You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlar1v.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn
  380. of the tridiagonal matrix LDLT - λI. */
  381. /* =========== DOCUMENTATION =========== */
  382. /* Online html documentation available at */
  383. /* http://www.netlib.org/lapack/explore-html/ */
  384. /* > \htmlonly */
  385. /* > Download ZLAR1V + dependencies */
  386. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlar1v.
  387. f"> */
  388. /* > [TGZ]</a> */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlar1v.
  390. f"> */
  391. /* > [ZIP]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlar1v.
  393. f"> */
  394. /* > [TXT]</a> */
  395. /* > \endhtmlonly */
  396. /* Definition: */
  397. /* =========== */
  398. /* SUBROUTINE ZLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, */
  399. /* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, */
  400. /* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) */
  401. /* LOGICAL WANTNC */
  402. /* INTEGER B1, BN, N, NEGCNT, R */
  403. /* DOUBLE PRECISION GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, */
  404. /* $ RQCORR, ZTZ */
  405. /* INTEGER ISUPPZ( * ) */
  406. /* DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ), */
  407. /* $ WORK( * ) */
  408. /* COMPLEX*16 Z( * ) */
  409. /* > \par Purpose: */
  410. /* ============= */
  411. /* > */
  412. /* > \verbatim */
  413. /* > */
  414. /* > ZLAR1V computes the (scaled) r-th column of the inverse of */
  415. /* > the sumbmatrix in rows B1 through BN of the tridiagonal matrix */
  416. /* > L D L**T - sigma I. When sigma is close to an eigenvalue, the */
  417. /* > computed vector is an accurate eigenvector. Usually, r corresponds */
  418. /* > to the index where the eigenvector is largest in magnitude. */
  419. /* > The following steps accomplish this computation : */
  420. /* > (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, */
  421. /* > (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, */
  422. /* > (c) Computation of the diagonal elements of the inverse of */
  423. /* > L D L**T - sigma I by combining the above transforms, and choosing */
  424. /* > r as the index where the diagonal of the inverse is (one of the) */
  425. /* > largest in magnitude. */
  426. /* > (d) Computation of the (scaled) r-th column of the inverse using the */
  427. /* > twisted factorization obtained by combining the top part of the */
  428. /* > the stationary and the bottom part of the progressive transform. */
  429. /* > \endverbatim */
  430. /* Arguments: */
  431. /* ========== */
  432. /* > \param[in] N */
  433. /* > \verbatim */
  434. /* > N is INTEGER */
  435. /* > The order of the matrix L D L**T. */
  436. /* > \endverbatim */
  437. /* > */
  438. /* > \param[in] B1 */
  439. /* > \verbatim */
  440. /* > B1 is INTEGER */
  441. /* > First index of the submatrix of L D L**T. */
  442. /* > \endverbatim */
  443. /* > */
  444. /* > \param[in] BN */
  445. /* > \verbatim */
  446. /* > BN is INTEGER */
  447. /* > Last index of the submatrix of L D L**T. */
  448. /* > \endverbatim */
  449. /* > */
  450. /* > \param[in] LAMBDA */
  451. /* > \verbatim */
  452. /* > LAMBDA is DOUBLE PRECISION */
  453. /* > The shift. In order to compute an accurate eigenvector, */
  454. /* > LAMBDA should be a good approximation to an eigenvalue */
  455. /* > of L D L**T. */
  456. /* > \endverbatim */
  457. /* > */
  458. /* > \param[in] L */
  459. /* > \verbatim */
  460. /* > L is DOUBLE PRECISION array, dimension (N-1) */
  461. /* > The (n-1) subdiagonal elements of the unit bidiagonal matrix */
  462. /* > L, in elements 1 to N-1. */
  463. /* > \endverbatim */
  464. /* > */
  465. /* > \param[in] D */
  466. /* > \verbatim */
  467. /* > D is DOUBLE PRECISION array, dimension (N) */
  468. /* > The n diagonal elements of the diagonal matrix D. */
  469. /* > \endverbatim */
  470. /* > */
  471. /* > \param[in] LD */
  472. /* > \verbatim */
  473. /* > LD is DOUBLE PRECISION array, dimension (N-1) */
  474. /* > The n-1 elements L(i)*D(i). */
  475. /* > \endverbatim */
  476. /* > */
  477. /* > \param[in] LLD */
  478. /* > \verbatim */
  479. /* > LLD is DOUBLE PRECISION array, dimension (N-1) */
  480. /* > The n-1 elements L(i)*L(i)*D(i). */
  481. /* > \endverbatim */
  482. /* > */
  483. /* > \param[in] PIVMIN */
  484. /* > \verbatim */
  485. /* > PIVMIN is DOUBLE PRECISION */
  486. /* > The minimum pivot in the Sturm sequence. */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[in] GAPTOL */
  490. /* > \verbatim */
  491. /* > GAPTOL is DOUBLE PRECISION */
  492. /* > Tolerance that indicates when eigenvector entries are negligible */
  493. /* > w.r.t. their contribution to the residual. */
  494. /* > \endverbatim */
  495. /* > */
  496. /* > \param[in,out] Z */
  497. /* > \verbatim */
  498. /* > Z is COMPLEX*16 array, dimension (N) */
  499. /* > On input, all entries of Z must be set to 0. */
  500. /* > On output, Z contains the (scaled) r-th column of the */
  501. /* > inverse. The scaling is such that Z(R) equals 1. */
  502. /* > \endverbatim */
  503. /* > */
  504. /* > \param[in] WANTNC */
  505. /* > \verbatim */
  506. /* > WANTNC is LOGICAL */
  507. /* > Specifies whether NEGCNT has to be computed. */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[out] NEGCNT */
  511. /* > \verbatim */
  512. /* > NEGCNT is INTEGER */
  513. /* > If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */
  514. /* > in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \param[out] ZTZ */
  518. /* > \verbatim */
  519. /* > ZTZ is DOUBLE PRECISION */
  520. /* > The square of the 2-norm of Z. */
  521. /* > \endverbatim */
  522. /* > */
  523. /* > \param[out] MINGMA */
  524. /* > \verbatim */
  525. /* > MINGMA is DOUBLE PRECISION */
  526. /* > The reciprocal of the largest (in magnitude) diagonal */
  527. /* > element of the inverse of L D L**T - sigma I. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in,out] R */
  531. /* > \verbatim */
  532. /* > R is INTEGER */
  533. /* > The twist index for the twisted factorization used to */
  534. /* > compute Z. */
  535. /* > On input, 0 <= R <= N. If R is input as 0, R is set to */
  536. /* > the index where (L D L**T - sigma I)^{-1} is largest */
  537. /* > in magnitude. If 1 <= R <= N, R is unchanged. */
  538. /* > On output, R contains the twist index used to compute Z. */
  539. /* > Ideally, R designates the position of the maximum entry in the */
  540. /* > eigenvector. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[out] ISUPPZ */
  544. /* > \verbatim */
  545. /* > ISUPPZ is INTEGER array, dimension (2) */
  546. /* > The support of the vector in Z, i.e., the vector Z is */
  547. /* > nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[out] NRMINV */
  551. /* > \verbatim */
  552. /* > NRMINV is DOUBLE PRECISION */
  553. /* > NRMINV = 1/SQRT( ZTZ ) */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[out] RESID */
  557. /* > \verbatim */
  558. /* > RESID is DOUBLE PRECISION */
  559. /* > The residual of the FP vector. */
  560. /* > RESID = ABS( MINGMA )/SQRT( ZTZ ) */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] RQCORR */
  564. /* > \verbatim */
  565. /* > RQCORR is DOUBLE PRECISION */
  566. /* > The Rayleigh Quotient correction to LAMBDA. */
  567. /* > RQCORR = MINGMA*TMP */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] WORK */
  571. /* > \verbatim */
  572. /* > WORK is DOUBLE PRECISION array, dimension (4*N) */
  573. /* > \endverbatim */
  574. /* Authors: */
  575. /* ======== */
  576. /* > \author Univ. of Tennessee */
  577. /* > \author Univ. of California Berkeley */
  578. /* > \author Univ. of Colorado Denver */
  579. /* > \author NAG Ltd. */
  580. /* > \date December 2016 */
  581. /* > \ingroup complex16OTHERauxiliary */
  582. /* > \par Contributors: */
  583. /* ================== */
  584. /* > */
  585. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  586. /* > Jim Demmel, University of California, Berkeley, USA \n */
  587. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  588. /* > Osni Marques, LBNL/NERSC, USA \n */
  589. /* > Christof Voemel, University of California, Berkeley, USA */
  590. /* ===================================================================== */
  591. /* Subroutine */ int zlar1v_(integer *n, integer *b1, integer *bn, doublereal
  592. *lambda, doublereal *d__, doublereal *l, doublereal *ld, doublereal *
  593. lld, doublereal *pivmin, doublereal *gaptol, doublecomplex *z__,
  594. logical *wantnc, integer *negcnt, doublereal *ztz, doublereal *mingma,
  595. integer *r__, integer *isuppz, doublereal *nrminv, doublereal *resid,
  596. doublereal *rqcorr, doublereal *work)
  597. {
  598. /* System generated locals */
  599. integer i__1, i__2, i__3, i__4;
  600. doublereal d__1;
  601. doublecomplex z__1, z__2;
  602. /* Local variables */
  603. integer indp, inds, i__;
  604. doublereal s, dplus;
  605. integer r1, r2;
  606. extern doublereal dlamch_(char *);
  607. extern logical disnan_(doublereal *);
  608. integer indlpl, indumn;
  609. doublereal dminus;
  610. logical sawnan1, sawnan2;
  611. doublereal eps, tmp;
  612. integer neg1, neg2;
  613. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  614. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  615. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  616. /* December 2016 */
  617. /* ===================================================================== */
  618. /* Parameter adjustments */
  619. --work;
  620. --isuppz;
  621. --z__;
  622. --lld;
  623. --ld;
  624. --l;
  625. --d__;
  626. /* Function Body */
  627. eps = dlamch_("Precision");
  628. if (*r__ == 0) {
  629. r1 = *b1;
  630. r2 = *bn;
  631. } else {
  632. r1 = *r__;
  633. r2 = *r__;
  634. }
  635. /* Storage for LPLUS */
  636. indlpl = 0;
  637. /* Storage for UMINUS */
  638. indumn = *n;
  639. inds = (*n << 1) + 1;
  640. indp = *n * 3 + 1;
  641. if (*b1 == 1) {
  642. work[inds] = 0.;
  643. } else {
  644. work[inds + *b1 - 1] = lld[*b1 - 1];
  645. }
  646. /* Compute the stationary transform (using the differential form) */
  647. /* until the index R2. */
  648. sawnan1 = FALSE_;
  649. neg1 = 0;
  650. s = work[inds + *b1 - 1] - *lambda;
  651. i__1 = r1 - 1;
  652. for (i__ = *b1; i__ <= i__1; ++i__) {
  653. dplus = d__[i__] + s;
  654. work[indlpl + i__] = ld[i__] / dplus;
  655. if (dplus < 0.) {
  656. ++neg1;
  657. }
  658. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  659. s = work[inds + i__] - *lambda;
  660. /* L50: */
  661. }
  662. sawnan1 = disnan_(&s);
  663. if (sawnan1) {
  664. goto L60;
  665. }
  666. i__1 = r2 - 1;
  667. for (i__ = r1; i__ <= i__1; ++i__) {
  668. dplus = d__[i__] + s;
  669. work[indlpl + i__] = ld[i__] / dplus;
  670. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  671. s = work[inds + i__] - *lambda;
  672. /* L51: */
  673. }
  674. sawnan1 = disnan_(&s);
  675. L60:
  676. if (sawnan1) {
  677. /* Runs a slower version of the above loop if a NaN is detected */
  678. neg1 = 0;
  679. s = work[inds + *b1 - 1] - *lambda;
  680. i__1 = r1 - 1;
  681. for (i__ = *b1; i__ <= i__1; ++i__) {
  682. dplus = d__[i__] + s;
  683. if (abs(dplus) < *pivmin) {
  684. dplus = -(*pivmin);
  685. }
  686. work[indlpl + i__] = ld[i__] / dplus;
  687. if (dplus < 0.) {
  688. ++neg1;
  689. }
  690. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  691. if (work[indlpl + i__] == 0.) {
  692. work[inds + i__] = lld[i__];
  693. }
  694. s = work[inds + i__] - *lambda;
  695. /* L70: */
  696. }
  697. i__1 = r2 - 1;
  698. for (i__ = r1; i__ <= i__1; ++i__) {
  699. dplus = d__[i__] + s;
  700. if (abs(dplus) < *pivmin) {
  701. dplus = -(*pivmin);
  702. }
  703. work[indlpl + i__] = ld[i__] / dplus;
  704. work[inds + i__] = s * work[indlpl + i__] * l[i__];
  705. if (work[indlpl + i__] == 0.) {
  706. work[inds + i__] = lld[i__];
  707. }
  708. s = work[inds + i__] - *lambda;
  709. /* L71: */
  710. }
  711. }
  712. /* Compute the progressive transform (using the differential form) */
  713. /* until the index R1 */
  714. sawnan2 = FALSE_;
  715. neg2 = 0;
  716. work[indp + *bn - 1] = d__[*bn] - *lambda;
  717. i__1 = r1;
  718. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  719. dminus = lld[i__] + work[indp + i__];
  720. tmp = d__[i__] / dminus;
  721. if (dminus < 0.) {
  722. ++neg2;
  723. }
  724. work[indumn + i__] = l[i__] * tmp;
  725. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  726. /* L80: */
  727. }
  728. tmp = work[indp + r1 - 1];
  729. sawnan2 = disnan_(&tmp);
  730. if (sawnan2) {
  731. /* Runs a slower version of the above loop if a NaN is detected */
  732. neg2 = 0;
  733. i__1 = r1;
  734. for (i__ = *bn - 1; i__ >= i__1; --i__) {
  735. dminus = lld[i__] + work[indp + i__];
  736. if (abs(dminus) < *pivmin) {
  737. dminus = -(*pivmin);
  738. }
  739. tmp = d__[i__] / dminus;
  740. if (dminus < 0.) {
  741. ++neg2;
  742. }
  743. work[indumn + i__] = l[i__] * tmp;
  744. work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
  745. if (tmp == 0.) {
  746. work[indp + i__ - 1] = d__[i__] - *lambda;
  747. }
  748. /* L100: */
  749. }
  750. }
  751. /* Find the index (from R1 to R2) of the largest (in magnitude) */
  752. /* diagonal element of the inverse */
  753. *mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
  754. if (*mingma < 0.) {
  755. ++neg1;
  756. }
  757. if (*wantnc) {
  758. *negcnt = neg1 + neg2;
  759. } else {
  760. *negcnt = -1;
  761. }
  762. if (abs(*mingma) == 0.) {
  763. *mingma = eps * work[inds + r1 - 1];
  764. }
  765. *r__ = r1;
  766. i__1 = r2 - 1;
  767. for (i__ = r1; i__ <= i__1; ++i__) {
  768. tmp = work[inds + i__] + work[indp + i__];
  769. if (tmp == 0.) {
  770. tmp = eps * work[inds + i__];
  771. }
  772. if (abs(tmp) <= abs(*mingma)) {
  773. *mingma = tmp;
  774. *r__ = i__ + 1;
  775. }
  776. /* L110: */
  777. }
  778. /* Compute the FP vector: solve N^T v = e_r */
  779. isuppz[1] = *b1;
  780. isuppz[2] = *bn;
  781. i__1 = *r__;
  782. z__[i__1].r = 1., z__[i__1].i = 0.;
  783. *ztz = 1.;
  784. /* Compute the FP vector upwards from R */
  785. if (! sawnan1 && ! sawnan2) {
  786. i__1 = *b1;
  787. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  788. i__2 = i__;
  789. i__3 = indlpl + i__;
  790. i__4 = i__ + 1;
  791. z__2.r = work[i__3] * z__[i__4].r, z__2.i = work[i__3] * z__[i__4]
  792. .i;
  793. z__1.r = -z__2.r, z__1.i = -z__2.i;
  794. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  795. if ((z_abs(&z__[i__]) + z_abs(&z__[i__ + 1])) * (d__1 = ld[i__],
  796. abs(d__1)) < *gaptol) {
  797. i__2 = i__;
  798. z__[i__2].r = 0., z__[i__2].i = 0.;
  799. isuppz[1] = i__ + 1;
  800. goto L220;
  801. }
  802. i__2 = i__;
  803. i__3 = i__;
  804. z__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  805. z__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  806. i__3].r;
  807. *ztz += z__1.r;
  808. /* L210: */
  809. }
  810. L220:
  811. ;
  812. } else {
  813. /* Run slower loop if NaN occurred. */
  814. i__1 = *b1;
  815. for (i__ = *r__ - 1; i__ >= i__1; --i__) {
  816. i__2 = i__ + 1;
  817. if (z__[i__2].r == 0. && z__[i__2].i == 0.) {
  818. i__2 = i__;
  819. d__1 = -(ld[i__ + 1] / ld[i__]);
  820. i__3 = i__ + 2;
  821. z__1.r = d__1 * z__[i__3].r, z__1.i = d__1 * z__[i__3].i;
  822. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  823. } else {
  824. i__2 = i__;
  825. i__3 = indlpl + i__;
  826. i__4 = i__ + 1;
  827. z__2.r = work[i__3] * z__[i__4].r, z__2.i = work[i__3] * z__[
  828. i__4].i;
  829. z__1.r = -z__2.r, z__1.i = -z__2.i;
  830. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  831. }
  832. if ((z_abs(&z__[i__]) + z_abs(&z__[i__ + 1])) * (d__1 = ld[i__],
  833. abs(d__1)) < *gaptol) {
  834. i__2 = i__;
  835. z__[i__2].r = 0., z__[i__2].i = 0.;
  836. isuppz[1] = i__ + 1;
  837. goto L240;
  838. }
  839. i__2 = i__;
  840. i__3 = i__;
  841. z__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  842. z__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  843. i__3].r;
  844. *ztz += z__1.r;
  845. /* L230: */
  846. }
  847. L240:
  848. ;
  849. }
  850. /* Compute the FP vector downwards from R in blocks of size BLKSIZ */
  851. if (! sawnan1 && ! sawnan2) {
  852. i__1 = *bn - 1;
  853. for (i__ = *r__; i__ <= i__1; ++i__) {
  854. i__2 = i__ + 1;
  855. i__3 = indumn + i__;
  856. i__4 = i__;
  857. z__2.r = work[i__3] * z__[i__4].r, z__2.i = work[i__3] * z__[i__4]
  858. .i;
  859. z__1.r = -z__2.r, z__1.i = -z__2.i;
  860. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  861. if ((z_abs(&z__[i__]) + z_abs(&z__[i__ + 1])) * (d__1 = ld[i__],
  862. abs(d__1)) < *gaptol) {
  863. i__2 = i__ + 1;
  864. z__[i__2].r = 0., z__[i__2].i = 0.;
  865. isuppz[2] = i__;
  866. goto L260;
  867. }
  868. i__2 = i__ + 1;
  869. i__3 = i__ + 1;
  870. z__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  871. z__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  872. i__3].r;
  873. *ztz += z__1.r;
  874. /* L250: */
  875. }
  876. L260:
  877. ;
  878. } else {
  879. /* Run slower loop if NaN occurred. */
  880. i__1 = *bn - 1;
  881. for (i__ = *r__; i__ <= i__1; ++i__) {
  882. i__2 = i__;
  883. if (z__[i__2].r == 0. && z__[i__2].i == 0.) {
  884. i__2 = i__ + 1;
  885. d__1 = -(ld[i__ - 1] / ld[i__]);
  886. i__3 = i__ - 1;
  887. z__1.r = d__1 * z__[i__3].r, z__1.i = d__1 * z__[i__3].i;
  888. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  889. } else {
  890. i__2 = i__ + 1;
  891. i__3 = indumn + i__;
  892. i__4 = i__;
  893. z__2.r = work[i__3] * z__[i__4].r, z__2.i = work[i__3] * z__[
  894. i__4].i;
  895. z__1.r = -z__2.r, z__1.i = -z__2.i;
  896. z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
  897. }
  898. if ((z_abs(&z__[i__]) + z_abs(&z__[i__ + 1])) * (d__1 = ld[i__],
  899. abs(d__1)) < *gaptol) {
  900. i__2 = i__ + 1;
  901. z__[i__2].r = 0., z__[i__2].i = 0.;
  902. isuppz[2] = i__;
  903. goto L280;
  904. }
  905. i__2 = i__ + 1;
  906. i__3 = i__ + 1;
  907. z__1.r = z__[i__2].r * z__[i__3].r - z__[i__2].i * z__[i__3].i,
  908. z__1.i = z__[i__2].r * z__[i__3].i + z__[i__2].i * z__[
  909. i__3].r;
  910. *ztz += z__1.r;
  911. /* L270: */
  912. }
  913. L280:
  914. ;
  915. }
  916. /* Compute quantities for convergence test */
  917. tmp = 1. / *ztz;
  918. *nrminv = sqrt(tmp);
  919. *resid = abs(*mingma) * *nrminv;
  920. *rqcorr = *mingma * tmp;
  921. return 0;
  922. /* End of ZLAR1V */
  923. } /* zlar1v_ */