You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztpqrt.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. typedef int integer;
  18. typedef unsigned int uinteger;
  19. typedef char *address;
  20. typedef short int shortint;
  21. typedef float real;
  22. typedef double doublereal;
  23. typedef struct { real r, i; } complex;
  24. typedef struct { doublereal r, i; } doublecomplex;
  25. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  26. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  27. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  28. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  29. #define pCf(z) (*_pCf(z))
  30. #define pCd(z) (*_pCd(z))
  31. typedef int logical;
  32. typedef short int shortlogical;
  33. typedef char logical1;
  34. typedef char integer1;
  35. #define TRUE_ (1)
  36. #define FALSE_ (0)
  37. /* Extern is for use with -E */
  38. #ifndef Extern
  39. #define Extern extern
  40. #endif
  41. /* I/O stuff */
  42. typedef int flag;
  43. typedef int ftnlen;
  44. typedef int ftnint;
  45. /*external read, write*/
  46. typedef struct
  47. { flag cierr;
  48. ftnint ciunit;
  49. flag ciend;
  50. char *cifmt;
  51. ftnint cirec;
  52. } cilist;
  53. /*internal read, write*/
  54. typedef struct
  55. { flag icierr;
  56. char *iciunit;
  57. flag iciend;
  58. char *icifmt;
  59. ftnint icirlen;
  60. ftnint icirnum;
  61. } icilist;
  62. /*open*/
  63. typedef struct
  64. { flag oerr;
  65. ftnint ounit;
  66. char *ofnm;
  67. ftnlen ofnmlen;
  68. char *osta;
  69. char *oacc;
  70. char *ofm;
  71. ftnint orl;
  72. char *oblnk;
  73. } olist;
  74. /*close*/
  75. typedef struct
  76. { flag cerr;
  77. ftnint cunit;
  78. char *csta;
  79. } cllist;
  80. /*rewind, backspace, endfile*/
  81. typedef struct
  82. { flag aerr;
  83. ftnint aunit;
  84. } alist;
  85. /* inquire */
  86. typedef struct
  87. { flag inerr;
  88. ftnint inunit;
  89. char *infile;
  90. ftnlen infilen;
  91. ftnint *inex; /*parameters in standard's order*/
  92. ftnint *inopen;
  93. ftnint *innum;
  94. ftnint *innamed;
  95. char *inname;
  96. ftnlen innamlen;
  97. char *inacc;
  98. ftnlen inacclen;
  99. char *inseq;
  100. ftnlen inseqlen;
  101. char *indir;
  102. ftnlen indirlen;
  103. char *infmt;
  104. ftnlen infmtlen;
  105. char *inform;
  106. ftnint informlen;
  107. char *inunf;
  108. ftnlen inunflen;
  109. ftnint *inrecl;
  110. ftnint *innrec;
  111. char *inblank;
  112. ftnlen inblanklen;
  113. } inlist;
  114. #define VOID void
  115. union Multitype { /* for multiple entry points */
  116. integer1 g;
  117. shortint h;
  118. integer i;
  119. /* longint j; */
  120. real r;
  121. doublereal d;
  122. complex c;
  123. doublecomplex z;
  124. };
  125. typedef union Multitype Multitype;
  126. struct Vardesc { /* for Namelist */
  127. char *name;
  128. char *addr;
  129. ftnlen *dims;
  130. int type;
  131. };
  132. typedef struct Vardesc Vardesc;
  133. struct Namelist {
  134. char *name;
  135. Vardesc **vars;
  136. int nvars;
  137. };
  138. typedef struct Namelist Namelist;
  139. #define abs(x) ((x) >= 0 ? (x) : -(x))
  140. #define dabs(x) (fabs(x))
  141. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  142. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  143. #define dmin(a,b) (f2cmin(a,b))
  144. #define dmax(a,b) (f2cmax(a,b))
  145. #define bit_test(a,b) ((a) >> (b) & 1)
  146. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  147. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  148. #define abort_() { sig_die("Fortran abort routine called", 1); }
  149. #define c_abs(z) (cabsf(Cf(z)))
  150. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  151. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  152. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  153. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  154. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  155. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  156. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  157. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  158. #define d_abs(x) (fabs(*(x)))
  159. #define d_acos(x) (acos(*(x)))
  160. #define d_asin(x) (asin(*(x)))
  161. #define d_atan(x) (atan(*(x)))
  162. #define d_atn2(x, y) (atan2(*(x),*(y)))
  163. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  164. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  165. #define d_cos(x) (cos(*(x)))
  166. #define d_cosh(x) (cosh(*(x)))
  167. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  168. #define d_exp(x) (exp(*(x)))
  169. #define d_imag(z) (cimag(Cd(z)))
  170. #define r_imag(z) (cimag(Cf(z)))
  171. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  172. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  173. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  174. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  175. #define d_log(x) (log(*(x)))
  176. #define d_mod(x, y) (fmod(*(x), *(y)))
  177. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  178. #define d_nint(x) u_nint(*(x))
  179. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  180. #define d_sign(a,b) u_sign(*(a),*(b))
  181. #define r_sign(a,b) u_sign(*(a),*(b))
  182. #define d_sin(x) (sin(*(x)))
  183. #define d_sinh(x) (sinh(*(x)))
  184. #define d_sqrt(x) (sqrt(*(x)))
  185. #define d_tan(x) (tan(*(x)))
  186. #define d_tanh(x) (tanh(*(x)))
  187. #define i_abs(x) abs(*(x))
  188. #define i_dnnt(x) ((integer)u_nint(*(x)))
  189. #define i_len(s, n) (n)
  190. #define i_nint(x) ((integer)u_nint(*(x)))
  191. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  192. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  193. #define pow_si(B,E) spow_ui(*(B),*(E))
  194. #define pow_ri(B,E) spow_ui(*(B),*(E))
  195. #define pow_di(B,E) dpow_ui(*(B),*(E))
  196. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  197. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  198. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  199. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  200. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  201. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  202. #define sig_die(s, kill) { exit(1); }
  203. #define s_stop(s, n) {exit(0);}
  204. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  205. #define z_abs(z) (cabs(Cd(z)))
  206. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  207. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  208. #define myexit_() break;
  209. #define mycycle() continue;
  210. #define myceiling(w) {ceil(w)}
  211. #define myhuge(w) {HUGE_VAL}
  212. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  213. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  214. /* procedure parameter types for -A and -C++ */
  215. #define F2C_proc_par_types 1
  216. #ifdef __cplusplus
  217. typedef logical (*L_fp)(...);
  218. #else
  219. typedef logical (*L_fp)();
  220. #endif
  221. static float spow_ui(float x, integer n) {
  222. float pow=1.0; unsigned long int u;
  223. if(n != 0) {
  224. if(n < 0) n = -n, x = 1/x;
  225. for(u = n; ; ) {
  226. if(u & 01) pow *= x;
  227. if(u >>= 1) x *= x;
  228. else break;
  229. }
  230. }
  231. return pow;
  232. }
  233. static double dpow_ui(double x, integer n) {
  234. double pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static _Complex float cpow_ui(_Complex float x, integer n) {
  246. _Complex float pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex double zpow_ui(_Complex double x, integer n) {
  258. _Complex double pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static integer pow_ii(integer x, integer n) {
  270. integer pow; unsigned long int u;
  271. if (n <= 0) {
  272. if (n == 0 || x == 1) pow = 1;
  273. else if (x != -1) pow = x == 0 ? 1/x : 0;
  274. else n = -n;
  275. }
  276. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  277. u = n;
  278. for(pow = 1; ; ) {
  279. if(u & 01) pow *= x;
  280. if(u >>= 1) x *= x;
  281. else break;
  282. }
  283. }
  284. return pow;
  285. }
  286. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  287. {
  288. double m; integer i, mi;
  289. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  290. if (w[i-1]>m) mi=i ,m=w[i-1];
  291. return mi-s+1;
  292. }
  293. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  294. {
  295. float m; integer i, mi;
  296. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  297. if (w[i-1]>m) mi=i ,m=w[i-1];
  298. return mi-s+1;
  299. }
  300. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  301. integer n = *n_, incx = *incx_, incy = *incy_, i;
  302. _Complex float zdotc = 0.0;
  303. if (incx == 1 && incy == 1) {
  304. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  305. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  306. }
  307. } else {
  308. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  309. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  310. }
  311. }
  312. pCf(z) = zdotc;
  313. }
  314. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  315. integer n = *n_, incx = *incx_, incy = *incy_, i;
  316. _Complex double zdotc = 0.0;
  317. if (incx == 1 && incy == 1) {
  318. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  319. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  320. }
  321. } else {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  324. }
  325. }
  326. pCd(z) = zdotc;
  327. }
  328. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  329. integer n = *n_, incx = *incx_, incy = *incy_, i;
  330. _Complex float zdotc = 0.0;
  331. if (incx == 1 && incy == 1) {
  332. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  333. zdotc += Cf(&x[i]) * Cf(&y[i]);
  334. }
  335. } else {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  338. }
  339. }
  340. pCf(z) = zdotc;
  341. }
  342. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  343. integer n = *n_, incx = *incx_, incy = *incy_, i;
  344. _Complex double zdotc = 0.0;
  345. if (incx == 1 && incy == 1) {
  346. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  347. zdotc += Cd(&x[i]) * Cd(&y[i]);
  348. }
  349. } else {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  352. }
  353. }
  354. pCd(z) = zdotc;
  355. }
  356. #endif
  357. /* -- translated by f2c (version 20000121).
  358. You must link the resulting object file with the libraries:
  359. -lf2c -lm (in that order)
  360. */
  361. /* > \brief \b ZTPQRT */
  362. /* =========== DOCUMENTATION =========== */
  363. /* Online html documentation available at */
  364. /* http://www.netlib.org/lapack/explore-html/ */
  365. /* > \htmlonly */
  366. /* > Download ZTPQRT + dependencies */
  367. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztpqrt.
  368. f"> */
  369. /* > [TGZ]</a> */
  370. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztpqrt.
  371. f"> */
  372. /* > [ZIP]</a> */
  373. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztpqrt.
  374. f"> */
  375. /* > [TXT]</a> */
  376. /* > \endhtmlonly */
  377. /* Definition: */
  378. /* =========== */
  379. /* SUBROUTINE ZTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, */
  380. /* INFO ) */
  381. /* INTEGER INFO, LDA, LDB, LDT, N, M, L, NB */
  382. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) */
  383. /* > \par Purpose: */
  384. /* ============= */
  385. /* > */
  386. /* > \verbatim */
  387. /* > */
  388. /* > ZTPQRT computes a blocked QR factorization of a complex */
  389. /* > "triangular-pentagonal" matrix C, which is composed of a */
  390. /* > triangular block A and pentagonal block B, using the compact */
  391. /* > WY representation for Q. */
  392. /* > \endverbatim */
  393. /* Arguments: */
  394. /* ========== */
  395. /* > \param[in] M */
  396. /* > \verbatim */
  397. /* > M is INTEGER */
  398. /* > The number of rows of the matrix B. */
  399. /* > M >= 0. */
  400. /* > \endverbatim */
  401. /* > */
  402. /* > \param[in] N */
  403. /* > \verbatim */
  404. /* > N is INTEGER */
  405. /* > The number of columns of the matrix B, and the order of the */
  406. /* > triangular matrix A. */
  407. /* > N >= 0. */
  408. /* > \endverbatim */
  409. /* > */
  410. /* > \param[in] L */
  411. /* > \verbatim */
  412. /* > L is INTEGER */
  413. /* > The number of rows of the upper trapezoidal part of B. */
  414. /* > MIN(M,N) >= L >= 0. See Further Details. */
  415. /* > \endverbatim */
  416. /* > */
  417. /* > \param[in] NB */
  418. /* > \verbatim */
  419. /* > NB is INTEGER */
  420. /* > The block size to be used in the blocked QR. N >= NB >= 1. */
  421. /* > \endverbatim */
  422. /* > */
  423. /* > \param[in,out] A */
  424. /* > \verbatim */
  425. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  426. /* > On entry, the upper triangular N-by-N matrix A. */
  427. /* > On exit, the elements on and above the diagonal of the array */
  428. /* > contain the upper triangular matrix R. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in] LDA */
  432. /* > \verbatim */
  433. /* > LDA is INTEGER */
  434. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  435. /* > \endverbatim */
  436. /* > */
  437. /* > \param[in,out] B */
  438. /* > \verbatim */
  439. /* > B is COMPLEX*16 array, dimension (LDB,N) */
  440. /* > On entry, the pentagonal M-by-N matrix B. The first M-L rows */
  441. /* > are rectangular, and the last L rows are upper trapezoidal. */
  442. /* > On exit, B contains the pentagonal matrix V. See Further Details. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] LDB */
  446. /* > \verbatim */
  447. /* > LDB is INTEGER */
  448. /* > The leading dimension of the array B. LDB >= f2cmax(1,M). */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[out] T */
  452. /* > \verbatim */
  453. /* > T is COMPLEX*16 array, dimension (LDT,N) */
  454. /* > The upper triangular block reflectors stored in compact form */
  455. /* > as a sequence of upper triangular blocks. See Further Details. */
  456. /* > \endverbatim */
  457. /* > */
  458. /* > \param[in] LDT */
  459. /* > \verbatim */
  460. /* > LDT is INTEGER */
  461. /* > The leading dimension of the array T. LDT >= NB. */
  462. /* > \endverbatim */
  463. /* > */
  464. /* > \param[out] WORK */
  465. /* > \verbatim */
  466. /* > WORK is COMPLEX*16 array, dimension (NB*N) */
  467. /* > \endverbatim */
  468. /* > */
  469. /* > \param[out] INFO */
  470. /* > \verbatim */
  471. /* > INFO is INTEGER */
  472. /* > = 0: successful exit */
  473. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  474. /* > \endverbatim */
  475. /* Authors: */
  476. /* ======== */
  477. /* > \author Univ. of Tennessee */
  478. /* > \author Univ. of California Berkeley */
  479. /* > \author Univ. of Colorado Denver */
  480. /* > \author NAG Ltd. */
  481. /* > \date December 2016 */
  482. /* > \ingroup complex16OTHERcomputational */
  483. /* > \par Further Details: */
  484. /* ===================== */
  485. /* > */
  486. /* > \verbatim */
  487. /* > */
  488. /* > The input matrix C is a (N+M)-by-N matrix */
  489. /* > */
  490. /* > C = [ A ] */
  491. /* > [ B ] */
  492. /* > */
  493. /* > where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal */
  494. /* > matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N */
  495. /* > upper trapezoidal matrix B2: */
  496. /* > */
  497. /* > B = [ B1 ] <- (M-L)-by-N rectangular */
  498. /* > [ B2 ] <- L-by-N upper trapezoidal. */
  499. /* > */
  500. /* > The upper trapezoidal matrix B2 consists of the first L rows of a */
  501. /* > N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, */
  502. /* > B is rectangular M-by-N; if M=L=N, B is upper triangular. */
  503. /* > */
  504. /* > The matrix W stores the elementary reflectors H(i) in the i-th column */
  505. /* > below the diagonal (of A) in the (N+M)-by-N input matrix C */
  506. /* > */
  507. /* > C = [ A ] <- upper triangular N-by-N */
  508. /* > [ B ] <- M-by-N pentagonal */
  509. /* > */
  510. /* > so that W can be represented as */
  511. /* > */
  512. /* > W = [ I ] <- identity, N-by-N */
  513. /* > [ V ] <- M-by-N, same form as B. */
  514. /* > */
  515. /* > Thus, all of information needed for W is contained on exit in B, which */
  516. /* > we call V above. Note that V has the same form as B; that is, */
  517. /* > */
  518. /* > V = [ V1 ] <- (M-L)-by-N rectangular */
  519. /* > [ V2 ] <- L-by-N upper trapezoidal. */
  520. /* > */
  521. /* > The columns of V represent the vectors which define the H(i)'s. */
  522. /* > */
  523. /* > The number of blocks is B = ceiling(N/NB), where each */
  524. /* > block is of order NB except for the last block, which is of order */
  525. /* > IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block */
  526. /* > reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB */
  527. /* > for the last block) T's are stored in the NB-by-N matrix T as */
  528. /* > */
  529. /* > T = [T1 T2 ... TB]. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* ===================================================================== */
  533. /* Subroutine */ int ztpqrt_(integer *m, integer *n, integer *l, integer *nb,
  534. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  535. doublecomplex *t, integer *ldt, doublecomplex *work, integer *info)
  536. {
  537. /* System generated locals */
  538. integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, i__1, i__2,
  539. i__3;
  540. /* Local variables */
  541. integer i__, iinfo, ib, lb, mb;
  542. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), ztprfb_(
  543. char *, char *, char *, char *, integer *, integer *, integer *,
  544. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  545. doublecomplex *, integer *, doublecomplex *, integer *,
  546. doublecomplex *, integer *),
  547. ztpqrt2_(integer *, integer *, integer *, doublecomplex *,
  548. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  549. integer *);
  550. /* -- LAPACK computational routine (version 3.7.0) -- */
  551. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  552. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  553. /* December 2016 */
  554. /* ===================================================================== */
  555. /* Test the input arguments */
  556. /* Parameter adjustments */
  557. a_dim1 = *lda;
  558. a_offset = 1 + a_dim1 * 1;
  559. a -= a_offset;
  560. b_dim1 = *ldb;
  561. b_offset = 1 + b_dim1 * 1;
  562. b -= b_offset;
  563. t_dim1 = *ldt;
  564. t_offset = 1 + t_dim1 * 1;
  565. t -= t_offset;
  566. --work;
  567. /* Function Body */
  568. *info = 0;
  569. if (*m < 0) {
  570. *info = -1;
  571. } else if (*n < 0) {
  572. *info = -2;
  573. } else if (*l < 0 || *l > f2cmin(*m,*n) && f2cmin(*m,*n) >= 0) {
  574. *info = -3;
  575. } else if (*nb < 1 || *nb > *n && *n > 0) {
  576. *info = -4;
  577. } else if (*lda < f2cmax(1,*n)) {
  578. *info = -6;
  579. } else if (*ldb < f2cmax(1,*m)) {
  580. *info = -8;
  581. } else if (*ldt < *nb) {
  582. *info = -10;
  583. }
  584. if (*info != 0) {
  585. i__1 = -(*info);
  586. xerbla_("ZTPQRT", &i__1, (ftnlen)6);
  587. return 0;
  588. }
  589. /* Quick return if possible */
  590. if (*m == 0 || *n == 0) {
  591. return 0;
  592. }
  593. i__1 = *n;
  594. i__2 = *nb;
  595. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  596. /* Compute the QR factorization of the current block */
  597. /* Computing MIN */
  598. i__3 = *n - i__ + 1;
  599. ib = f2cmin(i__3,*nb);
  600. /* Computing MIN */
  601. i__3 = *m - *l + i__ + ib - 1;
  602. mb = f2cmin(i__3,*m);
  603. if (i__ >= *l) {
  604. lb = 0;
  605. } else {
  606. lb = mb - *m + *l - i__ + 1;
  607. }
  608. ztpqrt2_(&mb, &ib, &lb, &a[i__ + i__ * a_dim1], lda, &b[i__ * b_dim1
  609. + 1], ldb, &t[i__ * t_dim1 + 1], ldt, &iinfo);
  610. /* Update by applying H**H to B(:,I+IB:N) from the left */
  611. if (i__ + ib <= *n) {
  612. i__3 = *n - i__ - ib + 1;
  613. ztprfb_("L", "C", "F", "C", &mb, &i__3, &ib, &lb, &b[i__ * b_dim1
  614. + 1], ldb, &t[i__ * t_dim1 + 1], ldt, &a[i__ + (i__ + ib)
  615. * a_dim1], lda, &b[(i__ + ib) * b_dim1 + 1], ldb, &work[1]
  616. , &ib);
  617. }
  618. }
  619. return 0;
  620. /* End of ZTPQRT */
  621. } /* ztpqrt_ */