You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpbrfs.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublecomplex c_b1 = {1.,0.};
  381. static integer c__1 = 1;
  382. /* > \brief \b ZPBRFS */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download ZPBRFS + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbrfs.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbrfs.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbrfs.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, */
  401. /* LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) */
  402. /* CHARACTER UPLO */
  403. /* INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS */
  404. /* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) */
  405. /* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
  406. /* $ WORK( * ), X( LDX, * ) */
  407. /* > \par Purpose: */
  408. /* ============= */
  409. /* > */
  410. /* > \verbatim */
  411. /* > */
  412. /* > ZPBRFS improves the computed solution to a system of linear */
  413. /* > equations when the coefficient matrix is Hermitian positive definite */
  414. /* > and banded, and provides error bounds and backward error estimates */
  415. /* > for the solution. */
  416. /* > \endverbatim */
  417. /* Arguments: */
  418. /* ========== */
  419. /* > \param[in] UPLO */
  420. /* > \verbatim */
  421. /* > UPLO is CHARACTER*1 */
  422. /* > = 'U': Upper triangle of A is stored; */
  423. /* > = 'L': Lower triangle of A is stored. */
  424. /* > \endverbatim */
  425. /* > */
  426. /* > \param[in] N */
  427. /* > \verbatim */
  428. /* > N is INTEGER */
  429. /* > The order of the matrix A. N >= 0. */
  430. /* > \endverbatim */
  431. /* > */
  432. /* > \param[in] KD */
  433. /* > \verbatim */
  434. /* > KD is INTEGER */
  435. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  436. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] NRHS */
  440. /* > \verbatim */
  441. /* > NRHS is INTEGER */
  442. /* > The number of right hand sides, i.e., the number of columns */
  443. /* > of the matrices B and X. NRHS >= 0. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] AB */
  447. /* > \verbatim */
  448. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  449. /* > The upper or lower triangle of the Hermitian band matrix A, */
  450. /* > stored in the first KD+1 rows of the array. The j-th column */
  451. /* > of A is stored in the j-th column of the array AB as follows: */
  452. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  453. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] LDAB */
  457. /* > \verbatim */
  458. /* > LDAB is INTEGER */
  459. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  460. /* > \endverbatim */
  461. /* > */
  462. /* > \param[in] AFB */
  463. /* > \verbatim */
  464. /* > AFB is COMPLEX*16 array, dimension (LDAFB,N) */
  465. /* > The triangular factor U or L from the Cholesky factorization */
  466. /* > A = U**H*U or A = L*L**H of the band matrix A as computed by */
  467. /* > ZPBTRF, in the same storage format as A (see AB). */
  468. /* > \endverbatim */
  469. /* > */
  470. /* > \param[in] LDAFB */
  471. /* > \verbatim */
  472. /* > LDAFB is INTEGER */
  473. /* > The leading dimension of the array AFB. LDAFB >= KD+1. */
  474. /* > \endverbatim */
  475. /* > */
  476. /* > \param[in] B */
  477. /* > \verbatim */
  478. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  479. /* > The right hand side matrix B. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in] LDB */
  483. /* > \verbatim */
  484. /* > LDB is INTEGER */
  485. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  486. /* > \endverbatim */
  487. /* > */
  488. /* > \param[in,out] X */
  489. /* > \verbatim */
  490. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  491. /* > On entry, the solution matrix X, as computed by ZPBTRS. */
  492. /* > On exit, the improved solution matrix X. */
  493. /* > \endverbatim */
  494. /* > */
  495. /* > \param[in] LDX */
  496. /* > \verbatim */
  497. /* > LDX is INTEGER */
  498. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  499. /* > \endverbatim */
  500. /* > */
  501. /* > \param[out] FERR */
  502. /* > \verbatim */
  503. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  504. /* > The estimated forward error bound for each solution vector */
  505. /* > X(j) (the j-th column of the solution matrix X). */
  506. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  507. /* > is an estimated upper bound for the magnitude of the largest */
  508. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  509. /* > largest element in X(j). The estimate is as reliable as */
  510. /* > the estimate for RCOND, and is almost always a slight */
  511. /* > overestimate of the true error. */
  512. /* > \endverbatim */
  513. /* > */
  514. /* > \param[out] BERR */
  515. /* > \verbatim */
  516. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  517. /* > The componentwise relative backward error of each solution */
  518. /* > vector X(j) (i.e., the smallest relative change in */
  519. /* > any element of A or B that makes X(j) an exact solution). */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \param[out] WORK */
  523. /* > \verbatim */
  524. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[out] RWORK */
  528. /* > \verbatim */
  529. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[out] INFO */
  533. /* > \verbatim */
  534. /* > INFO is INTEGER */
  535. /* > = 0: successful exit */
  536. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  537. /* > \endverbatim */
  538. /* > \par Internal Parameters: */
  539. /* ========================= */
  540. /* > */
  541. /* > \verbatim */
  542. /* > ITMAX is the maximum number of steps of iterative refinement. */
  543. /* > \endverbatim */
  544. /* Authors: */
  545. /* ======== */
  546. /* > \author Univ. of Tennessee */
  547. /* > \author Univ. of California Berkeley */
  548. /* > \author Univ. of Colorado Denver */
  549. /* > \author NAG Ltd. */
  550. /* > \date June 2016 */
  551. /* > \ingroup complex16OTHERcomputational */
  552. /* ===================================================================== */
  553. /* Subroutine */ int zpbrfs_(char *uplo, integer *n, integer *kd, integer *
  554. nrhs, doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *
  555. ldafb, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
  556. doublereal *ferr, doublereal *berr, doublecomplex *work, doublereal *
  557. rwork, integer *info)
  558. {
  559. /* System generated locals */
  560. integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
  561. x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  562. doublereal d__1, d__2, d__3, d__4;
  563. doublecomplex z__1;
  564. /* Local variables */
  565. integer kase;
  566. doublereal safe1, safe2;
  567. integer i__, j, k, l;
  568. doublereal s;
  569. extern logical lsame_(char *, char *);
  570. integer isave[3];
  571. extern /* Subroutine */ int zhbmv_(char *, integer *, integer *,
  572. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  573. integer *, doublecomplex *, doublecomplex *, integer *);
  574. integer count;
  575. logical upper;
  576. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  577. doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
  578. doublecomplex *, integer *, doublecomplex *, integer *), zlacn2_(
  579. integer *, doublecomplex *, doublecomplex *, doublereal *,
  580. integer *, integer *);
  581. extern doublereal dlamch_(char *);
  582. doublereal xk;
  583. integer nz;
  584. doublereal safmin;
  585. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  586. doublereal lstres;
  587. extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer
  588. *, doublecomplex *, integer *, doublecomplex *, integer *,
  589. integer *);
  590. doublereal eps;
  591. /* -- LAPACK computational routine (version 3.7.0) -- */
  592. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  593. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  594. /* June 2016 */
  595. /* ===================================================================== */
  596. /* Test the input parameters. */
  597. /* Parameter adjustments */
  598. ab_dim1 = *ldab;
  599. ab_offset = 1 + ab_dim1 * 1;
  600. ab -= ab_offset;
  601. afb_dim1 = *ldafb;
  602. afb_offset = 1 + afb_dim1 * 1;
  603. afb -= afb_offset;
  604. b_dim1 = *ldb;
  605. b_offset = 1 + b_dim1 * 1;
  606. b -= b_offset;
  607. x_dim1 = *ldx;
  608. x_offset = 1 + x_dim1 * 1;
  609. x -= x_offset;
  610. --ferr;
  611. --berr;
  612. --work;
  613. --rwork;
  614. /* Function Body */
  615. *info = 0;
  616. upper = lsame_(uplo, "U");
  617. if (! upper && ! lsame_(uplo, "L")) {
  618. *info = -1;
  619. } else if (*n < 0) {
  620. *info = -2;
  621. } else if (*kd < 0) {
  622. *info = -3;
  623. } else if (*nrhs < 0) {
  624. *info = -4;
  625. } else if (*ldab < *kd + 1) {
  626. *info = -6;
  627. } else if (*ldafb < *kd + 1) {
  628. *info = -8;
  629. } else if (*ldb < f2cmax(1,*n)) {
  630. *info = -10;
  631. } else if (*ldx < f2cmax(1,*n)) {
  632. *info = -12;
  633. }
  634. if (*info != 0) {
  635. i__1 = -(*info);
  636. xerbla_("ZPBRFS", &i__1, (ftnlen)6);
  637. return 0;
  638. }
  639. /* Quick return if possible */
  640. if (*n == 0 || *nrhs == 0) {
  641. i__1 = *nrhs;
  642. for (j = 1; j <= i__1; ++j) {
  643. ferr[j] = 0.;
  644. berr[j] = 0.;
  645. /* L10: */
  646. }
  647. return 0;
  648. }
  649. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  650. /* Computing MIN */
  651. i__1 = *n + 1, i__2 = (*kd << 1) + 2;
  652. nz = f2cmin(i__1,i__2);
  653. eps = dlamch_("Epsilon");
  654. safmin = dlamch_("Safe minimum");
  655. safe1 = nz * safmin;
  656. safe2 = safe1 / eps;
  657. /* Do for each right hand side */
  658. i__1 = *nrhs;
  659. for (j = 1; j <= i__1; ++j) {
  660. count = 1;
  661. lstres = 3.;
  662. L20:
  663. /* Loop until stopping criterion is satisfied. */
  664. /* Compute residual R = B - A * X */
  665. zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  666. z__1.r = -1., z__1.i = 0.;
  667. zhbmv_(uplo, n, kd, &z__1, &ab[ab_offset], ldab, &x[j * x_dim1 + 1], &
  668. c__1, &c_b1, &work[1], &c__1);
  669. /* Compute componentwise relative backward error from formula */
  670. /* f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
  671. /* where abs(Z) is the componentwise absolute value of the matrix */
  672. /* or vector Z. If the i-th component of the denominator is less */
  673. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  674. /* numerator and denominator before dividing. */
  675. i__2 = *n;
  676. for (i__ = 1; i__ <= i__2; ++i__) {
  677. i__3 = i__ + j * b_dim1;
  678. rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
  679. i__ + j * b_dim1]), abs(d__2));
  680. /* L30: */
  681. }
  682. /* Compute abs(A)*abs(X) + abs(B). */
  683. if (upper) {
  684. i__2 = *n;
  685. for (k = 1; k <= i__2; ++k) {
  686. s = 0.;
  687. i__3 = k + j * x_dim1;
  688. xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
  689. x_dim1]), abs(d__2));
  690. l = *kd + 1 - k;
  691. /* Computing MAX */
  692. i__3 = 1, i__4 = k - *kd;
  693. i__5 = k - 1;
  694. for (i__ = f2cmax(i__3,i__4); i__ <= i__5; ++i__) {
  695. i__3 = l + i__ + k * ab_dim1;
  696. rwork[i__] += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  697. d_imag(&ab[l + i__ + k * ab_dim1]), abs(d__2))) *
  698. xk;
  699. i__3 = l + i__ + k * ab_dim1;
  700. i__4 = i__ + j * x_dim1;
  701. s += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 = d_imag(&ab[
  702. l + i__ + k * ab_dim1]), abs(d__2))) * ((d__3 = x[
  703. i__4].r, abs(d__3)) + (d__4 = d_imag(&x[i__ + j *
  704. x_dim1]), abs(d__4)));
  705. /* L40: */
  706. }
  707. i__5 = *kd + 1 + k * ab_dim1;
  708. rwork[k] = rwork[k] + (d__1 = ab[i__5].r, abs(d__1)) * xk + s;
  709. /* L50: */
  710. }
  711. } else {
  712. i__2 = *n;
  713. for (k = 1; k <= i__2; ++k) {
  714. s = 0.;
  715. i__5 = k + j * x_dim1;
  716. xk = (d__1 = x[i__5].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
  717. x_dim1]), abs(d__2));
  718. i__5 = k * ab_dim1 + 1;
  719. rwork[k] += (d__1 = ab[i__5].r, abs(d__1)) * xk;
  720. l = 1 - k;
  721. /* Computing MIN */
  722. i__3 = *n, i__4 = k + *kd;
  723. i__5 = f2cmin(i__3,i__4);
  724. for (i__ = k + 1; i__ <= i__5; ++i__) {
  725. i__3 = l + i__ + k * ab_dim1;
  726. rwork[i__] += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  727. d_imag(&ab[l + i__ + k * ab_dim1]), abs(d__2))) *
  728. xk;
  729. i__3 = l + i__ + k * ab_dim1;
  730. i__4 = i__ + j * x_dim1;
  731. s += ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 = d_imag(&ab[
  732. l + i__ + k * ab_dim1]), abs(d__2))) * ((d__3 = x[
  733. i__4].r, abs(d__3)) + (d__4 = d_imag(&x[i__ + j *
  734. x_dim1]), abs(d__4)));
  735. /* L60: */
  736. }
  737. rwork[k] += s;
  738. /* L70: */
  739. }
  740. }
  741. s = 0.;
  742. i__2 = *n;
  743. for (i__ = 1; i__ <= i__2; ++i__) {
  744. if (rwork[i__] > safe2) {
  745. /* Computing MAX */
  746. i__5 = i__;
  747. d__3 = s, d__4 = ((d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  748. d_imag(&work[i__]), abs(d__2))) / rwork[i__];
  749. s = f2cmax(d__3,d__4);
  750. } else {
  751. /* Computing MAX */
  752. i__5 = i__;
  753. d__3 = s, d__4 = ((d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  754. d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
  755. + safe1);
  756. s = f2cmax(d__3,d__4);
  757. }
  758. /* L80: */
  759. }
  760. berr[j] = s;
  761. /* Test stopping criterion. Continue iterating if */
  762. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  763. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  764. /* last iteration, and */
  765. /* 3) At most ITMAX iterations tried. */
  766. if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
  767. /* Update solution and try again. */
  768. zpbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[1], n,
  769. info);
  770. zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  771. lstres = berr[j];
  772. ++count;
  773. goto L20;
  774. }
  775. /* Bound error from formula */
  776. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  777. /* norm( abs(inv(A))* */
  778. /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
  779. /* where */
  780. /* norm(Z) is the magnitude of the largest component of Z */
  781. /* inv(A) is the inverse of A */
  782. /* abs(Z) is the componentwise absolute value of the matrix or */
  783. /* vector Z */
  784. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  785. /* EPS is machine epsilon */
  786. /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
  787. /* is incremented by SAFE1 if the i-th component of */
  788. /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
  789. /* Use ZLACN2 to estimate the infinity-norm of the matrix */
  790. /* inv(A) * diag(W), */
  791. /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
  792. i__2 = *n;
  793. for (i__ = 1; i__ <= i__2; ++i__) {
  794. if (rwork[i__] > safe2) {
  795. i__5 = i__;
  796. rwork[i__] = (d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  797. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  798. ;
  799. } else {
  800. i__5 = i__;
  801. rwork[i__] = (d__1 = work[i__5].r, abs(d__1)) + (d__2 =
  802. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  803. + safe1;
  804. }
  805. /* L90: */
  806. }
  807. kase = 0;
  808. L100:
  809. zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  810. if (kase != 0) {
  811. if (kase == 1) {
  812. /* Multiply by diag(W)*inv(A**H). */
  813. zpbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[1],
  814. n, info);
  815. i__2 = *n;
  816. for (i__ = 1; i__ <= i__2; ++i__) {
  817. i__5 = i__;
  818. i__3 = i__;
  819. i__4 = i__;
  820. z__1.r = rwork[i__3] * work[i__4].r, z__1.i = rwork[i__3]
  821. * work[i__4].i;
  822. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  823. /* L110: */
  824. }
  825. } else if (kase == 2) {
  826. /* Multiply by inv(A)*diag(W). */
  827. i__2 = *n;
  828. for (i__ = 1; i__ <= i__2; ++i__) {
  829. i__5 = i__;
  830. i__3 = i__;
  831. i__4 = i__;
  832. z__1.r = rwork[i__3] * work[i__4].r, z__1.i = rwork[i__3]
  833. * work[i__4].i;
  834. work[i__5].r = z__1.r, work[i__5].i = z__1.i;
  835. /* L120: */
  836. }
  837. zpbtrs_(uplo, n, kd, &c__1, &afb[afb_offset], ldafb, &work[1],
  838. n, info);
  839. }
  840. goto L100;
  841. }
  842. /* Normalize error. */
  843. lstres = 0.;
  844. i__2 = *n;
  845. for (i__ = 1; i__ <= i__2; ++i__) {
  846. /* Computing MAX */
  847. i__5 = i__ + j * x_dim1;
  848. d__3 = lstres, d__4 = (d__1 = x[i__5].r, abs(d__1)) + (d__2 =
  849. d_imag(&x[i__ + j * x_dim1]), abs(d__2));
  850. lstres = f2cmax(d__3,d__4);
  851. /* L130: */
  852. }
  853. if (lstres != 0.) {
  854. ferr[j] /= lstres;
  855. }
  856. /* L140: */
  857. }
  858. return 0;
  859. /* End of ZPBRFS */
  860. } /* zpbrfs_ */