You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zspmv.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed mat
  380. rix */
  381. /* =========== DOCUMENTATION =========== */
  382. /* Online html documentation available at */
  383. /* http://www.netlib.org/lapack/explore-html/ */
  384. /* > \htmlonly */
  385. /* > Download ZSPMV + dependencies */
  386. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f
  387. "> */
  388. /* > [TGZ]</a> */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f
  390. "> */
  391. /* > [ZIP]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f
  393. "> */
  394. /* > [TXT]</a> */
  395. /* > \endhtmlonly */
  396. /* Definition: */
  397. /* =========== */
  398. /* SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) */
  399. /* CHARACTER UPLO */
  400. /* INTEGER INCX, INCY, N */
  401. /* COMPLEX*16 ALPHA, BETA */
  402. /* COMPLEX*16 AP( * ), X( * ), Y( * ) */
  403. /* > \par Purpose: */
  404. /* ============= */
  405. /* > */
  406. /* > \verbatim */
  407. /* > */
  408. /* > ZSPMV performs the matrix-vector operation */
  409. /* > */
  410. /* > y := alpha*A*x + beta*y, */
  411. /* > */
  412. /* > where alpha and beta are scalars, x and y are n element vectors and */
  413. /* > A is an n by n symmetric matrix, supplied in packed form. */
  414. /* > \endverbatim */
  415. /* Arguments: */
  416. /* ========== */
  417. /* > \param[in] UPLO */
  418. /* > \verbatim */
  419. /* > UPLO is CHARACTER*1 */
  420. /* > On entry, UPLO specifies whether the upper or lower */
  421. /* > triangular part of the matrix A is supplied in the packed */
  422. /* > array AP as follows: */
  423. /* > */
  424. /* > UPLO = 'U' or 'u' The upper triangular part of A is */
  425. /* > supplied in AP. */
  426. /* > */
  427. /* > UPLO = 'L' or 'l' The lower triangular part of A is */
  428. /* > supplied in AP. */
  429. /* > */
  430. /* > Unchanged on exit. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] N */
  434. /* > \verbatim */
  435. /* > N is INTEGER */
  436. /* > On entry, N specifies the order of the matrix A. */
  437. /* > N must be at least zero. */
  438. /* > Unchanged on exit. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in] ALPHA */
  442. /* > \verbatim */
  443. /* > ALPHA is COMPLEX*16 */
  444. /* > On entry, ALPHA specifies the scalar alpha. */
  445. /* > Unchanged on exit. */
  446. /* > \endverbatim */
  447. /* > */
  448. /* > \param[in] AP */
  449. /* > \verbatim */
  450. /* > AP is COMPLEX*16 array, dimension at least */
  451. /* > ( ( N*( N + 1 ) )/2 ). */
  452. /* > Before entry, with UPLO = 'U' or 'u', the array AP must */
  453. /* > contain the upper triangular part of the symmetric matrix */
  454. /* > packed sequentially, column by column, so that AP( 1 ) */
  455. /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
  456. /* > and a( 2, 2 ) respectively, and so on. */
  457. /* > Before entry, with UPLO = 'L' or 'l', the array AP must */
  458. /* > contain the lower triangular part of the symmetric matrix */
  459. /* > packed sequentially, column by column, so that AP( 1 ) */
  460. /* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
  461. /* > and a( 3, 1 ) respectively, and so on. */
  462. /* > Unchanged on exit. */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in] X */
  466. /* > \verbatim */
  467. /* > X is COMPLEX*16 array, dimension at least */
  468. /* > ( 1 + ( N - 1 )*abs( INCX ) ). */
  469. /* > Before entry, the incremented array X must contain the N- */
  470. /* > element vector x. */
  471. /* > Unchanged on exit. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[in] INCX */
  475. /* > \verbatim */
  476. /* > INCX is INTEGER */
  477. /* > On entry, INCX specifies the increment for the elements of */
  478. /* > X. INCX must not be zero. */
  479. /* > Unchanged on exit. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] BETA */
  483. /* > \verbatim */
  484. /* > BETA is COMPLEX*16 */
  485. /* > On entry, BETA specifies the scalar beta. When BETA is */
  486. /* > supplied as zero then Y need not be set on input. */
  487. /* > Unchanged on exit. */
  488. /* > \endverbatim */
  489. /* > */
  490. /* > \param[in,out] Y */
  491. /* > \verbatim */
  492. /* > Y is COMPLEX*16 array, dimension at least */
  493. /* > ( 1 + ( N - 1 )*abs( INCY ) ). */
  494. /* > Before entry, the incremented array Y must contain the n */
  495. /* > element vector y. On exit, Y is overwritten by the updated */
  496. /* > vector y. */
  497. /* > \endverbatim */
  498. /* > */
  499. /* > \param[in] INCY */
  500. /* > \verbatim */
  501. /* > INCY is INTEGER */
  502. /* > On entry, INCY specifies the increment for the elements of */
  503. /* > Y. INCY must not be zero. */
  504. /* > Unchanged on exit. */
  505. /* > \endverbatim */
  506. /* Authors: */
  507. /* ======== */
  508. /* > \author Univ. of Tennessee */
  509. /* > \author Univ. of California Berkeley */
  510. /* > \author Univ. of Colorado Denver */
  511. /* > \author NAG Ltd. */
  512. /* > \date December 2016 */
  513. /* > \ingroup complex16OTHERauxiliary */
  514. /* ===================================================================== */
  515. /* Subroutine */ int zspmv_(char *uplo, integer *n, doublecomplex *alpha,
  516. doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
  517. beta, doublecomplex *y, integer *incy)
  518. {
  519. /* System generated locals */
  520. integer i__1, i__2, i__3, i__4, i__5;
  521. doublecomplex z__1, z__2, z__3, z__4;
  522. /* Local variables */
  523. integer info;
  524. doublecomplex temp1, temp2;
  525. integer i__, j, k;
  526. extern logical lsame_(char *, char *);
  527. integer kk, ix, iy, jx, jy, kx, ky;
  528. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  529. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  530. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  531. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  532. /* December 2016 */
  533. /* ===================================================================== */
  534. /* Test the input parameters. */
  535. /* Parameter adjustments */
  536. --y;
  537. --x;
  538. --ap;
  539. /* Function Body */
  540. info = 0;
  541. if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
  542. info = 1;
  543. } else if (*n < 0) {
  544. info = 2;
  545. } else if (*incx == 0) {
  546. info = 6;
  547. } else if (*incy == 0) {
  548. info = 9;
  549. }
  550. if (info != 0) {
  551. xerbla_("ZSPMV ", &info, (ftnlen)6);
  552. return 0;
  553. }
  554. /* Quick return if possible. */
  555. if (*n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
  556. beta->i == 0.)) {
  557. return 0;
  558. }
  559. /* Set up the start points in X and Y. */
  560. if (*incx > 0) {
  561. kx = 1;
  562. } else {
  563. kx = 1 - (*n - 1) * *incx;
  564. }
  565. if (*incy > 0) {
  566. ky = 1;
  567. } else {
  568. ky = 1 - (*n - 1) * *incy;
  569. }
  570. /* Start the operations. In this version the elements of the array AP */
  571. /* are accessed sequentially with one pass through AP. */
  572. /* First form y := beta*y. */
  573. if (beta->r != 1. || beta->i != 0.) {
  574. if (*incy == 1) {
  575. if (beta->r == 0. && beta->i == 0.) {
  576. i__1 = *n;
  577. for (i__ = 1; i__ <= i__1; ++i__) {
  578. i__2 = i__;
  579. y[i__2].r = 0., y[i__2].i = 0.;
  580. /* L10: */
  581. }
  582. } else {
  583. i__1 = *n;
  584. for (i__ = 1; i__ <= i__1; ++i__) {
  585. i__2 = i__;
  586. i__3 = i__;
  587. z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
  588. z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
  589. .r;
  590. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  591. /* L20: */
  592. }
  593. }
  594. } else {
  595. iy = ky;
  596. if (beta->r == 0. && beta->i == 0.) {
  597. i__1 = *n;
  598. for (i__ = 1; i__ <= i__1; ++i__) {
  599. i__2 = iy;
  600. y[i__2].r = 0., y[i__2].i = 0.;
  601. iy += *incy;
  602. /* L30: */
  603. }
  604. } else {
  605. i__1 = *n;
  606. for (i__ = 1; i__ <= i__1; ++i__) {
  607. i__2 = iy;
  608. i__3 = iy;
  609. z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
  610. z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
  611. .r;
  612. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  613. iy += *incy;
  614. /* L40: */
  615. }
  616. }
  617. }
  618. }
  619. if (alpha->r == 0. && alpha->i == 0.) {
  620. return 0;
  621. }
  622. kk = 1;
  623. if (lsame_(uplo, "U")) {
  624. /* Form y when AP contains the upper triangle. */
  625. if (*incx == 1 && *incy == 1) {
  626. i__1 = *n;
  627. for (j = 1; j <= i__1; ++j) {
  628. i__2 = j;
  629. z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
  630. alpha->r * x[i__2].i + alpha->i * x[i__2].r;
  631. temp1.r = z__1.r, temp1.i = z__1.i;
  632. temp2.r = 0., temp2.i = 0.;
  633. k = kk;
  634. i__2 = j - 1;
  635. for (i__ = 1; i__ <= i__2; ++i__) {
  636. i__3 = i__;
  637. i__4 = i__;
  638. i__5 = k;
  639. z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
  640. z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
  641. .r;
  642. z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
  643. y[i__3].r = z__1.r, y[i__3].i = z__1.i;
  644. i__3 = k;
  645. i__4 = i__;
  646. z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
  647. z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
  648. i__4].r;
  649. z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
  650. temp2.r = z__1.r, temp2.i = z__1.i;
  651. ++k;
  652. /* L50: */
  653. }
  654. i__2 = j;
  655. i__3 = j;
  656. i__4 = kk + j - 1;
  657. z__3.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__3.i =
  658. temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
  659. z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
  660. z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
  661. alpha->r * temp2.i + alpha->i * temp2.r;
  662. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  663. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  664. kk += j;
  665. /* L60: */
  666. }
  667. } else {
  668. jx = kx;
  669. jy = ky;
  670. i__1 = *n;
  671. for (j = 1; j <= i__1; ++j) {
  672. i__2 = jx;
  673. z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
  674. alpha->r * x[i__2].i + alpha->i * x[i__2].r;
  675. temp1.r = z__1.r, temp1.i = z__1.i;
  676. temp2.r = 0., temp2.i = 0.;
  677. ix = kx;
  678. iy = ky;
  679. i__2 = kk + j - 2;
  680. for (k = kk; k <= i__2; ++k) {
  681. i__3 = iy;
  682. i__4 = iy;
  683. i__5 = k;
  684. z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
  685. z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
  686. .r;
  687. z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
  688. y[i__3].r = z__1.r, y[i__3].i = z__1.i;
  689. i__3 = k;
  690. i__4 = ix;
  691. z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
  692. z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
  693. i__4].r;
  694. z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
  695. temp2.r = z__1.r, temp2.i = z__1.i;
  696. ix += *incx;
  697. iy += *incy;
  698. /* L70: */
  699. }
  700. i__2 = jy;
  701. i__3 = jy;
  702. i__4 = kk + j - 1;
  703. z__3.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__3.i =
  704. temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
  705. z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
  706. z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
  707. alpha->r * temp2.i + alpha->i * temp2.r;
  708. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  709. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  710. jx += *incx;
  711. jy += *incy;
  712. kk += j;
  713. /* L80: */
  714. }
  715. }
  716. } else {
  717. /* Form y when AP contains the lower triangle. */
  718. if (*incx == 1 && *incy == 1) {
  719. i__1 = *n;
  720. for (j = 1; j <= i__1; ++j) {
  721. i__2 = j;
  722. z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
  723. alpha->r * x[i__2].i + alpha->i * x[i__2].r;
  724. temp1.r = z__1.r, temp1.i = z__1.i;
  725. temp2.r = 0., temp2.i = 0.;
  726. i__2 = j;
  727. i__3 = j;
  728. i__4 = kk;
  729. z__2.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__2.i =
  730. temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
  731. z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
  732. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  733. k = kk + 1;
  734. i__2 = *n;
  735. for (i__ = j + 1; i__ <= i__2; ++i__) {
  736. i__3 = i__;
  737. i__4 = i__;
  738. i__5 = k;
  739. z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
  740. z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
  741. .r;
  742. z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
  743. y[i__3].r = z__1.r, y[i__3].i = z__1.i;
  744. i__3 = k;
  745. i__4 = i__;
  746. z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
  747. z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
  748. i__4].r;
  749. z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
  750. temp2.r = z__1.r, temp2.i = z__1.i;
  751. ++k;
  752. /* L90: */
  753. }
  754. i__2 = j;
  755. i__3 = j;
  756. z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
  757. alpha->r * temp2.i + alpha->i * temp2.r;
  758. z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
  759. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  760. kk += *n - j + 1;
  761. /* L100: */
  762. }
  763. } else {
  764. jx = kx;
  765. jy = ky;
  766. i__1 = *n;
  767. for (j = 1; j <= i__1; ++j) {
  768. i__2 = jx;
  769. z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
  770. alpha->r * x[i__2].i + alpha->i * x[i__2].r;
  771. temp1.r = z__1.r, temp1.i = z__1.i;
  772. temp2.r = 0., temp2.i = 0.;
  773. i__2 = jy;
  774. i__3 = jy;
  775. i__4 = kk;
  776. z__2.r = temp1.r * ap[i__4].r - temp1.i * ap[i__4].i, z__2.i =
  777. temp1.r * ap[i__4].i + temp1.i * ap[i__4].r;
  778. z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
  779. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  780. ix = jx;
  781. iy = jy;
  782. i__2 = kk + *n - j;
  783. for (k = kk + 1; k <= i__2; ++k) {
  784. ix += *incx;
  785. iy += *incy;
  786. i__3 = iy;
  787. i__4 = iy;
  788. i__5 = k;
  789. z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
  790. z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
  791. .r;
  792. z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
  793. y[i__3].r = z__1.r, y[i__3].i = z__1.i;
  794. i__3 = k;
  795. i__4 = ix;
  796. z__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[i__4].i,
  797. z__2.i = ap[i__3].r * x[i__4].i + ap[i__3].i * x[
  798. i__4].r;
  799. z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
  800. temp2.r = z__1.r, temp2.i = z__1.i;
  801. /* L110: */
  802. }
  803. i__2 = jy;
  804. i__3 = jy;
  805. z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
  806. alpha->r * temp2.i + alpha->i * temp2.r;
  807. z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
  808. y[i__2].r = z__1.r, y[i__2].i = z__1.i;
  809. jx += *incx;
  810. jy += *incy;
  811. kk += *n - j + 1;
  812. /* L120: */
  813. }
  814. }
  815. }
  816. return 0;
  817. /* End of ZSPMV */
  818. } /* zspmv_ */