You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptrs.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublecomplex c_b1 = {1.,0.};
  381. static integer c__1 = 1;
  382. /* > \brief \b ZSPTRS */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download ZSPTRS + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptrs.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptrs.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptrs.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) */
  401. /* CHARACTER UPLO */
  402. /* INTEGER INFO, LDB, N, NRHS */
  403. /* INTEGER IPIV( * ) */
  404. /* COMPLEX*16 AP( * ), B( LDB, * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > ZSPTRS solves a system of linear equations A*X = B with a complex */
  411. /* > symmetric matrix A stored in packed format using the factorization */
  412. /* > A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. */
  413. /* > \endverbatim */
  414. /* Arguments: */
  415. /* ========== */
  416. /* > \param[in] UPLO */
  417. /* > \verbatim */
  418. /* > UPLO is CHARACTER*1 */
  419. /* > Specifies whether the details of the factorization are stored */
  420. /* > as an upper or lower triangular matrix. */
  421. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  422. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  423. /* > \endverbatim */
  424. /* > */
  425. /* > \param[in] N */
  426. /* > \verbatim */
  427. /* > N is INTEGER */
  428. /* > The order of the matrix A. N >= 0. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in] NRHS */
  432. /* > \verbatim */
  433. /* > NRHS is INTEGER */
  434. /* > The number of right hand sides, i.e., the number of columns */
  435. /* > of the matrix B. NRHS >= 0. */
  436. /* > \endverbatim */
  437. /* > */
  438. /* > \param[in] AP */
  439. /* > \verbatim */
  440. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  441. /* > The block diagonal matrix D and the multipliers used to */
  442. /* > obtain the factor U or L as computed by ZSPTRF, stored as a */
  443. /* > packed triangular matrix. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] IPIV */
  447. /* > \verbatim */
  448. /* > IPIV is INTEGER array, dimension (N) */
  449. /* > Details of the interchanges and the block structure of D */
  450. /* > as determined by ZSPTRF. */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in,out] B */
  454. /* > \verbatim */
  455. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  456. /* > On entry, the right hand side matrix B. */
  457. /* > On exit, the solution matrix X. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[in] LDB */
  461. /* > \verbatim */
  462. /* > LDB is INTEGER */
  463. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[out] INFO */
  467. /* > \verbatim */
  468. /* > INFO is INTEGER */
  469. /* > = 0: successful exit */
  470. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  471. /* > \endverbatim */
  472. /* Authors: */
  473. /* ======== */
  474. /* > \author Univ. of Tennessee */
  475. /* > \author Univ. of California Berkeley */
  476. /* > \author Univ. of Colorado Denver */
  477. /* > \author NAG Ltd. */
  478. /* > \date December 2016 */
  479. /* > \ingroup complex16OTHERcomputational */
  480. /* ===================================================================== */
  481. /* Subroutine */ int zsptrs_(char *uplo, integer *n, integer *nrhs,
  482. doublecomplex *ap, integer *ipiv, doublecomplex *b, integer *ldb,
  483. integer *info)
  484. {
  485. /* System generated locals */
  486. integer b_dim1, b_offset, i__1, i__2;
  487. doublecomplex z__1, z__2, z__3;
  488. /* Local variables */
  489. doublecomplex akm1k;
  490. integer j, k;
  491. extern logical lsame_(char *, char *);
  492. doublecomplex denom;
  493. extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
  494. doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
  495. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  496. integer *, doublecomplex *, doublecomplex *, integer *);
  497. logical upper;
  498. extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *,
  499. doublecomplex *, integer *, doublecomplex *, integer *,
  500. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  501. integer *, doublecomplex *, integer *);
  502. doublecomplex ak, bk;
  503. integer kc, kp;
  504. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  505. doublecomplex akm1, bkm1;
  506. /* -- LAPACK computational routine (version 3.7.0) -- */
  507. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  508. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  509. /* December 2016 */
  510. /* ===================================================================== */
  511. /* Parameter adjustments */
  512. --ap;
  513. --ipiv;
  514. b_dim1 = *ldb;
  515. b_offset = 1 + b_dim1 * 1;
  516. b -= b_offset;
  517. /* Function Body */
  518. *info = 0;
  519. upper = lsame_(uplo, "U");
  520. if (! upper && ! lsame_(uplo, "L")) {
  521. *info = -1;
  522. } else if (*n < 0) {
  523. *info = -2;
  524. } else if (*nrhs < 0) {
  525. *info = -3;
  526. } else if (*ldb < f2cmax(1,*n)) {
  527. *info = -7;
  528. }
  529. if (*info != 0) {
  530. i__1 = -(*info);
  531. xerbla_("ZSPTRS", &i__1, (ftnlen)6);
  532. return 0;
  533. }
  534. /* Quick return if possible */
  535. if (*n == 0 || *nrhs == 0) {
  536. return 0;
  537. }
  538. if (upper) {
  539. /* Solve A*X = B, where A = U*D*U**T. */
  540. /* First solve U*D*X = B, overwriting B with X. */
  541. /* K is the main loop index, decreasing from N to 1 in steps of */
  542. /* 1 or 2, depending on the size of the diagonal blocks. */
  543. k = *n;
  544. kc = *n * (*n + 1) / 2 + 1;
  545. L10:
  546. /* If K < 1, exit from loop. */
  547. if (k < 1) {
  548. goto L30;
  549. }
  550. kc -= k;
  551. if (ipiv[k] > 0) {
  552. /* 1 x 1 diagonal block */
  553. /* Interchange rows K and IPIV(K). */
  554. kp = ipiv[k];
  555. if (kp != k) {
  556. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  557. }
  558. /* Multiply by inv(U(K)), where U(K) is the transformation */
  559. /* stored in column K of A. */
  560. i__1 = k - 1;
  561. z__1.r = -1., z__1.i = 0.;
  562. zgeru_(&i__1, nrhs, &z__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, &
  563. b[b_dim1 + 1], ldb);
  564. /* Multiply by the inverse of the diagonal block. */
  565. z_div(&z__1, &c_b1, &ap[kc + k - 1]);
  566. zscal_(nrhs, &z__1, &b[k + b_dim1], ldb);
  567. --k;
  568. } else {
  569. /* 2 x 2 diagonal block */
  570. /* Interchange rows K-1 and -IPIV(K). */
  571. kp = -ipiv[k];
  572. if (kp != k - 1) {
  573. zswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  574. }
  575. /* Multiply by inv(U(K)), where U(K) is the transformation */
  576. /* stored in columns K-1 and K of A. */
  577. i__1 = k - 2;
  578. z__1.r = -1., z__1.i = 0.;
  579. zgeru_(&i__1, nrhs, &z__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, &
  580. b[b_dim1 + 1], ldb);
  581. i__1 = k - 2;
  582. z__1.r = -1., z__1.i = 0.;
  583. zgeru_(&i__1, nrhs, &z__1, &ap[kc - (k - 1)], &c__1, &b[k - 1 +
  584. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  585. /* Multiply by the inverse of the diagonal block. */
  586. i__1 = kc + k - 2;
  587. akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i;
  588. z_div(&z__1, &ap[kc - 1], &akm1k);
  589. akm1.r = z__1.r, akm1.i = z__1.i;
  590. z_div(&z__1, &ap[kc + k - 1], &akm1k);
  591. ak.r = z__1.r, ak.i = z__1.i;
  592. z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
  593. akm1.i * ak.r;
  594. z__1.r = z__2.r - 1., z__1.i = z__2.i + 0.;
  595. denom.r = z__1.r, denom.i = z__1.i;
  596. i__1 = *nrhs;
  597. for (j = 1; j <= i__1; ++j) {
  598. z_div(&z__1, &b[k - 1 + j * b_dim1], &akm1k);
  599. bkm1.r = z__1.r, bkm1.i = z__1.i;
  600. z_div(&z__1, &b[k + j * b_dim1], &akm1k);
  601. bk.r = z__1.r, bk.i = z__1.i;
  602. i__2 = k - 1 + j * b_dim1;
  603. z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
  604. bkm1.i + ak.i * bkm1.r;
  605. z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
  606. z_div(&z__1, &z__2, &denom);
  607. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  608. i__2 = k + j * b_dim1;
  609. z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
  610. bk.i + akm1.i * bk.r;
  611. z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
  612. z_div(&z__1, &z__2, &denom);
  613. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  614. /* L20: */
  615. }
  616. kc = kc - k + 1;
  617. k += -2;
  618. }
  619. goto L10;
  620. L30:
  621. /* Next solve U**T*X = B, overwriting B with X. */
  622. /* K is the main loop index, increasing from 1 to N in steps of */
  623. /* 1 or 2, depending on the size of the diagonal blocks. */
  624. k = 1;
  625. kc = 1;
  626. L40:
  627. /* If K > N, exit from loop. */
  628. if (k > *n) {
  629. goto L50;
  630. }
  631. if (ipiv[k] > 0) {
  632. /* 1 x 1 diagonal block */
  633. /* Multiply by inv(U**T(K)), where U(K) is the transformation */
  634. /* stored in column K of A. */
  635. i__1 = k - 1;
  636. z__1.r = -1., z__1.i = 0.;
  637. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[b_offset], ldb, &ap[kc]
  638. , &c__1, &c_b1, &b[k + b_dim1], ldb);
  639. /* Interchange rows K and IPIV(K). */
  640. kp = ipiv[k];
  641. if (kp != k) {
  642. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  643. }
  644. kc += k;
  645. ++k;
  646. } else {
  647. /* 2 x 2 diagonal block */
  648. /* Multiply by inv(U**T(K+1)), where U(K+1) is the transformation */
  649. /* stored in columns K and K+1 of A. */
  650. i__1 = k - 1;
  651. z__1.r = -1., z__1.i = 0.;
  652. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[b_offset], ldb, &ap[kc]
  653. , &c__1, &c_b1, &b[k + b_dim1], ldb);
  654. i__1 = k - 1;
  655. z__1.r = -1., z__1.i = 0.;
  656. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[b_offset], ldb, &ap[kc
  657. + k], &c__1, &c_b1, &b[k + 1 + b_dim1], ldb);
  658. /* Interchange rows K and -IPIV(K). */
  659. kp = -ipiv[k];
  660. if (kp != k) {
  661. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  662. }
  663. kc = kc + (k << 1) + 1;
  664. k += 2;
  665. }
  666. goto L40;
  667. L50:
  668. ;
  669. } else {
  670. /* Solve A*X = B, where A = L*D*L**T. */
  671. /* First solve L*D*X = B, overwriting B with X. */
  672. /* K is the main loop index, increasing from 1 to N in steps of */
  673. /* 1 or 2, depending on the size of the diagonal blocks. */
  674. k = 1;
  675. kc = 1;
  676. L60:
  677. /* If K > N, exit from loop. */
  678. if (k > *n) {
  679. goto L80;
  680. }
  681. if (ipiv[k] > 0) {
  682. /* 1 x 1 diagonal block */
  683. /* Interchange rows K and IPIV(K). */
  684. kp = ipiv[k];
  685. if (kp != k) {
  686. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  687. }
  688. /* Multiply by inv(L(K)), where L(K) is the transformation */
  689. /* stored in column K of A. */
  690. if (k < *n) {
  691. i__1 = *n - k;
  692. z__1.r = -1., z__1.i = 0.;
  693. zgeru_(&i__1, nrhs, &z__1, &ap[kc + 1], &c__1, &b[k + b_dim1],
  694. ldb, &b[k + 1 + b_dim1], ldb);
  695. }
  696. /* Multiply by the inverse of the diagonal block. */
  697. z_div(&z__1, &c_b1, &ap[kc]);
  698. zscal_(nrhs, &z__1, &b[k + b_dim1], ldb);
  699. kc = kc + *n - k + 1;
  700. ++k;
  701. } else {
  702. /* 2 x 2 diagonal block */
  703. /* Interchange rows K+1 and -IPIV(K). */
  704. kp = -ipiv[k];
  705. if (kp != k + 1) {
  706. zswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  707. }
  708. /* Multiply by inv(L(K)), where L(K) is the transformation */
  709. /* stored in columns K and K+1 of A. */
  710. if (k < *n - 1) {
  711. i__1 = *n - k - 1;
  712. z__1.r = -1., z__1.i = 0.;
  713. zgeru_(&i__1, nrhs, &z__1, &ap[kc + 2], &c__1, &b[k + b_dim1],
  714. ldb, &b[k + 2 + b_dim1], ldb);
  715. i__1 = *n - k - 1;
  716. z__1.r = -1., z__1.i = 0.;
  717. zgeru_(&i__1, nrhs, &z__1, &ap[kc + *n - k + 2], &c__1, &b[k
  718. + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
  719. }
  720. /* Multiply by the inverse of the diagonal block. */
  721. i__1 = kc + 1;
  722. akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i;
  723. z_div(&z__1, &ap[kc], &akm1k);
  724. akm1.r = z__1.r, akm1.i = z__1.i;
  725. z_div(&z__1, &ap[kc + *n - k + 1], &akm1k);
  726. ak.r = z__1.r, ak.i = z__1.i;
  727. z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
  728. akm1.i * ak.r;
  729. z__1.r = z__2.r - 1., z__1.i = z__2.i + 0.;
  730. denom.r = z__1.r, denom.i = z__1.i;
  731. i__1 = *nrhs;
  732. for (j = 1; j <= i__1; ++j) {
  733. z_div(&z__1, &b[k + j * b_dim1], &akm1k);
  734. bkm1.r = z__1.r, bkm1.i = z__1.i;
  735. z_div(&z__1, &b[k + 1 + j * b_dim1], &akm1k);
  736. bk.r = z__1.r, bk.i = z__1.i;
  737. i__2 = k + j * b_dim1;
  738. z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
  739. bkm1.i + ak.i * bkm1.r;
  740. z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
  741. z_div(&z__1, &z__2, &denom);
  742. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  743. i__2 = k + 1 + j * b_dim1;
  744. z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
  745. bk.i + akm1.i * bk.r;
  746. z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
  747. z_div(&z__1, &z__2, &denom);
  748. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  749. /* L70: */
  750. }
  751. kc = kc + (*n - k << 1) + 1;
  752. k += 2;
  753. }
  754. goto L60;
  755. L80:
  756. /* Next solve L**T*X = B, overwriting B with X. */
  757. /* K is the main loop index, decreasing from N to 1 in steps of */
  758. /* 1 or 2, depending on the size of the diagonal blocks. */
  759. k = *n;
  760. kc = *n * (*n + 1) / 2 + 1;
  761. L90:
  762. /* If K < 1, exit from loop. */
  763. if (k < 1) {
  764. goto L100;
  765. }
  766. kc -= *n - k + 1;
  767. if (ipiv[k] > 0) {
  768. /* 1 x 1 diagonal block */
  769. /* Multiply by inv(L**T(K)), where L(K) is the transformation */
  770. /* stored in column K of A. */
  771. if (k < *n) {
  772. i__1 = *n - k;
  773. z__1.r = -1., z__1.i = 0.;
  774. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[k + 1 + b_dim1],
  775. ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
  776. }
  777. /* Interchange rows K and IPIV(K). */
  778. kp = ipiv[k];
  779. if (kp != k) {
  780. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  781. }
  782. --k;
  783. } else {
  784. /* 2 x 2 diagonal block */
  785. /* Multiply by inv(L**T(K-1)), where L(K-1) is the transformation */
  786. /* stored in columns K-1 and K of A. */
  787. if (k < *n) {
  788. i__1 = *n - k;
  789. z__1.r = -1., z__1.i = 0.;
  790. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[k + 1 + b_dim1],
  791. ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
  792. i__1 = *n - k;
  793. z__1.r = -1., z__1.i = 0.;
  794. zgemv_("Transpose", &i__1, nrhs, &z__1, &b[k + 1 + b_dim1],
  795. ldb, &ap[kc - (*n - k)], &c__1, &c_b1, &b[k - 1 +
  796. b_dim1], ldb);
  797. }
  798. /* Interchange rows K and -IPIV(K). */
  799. kp = -ipiv[k];
  800. if (kp != k) {
  801. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  802. }
  803. kc -= *n - k + 2;
  804. k += -2;
  805. }
  806. goto L90;
  807. L100:
  808. ;
  809. }
  810. return 0;
  811. /* End of ZSPTRS */
  812. } /* zsptrs_ */