalues as the leading diagonal elements. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] LDT */
  445. /* > \verbatim */
  446. /* > LDT is INTEGER */
  447. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in,out] Q */
  451. /* > \verbatim */
  452. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  453. /* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
  454. /* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */
  455. /* > unitary transformation matrix which reorders T; the leading M */
  456. /* > columns of Q form an orthonormal basis for the specified */
  457. /* > invariant subspace. */
  458. /* > If COMPQ = 'N', Q is not referenced. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] LDQ */
  462. /* > \verbatim */
  463. /* > LDQ is INTEGER */
  464. /* > The leading dimension of the array Q. */
  465. /* > LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[out] W */
  469. /* > \verbatim */
  470. /* > W is COMPLEX*16 array, dimension (N) */
  471. /* > The reordered eigenvalues of T, in the same order as they */
  472. /* > appear on the diagonal of T. */
  473. /* > \endverbatim */
  474. /* > */
  475. /* > \param[out] M */
  476. /* > \verbatim */
  477. /* > M is INTEGER */
  478. /* > The dimension of the specified invariant subspace. */
  479. /* > 0 <= M <= N. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[out] S */
  483. /* > \verbatim */
  484. /* > S is DOUBLE PRECISION */
  485. /* > If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
  486. /* > condition number for the selected cluster of eigenvalues. */
  487. /* > S cannot underestimate the true reciprocal condition number */
  488. /* > by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
  489. /* > If JOB = 'N' or 'V', S is not referenced. */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[out] SEP */
  493. /* > \verbatim */
  494. /* > SEP is DOUBLE PRECISION */
  495. /* > If JOB = 'V' or 'B', SEP is the estimated reciprocal */
  496. /* > condition number of the specified invariant subspace. If */
  497. /* > M = 0 or N, SEP = norm(T). */
  498. /* > If JOB = 'N' or 'E', SEP is not referenced. */
  499. /* > \endverbatim */
  500. /* > */
  501. /* > \param[out] WORK */
  502. /* > \verbatim */
  503. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  504. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  505. /* > \endverbatim */
  506. /* > */
  507. /* > \param[in] LWORK */
  508. /* > \verbatim */
  509. /* > LWORK is INTEGER */
  510. /* > The dimension of the array WORK. */
  511. /* > If JOB = 'N', LWORK >= 1; */
  512. /* > if JOB = 'E', LWORK = f2cmax(1,M*(N-M)); */
  513. /* > if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
  514. /* > */
  515. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  516. /* > only calculates the optimal size of the WORK array, returns */
  517. /* > this value as the first entry of the WORK array, and no error */
  518. /* > message related to LWORK is issued by XERBLA. */
  519. /* > \endverbatim */
  520. /* > */
  521. /* > \param[out] INFO */
  522. /* > \verbatim */
  523. /* > INFO is INTEGER */
  524. /* > = 0: successful exit */
  525. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  526. /* > \endverbatim */
  527. /* Authors: */
  528. /* ======== */
  529. /* > \author Univ. of Tennessee */
  530. /* > \author Univ. of California Berkeley */
  531. /* > \author Univ. of Colorado Denver */
  532. /* > \author NAG Ltd. */
  533. /* > \date December 2016 */
  534. /* > \ingroup complex16OTHERcomputational */
  535. /* > \par Further Details: */
  536. /* ===================== */
  537. /* > */
  538. /* > \verbatim */
  539. /* > */
  540. /* > ZTRSEN first collects the selected eigenvalues by computing a unitary */
  541. /* > transformation Z to move them to the top left corner of T. In other */
  542. /* > words, the selected eigenvalues are the eigenvalues of T11 in: */
  543. /* > */
  544. /* > Z**H * T * Z = ( T11 T12 ) n1 */
  545. /* > ( 0 T22 ) n2 */
  546. /* > n1 n2 */
  547. /* > */
  548. /* > where N = n1+n2. The first */
  549. /* > n1 columns of Z span the specified invariant subspace of T. */
  550. /* > */
  551. /* > If T has been obtained from the Schur factorization of a matrix */
  552. /* > A = Q*T*Q**H, then the reordered Schur factorization of A is given by */
  553. /* > A = (Q*Z)*(Z**H*T*Z)*(Q*Z)**H, and the first n1 columns of Q*Z span the */
  554. /* > corresponding invariant subspace of A. */
  555. /* > */
  556. /* > The reciprocal condition number of the average of the eigenvalues of */
  557. /* > T11 may be returned in S. S lies between 0 (very badly conditioned) */
  558. /* > and 1 (very well conditioned). It is computed as follows. First we */
  559. /* > compute R so that */
  560. /* > */
  561. /* > P = ( I R ) n1 */
  562. /* > ( 0 0 ) n2 */
  563. /* > n1 n2 */
  564. /* > */
  565. /* > is the projector on the invariant subspace associated with T11. */
  566. /* > R is the solution of the Sylvester equation: */
  567. /* > */
  568. /* > T11*R - R*T22 = T12. */
  569. /* > */
  570. /* > Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
  571. /* > the two-norm of M. Then S is computed as the lower bound */
  572. /* > */
  573. /* > (1 + F-norm(R)**2)**(-1/2) */
  574. /* > */
  575. /* > on the reciprocal of 2-norm(P), the true reciprocal condition number. */
  576. /* > S cannot underestimate 1 / 2-norm(P) by more than a factor of */
  577. /* > sqrt(N). */
  578. /* > */
  579. /* > An approximate error bound for the computed average of the */
  580. /* > eigenvalues of T11 is */
  581. /* > */
  582. /* > EPS * norm(T) / S */
  583. /* > */
  584. /* > where EPS is the machine precision. */
  585. /* > */
  586. /* > The reciprocal condition number of the right invariant subspace */
  587. /* > spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
  588. /* > SEP is defined as the separation of T11 and T22: */
  589. /* > */
  590. /* > sep( T11, T22 ) = sigma-f2cmin( C ) */
  591. /* > */
  592. /* > where sigma-f2cmin(C) is the smallest singular value of the */
  593. /* > n1*n2-by-n1*n2 matrix */
  594. /* > */
  595. /* > C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
  596. /* > */
  597. /* > I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
  598. /* > product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
  599. /* > the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
  600. /* > cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
  601. /* > */
  602. /* > When SEP is small, small changes in T can cause large changes in */
  603. /* > the invariant subspace. An approximate bound on the maximum angular */
  604. /* > error in the computed right invariant subspace is */
  605. /* > */
  606. /* > EPS * norm(T) / SEP */
  607. /* > \endverbatim */
  608. /* > */
  609. /* ===================================================================== */
  610. /* Subroutine */ int ztrsen_(char *job, char *compq, logical *select, integer
  611. *n, doublecomplex *t, integer *ldt, doublecomplex *q, integer *ldq,
  612. doublecomplex *w, integer *m, doublereal *s, doublereal *sep,
  613. doublecomplex *work, integer *lwork, integer *info)
  614. {
  615. /* System generated locals */
  616. integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2, i__3;
  617. /* Local variables */
  618. integer kase, ierr, k;
  619. doublereal scale;
  620. extern logical lsame_(char *, char *);
  621. integer isave[3], lwmin;
  622. logical wantq, wants;
  623. doublereal rnorm;
  624. integer n1, n2;
  625. doublereal rwork[1];
  626. extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
  627. doublecomplex *, doublereal *, integer *, integer *);
  628. integer nn, ks;
  629. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  630. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  631. integer *, doublereal *);
  632. logical wantbh;
  633. extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
  634. doublecomplex *, integer *, doublecomplex *, integer *);
  635. logical wantsp;
  636. extern /* Subroutine */ int ztrexc_(char *, integer *, doublecomplex *,
  637. integer *, doublecomplex *, integer *, integer *, integer *,
  638. integer *);
  639. logical lquery;
  640. extern /* Subroutine */ int ztrsyl_(char *, char *, integer *, integer *,
  641. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  642. doublecomplex *, integer *, doublereal *, integer *);
  643. doublereal est;
  644. /* -- LAPACK computational routine (version 3.7.0) -- */
  645. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  646. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  647. /* December 2016 */
  648. /* ===================================================================== */
  649. /* Decode and test the input parameters. */
  650. /* Parameter adjustments */
  651. --select;
  652. t_dim1 = *ldt;
  653. t_offset = 1 + t_dim1 * 1;
  654. t -= t_offset;
  655. q_dim1 = *ldq;
  656. q_offset = 1 + q_dim1 * 1;
  657. q -= q_offset;
  658. --w;
  659. --work;
  660. /* Function Body */
  661. wantbh = lsame_(job, "B");
  662. wants = lsame_(job, "E") || wantbh;
  663. wantsp = lsame_(job, "V") || wantbh;
  664. wantq = lsame_(compq, "V");
  665. /* Set M to the number of selected eigenvalues. */
  666. *m = 0;
  667. i__1 = *n;
  668. for (k = 1; k <= i__1; ++k) {
  669. if (select[k]) {
  670. ++(*m);
  671. }
  672. /* L10: */
  673. }
  674. n1 = *m;
  675. n2 = *n - *m;
  676. nn = n1 * n2;
  677. *info = 0;
  678. lquery = *lwork == -1;
  679. if (wantsp) {
  680. /* Computing MAX */
  681. i__1 = 1, i__2 = nn << 1;
  682. lwmin = f2cmax(i__1,i__2);
  683. } else if (lsame_(job, "N")) {
  684. lwmin = 1;
  685. } else if (lsame_(job, "E")) {
  686. lwmin = f2cmax(1,nn);
  687. }
  688. if (! lsame_(job, "N") && ! wants && ! wantsp) {
  689. *info = -1;
  690. } else if (! lsame_(compq, "N") && ! wantq) {
  691. *info = -2;
  692. } else if (*n < 0) {
  693. *info = -4;
  694. } else if (*ldt < f2cmax(1,*n)) {
  695. *info = -6;
  696. } else if (*ldq < 1 || wantq && *ldq < *n) {
  697. *info = -8;
  698. } else if (*lwork < lwmin && ! lquery) {
  699. *info = -14;
  700. }
  701. if (*info == 0) {
  702. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  703. }
  704. if (*info != 0) {
  705. i__1 = -(*info);
  706. xerbla_("ZTRSEN", &i__1, (ftnlen)6);
  707. return 0;
  708. } else if (lquery) {
  709. return 0;
  710. }
  711. /* Quick return if possible */
  712. if (*m == *n || *m == 0) {
  713. if (wants) {
  714. *s = 1.;
  715. }
  716. if (wantsp) {
  717. *sep = zlange_("1", n, n, &t[t_offset], ldt, rwork);
  718. }
  719. goto L40;
  720. }
  721. /* Collect the selected eigenvalues at the top left corner of T. */
  722. ks = 0;
  723. i__1 = *n;
  724. for (k = 1; k <= i__1; ++k) {
  725. if (select[k]) {
  726. ++ks;
  727. /* Swap the K-th eigenvalue to position KS. */
  728. if (k != ks) {
  729. ztrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &k, &
  730. ks, &ierr);
  731. }
  732. }
  733. /* L20: */
  734. }
  735. if (wants) {
  736. /* Solve the Sylvester equation for R: */
  737. /* T11*R - R*T22 = scale*T12 */
  738. zlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
  739. ztrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
  740. + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
  741. /* Estimate the reciprocal of the condition number of the cluster */
  742. /* of eigenvalues. */
  743. rnorm = zlange_("F", &n1, &n2, &work[1], &n1, rwork);
  744. if (rnorm == 0.) {
  745. *s = 1.;
  746. } else {
  747. *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
  748. }
  749. }
  750. if (wantsp) {
  751. /* Estimate sep(T11,T22). */
  752. est = 0.;
  753. kase = 0;
  754. L30:
  755. zlacn2_(&nn, &work[nn + 1], &work[1], &est, &kase, isave);
  756. if (kase != 0) {
  757. if (kase == 1) {
  758. /* Solve T11*R - R*T22 = scale*X. */
  759. ztrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  760. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  761. ierr);
  762. } else {
  763. /* Solve T11**H*R - R*T22**H = scale*X. */
  764. ztrsyl_("C", "C", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  765. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  766. ierr);
  767. }
  768. goto L30;
  769. }
  770. *sep = scale / est;
  771. }
  772. L40:
  773. /* Copy reordered eigenvalues to W. */
  774. i__1 = *n;
  775. for (k = 1; k <= i__1; ++k) {
  776. i__2 = k;
  777. i__3 = k + k * t_dim1;
  778. w[i__2].r = t[i__3].r, w[i__2].i = t[i__3].i;
  779. /* L50: */
  780. }
  781. work[1].r = (doublereal) lwmin, work[1].i = 0.;
  782. return 0;
  783. /* End of ZTRSEN */
  784. } /* ztrsen_ */