You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptri.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublecomplex c_b1 = {1.,0.};
  381. static doublecomplex c_b2 = {0.,0.};
  382. static integer c__1 = 1;
  383. /* > \brief \b ZSPTRI */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download ZSPTRI + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) */
  402. /* CHARACTER UPLO */
  403. /* INTEGER INFO, N */
  404. /* INTEGER IPIV( * ) */
  405. /* COMPLEX*16 AP( * ), WORK( * ) */
  406. /* > \par Purpose: */
  407. /* ============= */
  408. /* > */
  409. /* > \verbatim */
  410. /* > */
  411. /* > ZSPTRI computes the inverse of a complex symmetric indefinite matrix */
  412. /* > A in packed storage using the factorization A = U*D*U**T or */
  413. /* > A = L*D*L**T computed by ZSPTRF. */
  414. /* > \endverbatim */
  415. /* Arguments: */
  416. /* ========== */
  417. /* > \param[in] UPLO */
  418. /* > \verbatim */
  419. /* > UPLO is CHARACTER*1 */
  420. /* > Specifies whether the details of the factorization are stored */
  421. /* > as an upper or lower triangular matrix. */
  422. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  423. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  424. /* > \endverbatim */
  425. /* > */
  426. /* > \param[in] N */
  427. /* > \verbatim */
  428. /* > N is INTEGER */
  429. /* > The order of the matrix A. N >= 0. */
  430. /* > \endverbatim */
  431. /* > */
  432. /* > \param[in,out] AP */
  433. /* > \verbatim */
  434. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  435. /* > On entry, the block diagonal matrix D and the multipliers */
  436. /* > used to obtain the factor U or L as computed by ZSPTRF, */
  437. /* > stored as a packed triangular matrix. */
  438. /* > */
  439. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  440. /* > matrix, stored as a packed triangular matrix. The j-th column */
  441. /* > of inv(A) is stored in the array AP as follows: */
  442. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
  443. /* > if UPLO = 'L', */
  444. /* > AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
  445. /* > \endverbatim */
  446. /* > */
  447. /* > \param[in] IPIV */
  448. /* > \verbatim */
  449. /* > IPIV is INTEGER array, dimension (N) */
  450. /* > Details of the interchanges and the block structure of D */
  451. /* > as determined by ZSPTRF. */
  452. /* > \endverbatim */
  453. /* > */
  454. /* > \param[out] WORK */
  455. /* > \verbatim */
  456. /* > WORK is COMPLEX*16 array, dimension (N) */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[out] INFO */
  460. /* > \verbatim */
  461. /* > INFO is INTEGER */
  462. /* > = 0: successful exit */
  463. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  464. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  465. /* > inverse could not be computed. */
  466. /* > \endverbatim */
  467. /* Authors: */
  468. /* ======== */
  469. /* > \author Univ. of Tennessee */
  470. /* > \author Univ. of California Berkeley */
  471. /* > \author Univ. of Colorado Denver */
  472. /* > \author NAG Ltd. */
  473. /* > \date December 2016 */
  474. /* > \ingroup complex16OTHERcomputational */
  475. /* ===================================================================== */
  476. /* Subroutine */ int zsptri_(char *uplo, integer *n, doublecomplex *ap,
  477. integer *ipiv, doublecomplex *work, integer *info)
  478. {
  479. /* System generated locals */
  480. integer i__1, i__2, i__3;
  481. doublecomplex z__1, z__2, z__3;
  482. /* Local variables */
  483. doublecomplex temp, akkp1, d__;
  484. integer j, k;
  485. doublecomplex t;
  486. extern logical lsame_(char *, char *);
  487. integer kstep;
  488. logical upper;
  489. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  490. doublecomplex *, integer *);
  491. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  492. doublecomplex *, integer *, doublecomplex *, integer *);
  493. extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
  494. doublecomplex *, integer *), zspmv_(char *, integer *,
  495. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  496. doublecomplex *, doublecomplex *, integer *);
  497. doublecomplex ak;
  498. integer kc, kp, kx;
  499. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  500. integer kcnext, kpc, npp;
  501. doublecomplex akp1;
  502. /* -- LAPACK computational routine (version 3.7.0) -- */
  503. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  504. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  505. /* December 2016 */
  506. /* ===================================================================== */
  507. /* Test the input parameters. */
  508. /* Parameter adjustments */
  509. --work;
  510. --ipiv;
  511. --ap;
  512. /* Function Body */
  513. *info = 0;
  514. upper = lsame_(uplo, "U");
  515. if (! upper && ! lsame_(uplo, "L")) {
  516. *info = -1;
  517. } else if (*n < 0) {
  518. *info = -2;
  519. }
  520. if (*info != 0) {
  521. i__1 = -(*info);
  522. xerbla_("ZSPTRI", &i__1, (ftnlen)6);
  523. return 0;
  524. }
  525. /* Quick return if possible */
  526. if (*n == 0) {
  527. return 0;
  528. }
  529. /* Check that the diagonal matrix D is nonsingular. */
  530. if (upper) {
  531. /* Upper triangular storage: examine D from bottom to top */
  532. kp = *n * (*n + 1) / 2;
  533. for (*info = *n; *info >= 1; --(*info)) {
  534. i__1 = kp;
  535. if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) {
  536. return 0;
  537. }
  538. kp -= *info;
  539. /* L10: */
  540. }
  541. } else {
  542. /* Lower triangular storage: examine D from top to bottom. */
  543. kp = 1;
  544. i__1 = *n;
  545. for (*info = 1; *info <= i__1; ++(*info)) {
  546. i__2 = kp;
  547. if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) {
  548. return 0;
  549. }
  550. kp = kp + *n - *info + 1;
  551. /* L20: */
  552. }
  553. }
  554. *info = 0;
  555. if (upper) {
  556. /* Compute inv(A) from the factorization A = U*D*U**T. */
  557. /* K is the main loop index, increasing from 1 to N in steps of */
  558. /* 1 or 2, depending on the size of the diagonal blocks. */
  559. k = 1;
  560. kc = 1;
  561. L30:
  562. /* If K > N, exit from loop. */
  563. if (k > *n) {
  564. goto L50;
  565. }
  566. kcnext = kc + k;
  567. if (ipiv[k] > 0) {
  568. /* 1 x 1 diagonal block */
  569. /* Invert the diagonal block. */
  570. i__1 = kc + k - 1;
  571. z_div(&z__1, &c_b1, &ap[kc + k - 1]);
  572. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  573. /* Compute column K of the inverse. */
  574. if (k > 1) {
  575. i__1 = k - 1;
  576. zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  577. i__1 = k - 1;
  578. z__1.r = -1., z__1.i = 0.;
  579. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  580. ap[kc], &c__1);
  581. i__1 = kc + k - 1;
  582. i__2 = kc + k - 1;
  583. i__3 = k - 1;
  584. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  585. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  586. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  587. }
  588. kstep = 1;
  589. } else {
  590. /* 2 x 2 diagonal block */
  591. /* Invert the diagonal block. */
  592. i__1 = kcnext + k - 1;
  593. t.r = ap[i__1].r, t.i = ap[i__1].i;
  594. z_div(&z__1, &ap[kc + k - 1], &t);
  595. ak.r = z__1.r, ak.i = z__1.i;
  596. z_div(&z__1, &ap[kcnext + k], &t);
  597. akp1.r = z__1.r, akp1.i = z__1.i;
  598. z_div(&z__1, &ap[kcnext + k - 1], &t);
  599. akkp1.r = z__1.r, akkp1.i = z__1.i;
  600. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  601. ak.i * akp1.r;
  602. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  603. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  604. * z__2.r;
  605. d__.r = z__1.r, d__.i = z__1.i;
  606. i__1 = kc + k - 1;
  607. z_div(&z__1, &akp1, &d__);
  608. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  609. i__1 = kcnext + k;
  610. z_div(&z__1, &ak, &d__);
  611. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  612. i__1 = kcnext + k - 1;
  613. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  614. z_div(&z__1, &z__2, &d__);
  615. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  616. /* Compute columns K and K+1 of the inverse. */
  617. if (k > 1) {
  618. i__1 = k - 1;
  619. zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  620. i__1 = k - 1;
  621. z__1.r = -1., z__1.i = 0.;
  622. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  623. ap[kc], &c__1);
  624. i__1 = kc + k - 1;
  625. i__2 = kc + k - 1;
  626. i__3 = k - 1;
  627. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  628. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  629. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  630. i__1 = kcnext + k - 1;
  631. i__2 = kcnext + k - 1;
  632. i__3 = k - 1;
  633. zdotu_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1);
  634. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  635. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  636. i__1 = k - 1;
  637. zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
  638. i__1 = k - 1;
  639. z__1.r = -1., z__1.i = 0.;
  640. zspmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
  641. ap[kcnext], &c__1);
  642. i__1 = kcnext + k;
  643. i__2 = kcnext + k;
  644. i__3 = k - 1;
  645. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1);
  646. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  647. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  648. }
  649. kstep = 2;
  650. kcnext = kcnext + k + 1;
  651. }
  652. kp = (i__1 = ipiv[k], abs(i__1));
  653. if (kp != k) {
  654. /* Interchange rows and columns K and KP in the leading */
  655. /* submatrix A(1:k+1,1:k+1) */
  656. kpc = (kp - 1) * kp / 2 + 1;
  657. i__1 = kp - 1;
  658. zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
  659. kx = kpc + kp - 1;
  660. i__1 = k - 1;
  661. for (j = kp + 1; j <= i__1; ++j) {
  662. kx = kx + j - 1;
  663. i__2 = kc + j - 1;
  664. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  665. i__2 = kc + j - 1;
  666. i__3 = kx;
  667. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  668. i__2 = kx;
  669. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  670. /* L40: */
  671. }
  672. i__1 = kc + k - 1;
  673. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  674. i__1 = kc + k - 1;
  675. i__2 = kpc + kp - 1;
  676. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  677. i__1 = kpc + kp - 1;
  678. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  679. if (kstep == 2) {
  680. i__1 = kc + k + k - 1;
  681. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  682. i__1 = kc + k + k - 1;
  683. i__2 = kc + k + kp - 1;
  684. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  685. i__1 = kc + k + kp - 1;
  686. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  687. }
  688. }
  689. k += kstep;
  690. kc = kcnext;
  691. goto L30;
  692. L50:
  693. ;
  694. } else {
  695. /* Compute inv(A) from the factorization A = L*D*L**T. */
  696. /* K is the main loop index, increasing from 1 to N in steps of */
  697. /* 1 or 2, depending on the size of the diagonal blocks. */
  698. npp = *n * (*n + 1) / 2;
  699. k = *n;
  700. kc = npp;
  701. L60:
  702. /* If K < 1, exit from loop. */
  703. if (k < 1) {
  704. goto L80;
  705. }
  706. kcnext = kc - (*n - k + 2);
  707. if (ipiv[k] > 0) {
  708. /* 1 x 1 diagonal block */
  709. /* Invert the diagonal block. */
  710. i__1 = kc;
  711. z_div(&z__1, &c_b1, &ap[kc]);
  712. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  713. /* Compute column K of the inverse. */
  714. if (k < *n) {
  715. i__1 = *n - k;
  716. zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  717. i__1 = *n - k;
  718. z__1.r = -1., z__1.i = 0.;
  719. zspmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], &
  720. c__1, &c_b2, &ap[kc + 1], &c__1);
  721. i__1 = kc;
  722. i__2 = kc;
  723. i__3 = *n - k;
  724. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  725. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  726. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  727. }
  728. kstep = 1;
  729. } else {
  730. /* 2 x 2 diagonal block */
  731. /* Invert the diagonal block. */
  732. i__1 = kcnext + 1;
  733. t.r = ap[i__1].r, t.i = ap[i__1].i;
  734. z_div(&z__1, &ap[kcnext], &t);
  735. ak.r = z__1.r, ak.i = z__1.i;
  736. z_div(&z__1, &ap[kc], &t);
  737. akp1.r = z__1.r, akp1.i = z__1.i;
  738. z_div(&z__1, &ap[kcnext + 1], &t);
  739. akkp1.r = z__1.r, akkp1.i = z__1.i;
  740. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  741. ak.i * akp1.r;
  742. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  743. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  744. * z__2.r;
  745. d__.r = z__1.r, d__.i = z__1.i;
  746. i__1 = kcnext;
  747. z_div(&z__1, &akp1, &d__);
  748. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  749. i__1 = kc;
  750. z_div(&z__1, &ak, &d__);
  751. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  752. i__1 = kcnext + 1;
  753. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  754. z_div(&z__1, &z__2, &d__);
  755. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  756. /* Compute columns K-1 and K of the inverse. */
  757. if (k < *n) {
  758. i__1 = *n - k;
  759. zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  760. i__1 = *n - k;
  761. z__1.r = -1., z__1.i = 0.;
  762. zspmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
  763. c__1, &c_b2, &ap[kc + 1], &c__1);
  764. i__1 = kc;
  765. i__2 = kc;
  766. i__3 = *n - k;
  767. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  768. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  769. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  770. i__1 = kcnext + 1;
  771. i__2 = kcnext + 1;
  772. i__3 = *n - k;
  773. zdotu_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], &
  774. c__1);
  775. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  776. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  777. i__1 = *n - k;
  778. zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
  779. i__1 = *n - k;
  780. z__1.r = -1., z__1.i = 0.;
  781. zspmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
  782. c__1, &c_b2, &ap[kcnext + 2], &c__1);
  783. i__1 = kcnext;
  784. i__2 = kcnext;
  785. i__3 = *n - k;
  786. zdotu_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1);
  787. z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
  788. ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
  789. }
  790. kstep = 2;
  791. kcnext -= *n - k + 3;
  792. }
  793. kp = (i__1 = ipiv[k], abs(i__1));
  794. if (kp != k) {
  795. /* Interchange rows and columns K and KP in the trailing */
  796. /* submatrix A(k-1:n,k-1:n) */
  797. kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
  798. if (kp < *n) {
  799. i__1 = *n - kp;
  800. zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
  801. c__1);
  802. }
  803. kx = kc + kp - k;
  804. i__1 = kp - 1;
  805. for (j = k + 1; j <= i__1; ++j) {
  806. kx = kx + *n - j + 1;
  807. i__2 = kc + j - k;
  808. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  809. i__2 = kc + j - k;
  810. i__3 = kx;
  811. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  812. i__2 = kx;
  813. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  814. /* L70: */
  815. }
  816. i__1 = kc;
  817. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  818. i__1 = kc;
  819. i__2 = kpc;
  820. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  821. i__1 = kpc;
  822. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  823. if (kstep == 2) {
  824. i__1 = kc - *n + k - 1;
  825. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  826. i__1 = kc - *n + k - 1;
  827. i__2 = kc - *n + kp - 1;
  828. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  829. i__1 = kc - *n + kp - 1;
  830. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  831. }
  832. }
  833. k -= kstep;
  834. kc = kcnext;
  835. goto L60;
  836. L80:
  837. ;
  838. }
  839. return 0;
  840. /* End of ZSPTRI */
  841. } /* zsptri_ */