You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztfttp.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. typedef int integer;
  18. typedef unsigned int uinteger;
  19. typedef char *address;
  20. typedef short int shortint;
  21. typedef float real;
  22. typedef double doublereal;
  23. typedef struct { real r, i; } complex;
  24. typedef struct { doublereal r, i; } doublecomplex;
  25. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  26. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  27. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  28. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  29. #define pCf(z) (*_pCf(z))
  30. #define pCd(z) (*_pCd(z))
  31. typedef int logical;
  32. typedef short int shortlogical;
  33. typedef char logical1;
  34. typedef char integer1;
  35. #define TRUE_ (1)
  36. #define FALSE_ (0)
  37. /* Extern is for use with -E */
  38. #ifndef Extern
  39. #define Extern extern
  40. #endif
  41. /* I/O stuff */
  42. typedef int flag;
  43. typedef int ftnlen;
  44. typedef int ftnint;
  45. /*external read, write*/
  46. typedef struct
  47. { flag cierr;
  48. ftnint ciunit;
  49. flag ciend;
  50. char *cifmt;
  51. ftnint cirec;
  52. } cilist;
  53. /*internal read, write*/
  54. typedef struct
  55. { flag icierr;
  56. char *iciunit;
  57. flag iciend;
  58. char *icifmt;
  59. ftnint icirlen;
  60. ftnint icirnum;
  61. } icilist;
  62. /*open*/
  63. typedef struct
  64. { flag oerr;
  65. ftnint ounit;
  66. char *ofnm;
  67. ftnlen ofnmlen;
  68. char *osta;
  69. char *oacc;
  70. char *ofm;
  71. ftnint orl;
  72. char *oblnk;
  73. } olist;
  74. /*close*/
  75. typedef struct
  76. { flag cerr;
  77. ftnint cunit;
  78. char *csta;
  79. } cllist;
  80. /*rewind, backspace, endfile*/
  81. typedef struct
  82. { flag aerr;
  83. ftnint aunit;
  84. } alist;
  85. /* inquire */
  86. typedef struct
  87. { flag inerr;
  88. ftnint inunit;
  89. char *infile;
  90. ftnlen infilen;
  91. ftnint *inex; /*parameters in standard's order*/
  92. ftnint *inopen;
  93. ftnint *innum;
  94. ftnint *innamed;
  95. char *inname;
  96. ftnlen innamlen;
  97. char *inacc;
  98. ftnlen inacclen;
  99. char *inseq;
  100. ftnlen inseqlen;
  101. char *indir;
  102. ftnlen indirlen;
  103. char *infmt;
  104. ftnlen infmtlen;
  105. char *inform;
  106. ftnint informlen;
  107. char *inunf;
  108. ftnlen inunflen;
  109. ftnint *inrecl;
  110. ftnint *innrec;
  111. char *inblank;
  112. ftnlen inblanklen;
  113. } inlist;
  114. #define VOID void
  115. union Multitype { /* for multiple entry points */
  116. integer1 g;
  117. shortint h;
  118. integer i;
  119. /* longint j; */
  120. real r;
  121. doublereal d;
  122. complex c;
  123. doublecomplex z;
  124. };
  125. typedef union Multitype Multitype;
  126. struct Vardesc { /* for Namelist */
  127. char *name;
  128. char *addr;
  129. ftnlen *dims;
  130. int type;
  131. };
  132. typedef struct Vardesc Vardesc;
  133. struct Namelist {
  134. char *name;
  135. Vardesc **vars;
  136. int nvars;
  137. };
  138. typedef struct Namelist Namelist;
  139. #define abs(x) ((x) >= 0 ? (x) : -(x))
  140. #define dabs(x) (fabs(x))
  141. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  142. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  143. #define dmin(a,b) (f2cmin(a,b))
  144. #define dmax(a,b) (f2cmax(a,b))
  145. #define bit_test(a,b) ((a) >> (b) & 1)
  146. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  147. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  148. #define abort_() { sig_die("Fortran abort routine called", 1); }
  149. #define c_abs(z) (cabsf(Cf(z)))
  150. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  151. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  152. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  153. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  154. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  155. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  156. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  157. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  158. #define d_abs(x) (fabs(*(x)))
  159. #define d_acos(x) (acos(*(x)))
  160. #define d_asin(x) (asin(*(x)))
  161. #define d_atan(x) (atan(*(x)))
  162. #define d_atn2(x, y) (atan2(*(x),*(y)))
  163. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  164. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  165. #define d_cos(x) (cos(*(x)))
  166. #define d_cosh(x) (cosh(*(x)))
  167. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  168. #define d_exp(x) (exp(*(x)))
  169. #define d_imag(z) (cimag(Cd(z)))
  170. #define r_imag(z) (cimag(Cf(z)))
  171. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  172. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  173. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  174. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  175. #define d_log(x) (log(*(x)))
  176. #define d_mod(x, y) (fmod(*(x), *(y)))
  177. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  178. #define d_nint(x) u_nint(*(x))
  179. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  180. #define d_sign(a,b) u_sign(*(a),*(b))
  181. #define r_sign(a,b) u_sign(*(a),*(b))
  182. #define d_sin(x) (sin(*(x)))
  183. #define d_sinh(x) (sinh(*(x)))
  184. #define d_sqrt(x) (sqrt(*(x)))
  185. #define d_tan(x) (tan(*(x)))
  186. #define d_tanh(x) (tanh(*(x)))
  187. #define i_abs(x) abs(*(x))
  188. #define i_dnnt(x) ((integer)u_nint(*(x)))
  189. #define i_len(s, n) (n)
  190. #define i_nint(x) ((integer)u_nint(*(x)))
  191. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  192. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  193. #define pow_si(B,E) spow_ui(*(B),*(E))
  194. #define pow_ri(B,E) spow_ui(*(B),*(E))
  195. #define pow_di(B,E) dpow_ui(*(B),*(E))
  196. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  197. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  198. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  199. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  200. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  201. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  202. #define sig_die(s, kill) { exit(1); }
  203. #define s_stop(s, n) {exit(0);}
  204. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  205. #define z_abs(z) (cabs(Cd(z)))
  206. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  207. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  208. #define myexit_() break;
  209. #define mycycle() continue;
  210. #define myceiling(w) {ceil(w)}
  211. #define myhuge(w) {HUGE_VAL}
  212. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  213. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  214. /* procedure parameter types for -A and -C++ */
  215. #define F2C_proc_par_types 1
  216. #ifdef __cplusplus
  217. typedef logical (*L_fp)(...);
  218. #else
  219. typedef logical (*L_fp)();
  220. #endif
  221. static float spow_ui(float x, integer n) {
  222. float pow=1.0; unsigned long int u;
  223. if(n != 0) {
  224. if(n < 0) n = -n, x = 1/x;
  225. for(u = n; ; ) {
  226. if(u & 01) pow *= x;
  227. if(u >>= 1) x *= x;
  228. else break;
  229. }
  230. }
  231. return pow;
  232. }
  233. static double dpow_ui(double x, integer n) {
  234. double pow=1.0; unsigned long int u;
  235. if(n != 0) {
  236. if(n < 0) n = -n, x = 1/x;
  237. for(u = n; ; ) {
  238. if(u & 01) pow *= x;
  239. if(u >>= 1) x *= x;
  240. else break;
  241. }
  242. }
  243. return pow;
  244. }
  245. static _Complex float cpow_ui(_Complex float x, integer n) {
  246. _Complex float pow=1.0; unsigned long int u;
  247. if(n != 0) {
  248. if(n < 0) n = -n, x = 1/x;
  249. for(u = n; ; ) {
  250. if(u & 01) pow *= x;
  251. if(u >>= 1) x *= x;
  252. else break;
  253. }
  254. }
  255. return pow;
  256. }
  257. static _Complex double zpow_ui(_Complex double x, integer n) {
  258. _Complex double pow=1.0; unsigned long int u;
  259. if(n != 0) {
  260. if(n < 0) n = -n, x = 1/x;
  261. for(u = n; ; ) {
  262. if(u & 01) pow *= x;
  263. if(u >>= 1) x *= x;
  264. else break;
  265. }
  266. }
  267. return pow;
  268. }
  269. static integer pow_ii(integer x, integer n) {
  270. integer pow; unsigned long int u;
  271. if (n <= 0) {
  272. if (n == 0 || x == 1) pow = 1;
  273. else if (x != -1) pow = x == 0 ? 1/x : 0;
  274. else n = -n;
  275. }
  276. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  277. u = n;
  278. for(pow = 1; ; ) {
  279. if(u & 01) pow *= x;
  280. if(u >>= 1) x *= x;
  281. else break;
  282. }
  283. }
  284. return pow;
  285. }
  286. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  287. {
  288. double m; integer i, mi;
  289. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  290. if (w[i-1]>m) mi=i ,m=w[i-1];
  291. return mi-s+1;
  292. }
  293. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  294. {
  295. float m; integer i, mi;
  296. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  297. if (w[i-1]>m) mi=i ,m=w[i-1];
  298. return mi-s+1;
  299. }
  300. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  301. integer n = *n_, incx = *incx_, incy = *incy_, i;
  302. _Complex float zdotc = 0.0;
  303. if (incx == 1 && incy == 1) {
  304. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  305. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  306. }
  307. } else {
  308. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  309. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  310. }
  311. }
  312. pCf(z) = zdotc;
  313. }
  314. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  315. integer n = *n_, incx = *incx_, incy = *incy_, i;
  316. _Complex double zdotc = 0.0;
  317. if (incx == 1 && incy == 1) {
  318. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  319. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  320. }
  321. } else {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  324. }
  325. }
  326. pCd(z) = zdotc;
  327. }
  328. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  329. integer n = *n_, incx = *incx_, incy = *incy_, i;
  330. _Complex float zdotc = 0.0;
  331. if (incx == 1 && incy == 1) {
  332. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  333. zdotc += Cf(&x[i]) * Cf(&y[i]);
  334. }
  335. } else {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  338. }
  339. }
  340. pCf(z) = zdotc;
  341. }
  342. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  343. integer n = *n_, incx = *incx_, incy = *incy_, i;
  344. _Complex double zdotc = 0.0;
  345. if (incx == 1 && incy == 1) {
  346. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  347. zdotc += Cd(&x[i]) * Cd(&y[i]);
  348. }
  349. } else {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  352. }
  353. }
  354. pCd(z) = zdotc;
  355. }
  356. #endif
  357. /* -- translated by f2c (version 20000121).
  358. You must link the resulting object file with the libraries:
  359. -lf2c -lm (in that order)
  360. */
  361. /* > \brief \b ZTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard
  362. packed format (TP). */
  363. /* =========== DOCUMENTATION =========== */
  364. /* Online html documentation available at */
  365. /* http://www.netlib.org/lapack/explore-html/ */
  366. /* > \htmlonly */
  367. /* > Download ZTFTTP + dependencies */
  368. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttp.
  369. f"> */
  370. /* > [TGZ]</a> */
  371. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttp.
  372. f"> */
  373. /* > [ZIP]</a> */
  374. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttp.
  375. f"> */
  376. /* > [TXT]</a> */
  377. /* > \endhtmlonly */
  378. /* Definition: */
  379. /* =========== */
  380. /* SUBROUTINE ZTFTTP( TRANSR, UPLO, N, ARF, AP, INFO ) */
  381. /* CHARACTER TRANSR, UPLO */
  382. /* INTEGER INFO, N */
  383. /* COMPLEX*16 AP( 0: * ), ARF( 0: * ) */
  384. /* > \par Purpose: */
  385. /* ============= */
  386. /* > */
  387. /* > \verbatim */
  388. /* > */
  389. /* > ZTFTTP copies a triangular matrix A from rectangular full packed */
  390. /* > format (TF) to standard packed format (TP). */
  391. /* > \endverbatim */
  392. /* Arguments: */
  393. /* ========== */
  394. /* > \param[in] TRANSR */
  395. /* > \verbatim */
  396. /* > TRANSR is CHARACTER*1 */
  397. /* > = 'N': ARF is in Normal format; */
  398. /* > = 'C': ARF is in Conjugate-transpose format; */
  399. /* > \endverbatim */
  400. /* > */
  401. /* > \param[in] UPLO */
  402. /* > \verbatim */
  403. /* > UPLO is CHARACTER*1 */
  404. /* > = 'U': A is upper triangular; */
  405. /* > = 'L': A is lower triangular. */
  406. /* > \endverbatim */
  407. /* > */
  408. /* > \param[in] N */
  409. /* > \verbatim */
  410. /* > N is INTEGER */
  411. /* > The order of the matrix A. N >= 0. */
  412. /* > \endverbatim */
  413. /* > */
  414. /* > \param[in] ARF */
  415. /* > \verbatim */
  416. /* > ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
  417. /* > On entry, the upper or lower triangular matrix A stored in */
  418. /* > RFP format. For a further discussion see Notes below. */
  419. /* > \endverbatim */
  420. /* > */
  421. /* > \param[out] AP */
  422. /* > \verbatim */
  423. /* > AP is COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
  424. /* > On exit, the upper or lower triangular matrix A, packed */
  425. /* > columnwise in a linear array. The j-th column of A is stored */
  426. /* > in the array AP as follows: */
  427. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  428. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[out] INFO */
  432. /* > \verbatim */
  433. /* > INFO is INTEGER */
  434. /* > = 0: successful exit */
  435. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  436. /* > \endverbatim */
  437. /* Authors: */
  438. /* ======== */
  439. /* > \author Univ. of Tennessee */
  440. /* > \author Univ. of California Berkeley */
  441. /* > \author Univ. of Colorado Denver */
  442. /* > \author NAG Ltd. */
  443. /* > \date December 2016 */
  444. /* > \ingroup complex16OTHERcomputational */
  445. /* > \par Further Details: */
  446. /* ===================== */
  447. /* > */
  448. /* > \verbatim */
  449. /* > */
  450. /* > We first consider Standard Packed Format when N is even. */
  451. /* > We give an example where N = 6. */
  452. /* > */
  453. /* > AP is Upper AP is Lower */
  454. /* > */
  455. /* > 00 01 02 03 04 05 00 */
  456. /* > 11 12 13 14 15 10 11 */
  457. /* > 22 23 24 25 20 21 22 */
  458. /* > 33 34 35 30 31 32 33 */
  459. /* > 44 45 40 41 42 43 44 */
  460. /* > 55 50 51 52 53 54 55 */
  461. /* > */
  462. /* > */
  463. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  464. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  465. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  466. /* > conjugate-transpose of the first three columns of AP upper. */
  467. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  468. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  469. /* > conjugate-transpose of the last three columns of AP lower. */
  470. /* > To denote conjugate we place -- above the element. This covers the */
  471. /* > case N even and TRANSR = 'N'. */
  472. /* > */
  473. /* > RFP A RFP A */
  474. /* > */
  475. /* > -- -- -- */
  476. /* > 03 04 05 33 43 53 */
  477. /* > -- -- */
  478. /* > 13 14 15 00 44 54 */
  479. /* > -- */
  480. /* > 23 24 25 10 11 55 */
  481. /* > */
  482. /* > 33 34 35 20 21 22 */
  483. /* > -- */
  484. /* > 00 44 45 30 31 32 */
  485. /* > -- -- */
  486. /* > 01 11 55 40 41 42 */
  487. /* > -- -- -- */
  488. /* > 02 12 22 50 51 52 */
  489. /* > */
  490. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  491. /* > transpose of RFP A above. One therefore gets: */
  492. /* > */
  493. /* > */
  494. /* > RFP A RFP A */
  495. /* > */
  496. /* > -- -- -- -- -- -- -- -- -- -- */
  497. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  498. /* > -- -- -- -- -- -- -- -- -- -- */
  499. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  500. /* > -- -- -- -- -- -- -- -- -- -- */
  501. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  502. /* > */
  503. /* > */
  504. /* > We next consider Standard Packed Format when N is odd. */
  505. /* > We give an example where N = 5. */
  506. /* > */
  507. /* > AP is Upper AP is Lower */
  508. /* > */
  509. /* > 00 01 02 03 04 00 */
  510. /* > 11 12 13 14 10 11 */
  511. /* > 22 23 24 20 21 22 */
  512. /* > 33 34 30 31 32 33 */
  513. /* > 44 40 41 42 43 44 */
  514. /* > */
  515. /* > */
  516. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  517. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  518. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  519. /* > conjugate-transpose of the first two columns of AP upper. */
  520. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  521. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  522. /* > conjugate-transpose of the last two columns of AP lower. */
  523. /* > To denote conjugate we place -- above the element. This covers the */
  524. /* > case N odd and TRANSR = 'N'. */
  525. /* > */
  526. /* > RFP A RFP A */
  527. /* > */
  528. /* > -- -- */
  529. /* > 02 03 04 00 33 43 */
  530. /* > -- */
  531. /* > 12 13 14 10 11 44 */
  532. /* > */
  533. /* > 22 23 24 20 21 22 */
  534. /* > -- */
  535. /* > 00 33 34 30 31 32 */
  536. /* > -- -- */
  537. /* > 01 11 44 40 41 42 */
  538. /* > */
  539. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  540. /* > transpose of RFP A above. One therefore gets: */
  541. /* > */
  542. /* > */
  543. /* > RFP A RFP A */
  544. /* > */
  545. /* > -- -- -- -- -- -- -- -- -- */
  546. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  547. /* > -- -- -- -- -- -- -- -- -- */
  548. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  549. /* > -- -- -- -- -- -- -- -- -- */
  550. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  551. /* > \endverbatim */
  552. /* > */
  553. /* ===================================================================== */
  554. /* Subroutine */ int ztfttp_(char *transr, char *uplo, integer *n,
  555. doublecomplex *arf, doublecomplex *ap, integer *info)
  556. {
  557. /* System generated locals */
  558. integer i__1, i__2, i__3, i__4;
  559. doublecomplex z__1;
  560. /* Local variables */
  561. integer i__, j, k;
  562. logical normaltransr;
  563. extern logical lsame_(char *, char *);
  564. logical lower;
  565. integer n1, n2, ij, jp, js, nt;
  566. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  567. logical nisodd;
  568. integer lda, ijp;
  569. /* -- LAPACK computational routine (version 3.7.0) -- */
  570. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  571. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  572. /* December 2016 */
  573. /* ===================================================================== */
  574. /* Test the input parameters. */
  575. *info = 0;
  576. normaltransr = lsame_(transr, "N");
  577. lower = lsame_(uplo, "L");
  578. if (! normaltransr && ! lsame_(transr, "C")) {
  579. *info = -1;
  580. } else if (! lower && ! lsame_(uplo, "U")) {
  581. *info = -2;
  582. } else if (*n < 0) {
  583. *info = -3;
  584. }
  585. if (*info != 0) {
  586. i__1 = -(*info);
  587. xerbla_("ZTFTTP", &i__1, (ftnlen)6);
  588. return 0;
  589. }
  590. /* Quick return if possible */
  591. if (*n == 0) {
  592. return 0;
  593. }
  594. if (*n == 1) {
  595. if (normaltransr) {
  596. ap[0].r = arf[0].r, ap[0].i = arf[0].i;
  597. } else {
  598. d_cnjg(&z__1, arf);
  599. ap[0].r = z__1.r, ap[0].i = z__1.i;
  600. }
  601. return 0;
  602. }
  603. /* Size of array ARF(0:NT-1) */
  604. nt = *n * (*n + 1) / 2;
  605. /* Set N1 and N2 depending on LOWER */
  606. if (lower) {
  607. n2 = *n / 2;
  608. n1 = *n - n2;
  609. } else {
  610. n1 = *n / 2;
  611. n2 = *n - n1;
  612. }
  613. /* If N is odd, set NISODD = .TRUE. */
  614. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  615. /* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
  616. /* where noe = 0 if n is even, noe = 1 if n is odd */
  617. if (*n % 2 == 0) {
  618. k = *n / 2;
  619. nisodd = FALSE_;
  620. lda = *n + 1;
  621. } else {
  622. nisodd = TRUE_;
  623. lda = *n;
  624. }
  625. /* ARF^C has lda rows and n+1-noe cols */
  626. if (! normaltransr) {
  627. lda = (*n + 1) / 2;
  628. }
  629. /* start execution: there are eight cases */
  630. if (nisodd) {
  631. /* N is odd */
  632. if (normaltransr) {
  633. /* N is odd and TRANSR = 'N' */
  634. if (lower) {
  635. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  636. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  637. /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */
  638. ijp = 0;
  639. jp = 0;
  640. i__1 = n2;
  641. for (j = 0; j <= i__1; ++j) {
  642. i__2 = *n - 1;
  643. for (i__ = j; i__ <= i__2; ++i__) {
  644. ij = i__ + jp;
  645. i__3 = ijp;
  646. i__4 = ij;
  647. ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
  648. ++ijp;
  649. }
  650. jp += lda;
  651. }
  652. i__1 = n2 - 1;
  653. for (i__ = 0; i__ <= i__1; ++i__) {
  654. i__2 = n2;
  655. for (j = i__ + 1; j <= i__2; ++j) {
  656. ij = i__ + j * lda;
  657. i__3 = ijp;
  658. d_cnjg(&z__1, &arf[ij]);
  659. ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
  660. ++ijp;
  661. }
  662. }
  663. } else {
  664. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  665. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  666. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  667. ijp = 0;
  668. i__1 = n1 - 1;
  669. for (j = 0; j <= i__1; ++j) {
  670. ij = n2 + j;
  671. i__2 = j;
  672. for (i__ = 0; i__ <= i__2; ++i__) {
  673. i__3 = ijp;
  674. d_cnjg(&z__1, &arf[ij]);
  675. ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
  676. ++ijp;
  677. ij += lda;
  678. }
  679. }
  680. js = 0;
  681. i__1 = *n - 1;
  682. for (j = n1; j <= i__1; ++j) {
  683. ij = js;
  684. i__2 = js + j;
  685. for (ij = js; ij <= i__2; ++ij) {
  686. i__3 = ijp;
  687. i__4 = ij;
  688. ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
  689. ++ijp;
  690. }
  691. js += lda;
  692. }
  693. }
  694. } else {
  695. /* N is odd and TRANSR = 'C' */
  696. if (lower) {
  697. /* SRPA for LOWER, TRANSPOSE and N is odd */
  698. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  699. /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
  700. ijp = 0;
  701. i__1 = n2;
  702. for (i__ = 0; i__ <= i__1; ++i__) {
  703. i__2 = *n * lda - 1;
  704. i__3 = lda;
  705. for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
  706. i__2; ij += i__3) {
  707. i__4 = ijp;
  708. d_cnjg(&z__1, &arf[ij]);
  709. ap[i__4].r = z__1.r, ap[i__4].i = z__1.i;
  710. ++ijp;
  711. }
  712. }
  713. js = 1;
  714. i__1 = n2 - 1;
  715. for (j = 0; j <= i__1; ++j) {
  716. i__3 = js + n2 - j - 1;
  717. for (ij = js; ij <= i__3; ++ij) {
  718. i__2 = ijp;
  719. i__4 = ij;
  720. ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
  721. ++ijp;
  722. }
  723. js = js + lda + 1;
  724. }
  725. } else {
  726. /* SRPA for UPPER, TRANSPOSE and N is odd */
  727. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  728. /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
  729. ijp = 0;
  730. js = n2 * lda;
  731. i__1 = n1 - 1;
  732. for (j = 0; j <= i__1; ++j) {
  733. i__3 = js + j;
  734. for (ij = js; ij <= i__3; ++ij) {
  735. i__2 = ijp;
  736. i__4 = ij;
  737. ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
  738. ++ijp;
  739. }
  740. js += lda;
  741. }
  742. i__1 = n1;
  743. for (i__ = 0; i__ <= i__1; ++i__) {
  744. i__3 = i__ + (n1 + i__) * lda;
  745. i__2 = lda;
  746. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  747. i__2) {
  748. i__4 = ijp;
  749. d_cnjg(&z__1, &arf[ij]);
  750. ap[i__4].r = z__1.r, ap[i__4].i = z__1.i;
  751. ++ijp;
  752. }
  753. }
  754. }
  755. }
  756. } else {
  757. /* N is even */
  758. if (normaltransr) {
  759. /* N is even and TRANSR = 'N' */
  760. if (lower) {
  761. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  762. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  763. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  764. ijp = 0;
  765. jp = 0;
  766. i__1 = k - 1;
  767. for (j = 0; j <= i__1; ++j) {
  768. i__2 = *n - 1;
  769. for (i__ = j; i__ <= i__2; ++i__) {
  770. ij = i__ + 1 + jp;
  771. i__3 = ijp;
  772. i__4 = ij;
  773. ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
  774. ++ijp;
  775. }
  776. jp += lda;
  777. }
  778. i__1 = k - 1;
  779. for (i__ = 0; i__ <= i__1; ++i__) {
  780. i__2 = k - 1;
  781. for (j = i__; j <= i__2; ++j) {
  782. ij = i__ + j * lda;
  783. i__3 = ijp;
  784. d_cnjg(&z__1, &arf[ij]);
  785. ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
  786. ++ijp;
  787. }
  788. }
  789. } else {
  790. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  791. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  792. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  793. ijp = 0;
  794. i__1 = k - 1;
  795. for (j = 0; j <= i__1; ++j) {
  796. ij = k + 1 + j;
  797. i__2 = j;
  798. for (i__ = 0; i__ <= i__2; ++i__) {
  799. i__3 = ijp;
  800. d_cnjg(&z__1, &arf[ij]);
  801. ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
  802. ++ijp;
  803. ij += lda;
  804. }
  805. }
  806. js = 0;
  807. i__1 = *n - 1;
  808. for (j = k; j <= i__1; ++j) {
  809. ij = js;
  810. i__2 = js + j;
  811. for (ij = js; ij <= i__2; ++ij) {
  812. i__3 = ijp;
  813. i__4 = ij;
  814. ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
  815. ++ijp;
  816. }
  817. js += lda;
  818. }
  819. }
  820. } else {
  821. /* N is even and TRANSR = 'C' */
  822. if (lower) {
  823. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  824. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  825. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  826. ijp = 0;
  827. i__1 = k - 1;
  828. for (i__ = 0; i__ <= i__1; ++i__) {
  829. i__2 = (*n + 1) * lda - 1;
  830. i__3 = lda;
  831. for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
  832. ij <= i__2; ij += i__3) {
  833. i__4 = ijp;
  834. d_cnjg(&z__1, &arf[ij]);
  835. ap[i__4].r = z__1.r, ap[i__4].i = z__1.i;
  836. ++ijp;
  837. }
  838. }
  839. js = 0;
  840. i__1 = k - 1;
  841. for (j = 0; j <= i__1; ++j) {
  842. i__3 = js + k - j - 1;
  843. for (ij = js; ij <= i__3; ++ij) {
  844. i__2 = ijp;
  845. i__4 = ij;
  846. ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
  847. ++ijp;
  848. }
  849. js = js + lda + 1;
  850. }
  851. } else {
  852. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  853. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  854. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  855. ijp = 0;
  856. js = (k + 1) * lda;
  857. i__1 = k - 1;
  858. for (j = 0; j <= i__1; ++j) {
  859. i__3 = js + j;
  860. for (ij = js; ij <= i__3; ++ij) {
  861. i__2 = ijp;
  862. i__4 = ij;
  863. ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
  864. ++ijp;
  865. }
  866. js += lda;
  867. }
  868. i__1 = k - 1;
  869. for (i__ = 0; i__ <= i__1; ++i__) {
  870. i__3 = i__ + (k + i__) * lda;
  871. i__2 = lda;
  872. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  873. i__2) {
  874. i__4 = ijp;
  875. d_cnjg(&z__1, &arf[ij]);
  876. ap[i__4].r = z__1.r, ap[i__4].i = z__1.i;
  877. ++ijp;
  878. }
  879. }
  880. }
  881. }
  882. }
  883. return 0;
  884. /* End of ZTFTTP */
  885. } /* ztfttp_ */