You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetri.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static doublecomplex c_b2 = {0.,0.};
  381. static integer c__1 = 1;
  382. /* > \brief \b ZHETRI */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download ZHETRI + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetri.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetri.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetri.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE ZHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
  401. /* CHARACTER UPLO */
  402. /* INTEGER INFO, LDA, N */
  403. /* INTEGER IPIV( * ) */
  404. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > ZHETRI computes the inverse of a complex Hermitian indefinite matrix */
  411. /* > A using the factorization A = U*D*U**H or A = L*D*L**H computed by */
  412. /* > ZHETRF. */
  413. /* > \endverbatim */
  414. /* Arguments: */
  415. /* ========== */
  416. /* > \param[in] UPLO */
  417. /* > \verbatim */
  418. /* > UPLO is CHARACTER*1 */
  419. /* > Specifies whether the details of the factorization are stored */
  420. /* > as an upper or lower triangular matrix. */
  421. /* > = 'U': Upper triangular, form is A = U*D*U**H; */
  422. /* > = 'L': Lower triangular, form is A = L*D*L**H. */
  423. /* > \endverbatim */
  424. /* > */
  425. /* > \param[in] N */
  426. /* > \verbatim */
  427. /* > N is INTEGER */
  428. /* > The order of the matrix A. N >= 0. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in,out] A */
  432. /* > \verbatim */
  433. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  434. /* > On entry, the block diagonal matrix D and the multipliers */
  435. /* > used to obtain the factor U or L as computed by ZHETRF. */
  436. /* > */
  437. /* > On exit, if INFO = 0, the (Hermitian) inverse of the original */
  438. /* > matrix. If UPLO = 'U', the upper triangular part of the */
  439. /* > inverse is formed and the part of A below the diagonal is not */
  440. /* > referenced; if UPLO = 'L' the lower triangular part of the */
  441. /* > inverse is formed and the part of A above the diagonal is */
  442. /* > not referenced. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] LDA */
  446. /* > \verbatim */
  447. /* > LDA is INTEGER */
  448. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[in] IPIV */
  452. /* > \verbatim */
  453. /* > IPIV is INTEGER array, dimension (N) */
  454. /* > Details of the interchanges and the block structure of D */
  455. /* > as determined by ZHETRF. */
  456. /* > \endverbatim */
  457. /* > */
  458. /* > \param[out] WORK */
  459. /* > \verbatim */
  460. /* > WORK is COMPLEX*16 array, dimension (N) */
  461. /* > \endverbatim */
  462. /* > */
  463. /* > \param[out] INFO */
  464. /* > \verbatim */
  465. /* > INFO is INTEGER */
  466. /* > = 0: successful exit */
  467. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  468. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  469. /* > inverse could not be computed. */
  470. /* > \endverbatim */
  471. /* Authors: */
  472. /* ======== */
  473. /* > \author Univ. of Tennessee */
  474. /* > \author Univ. of California Berkeley */
  475. /* > \author Univ. of Colorado Denver */
  476. /* > \author NAG Ltd. */
  477. /* > \date December 2016 */
  478. /* > \ingroup complex16HEcomputational */
  479. /* ===================================================================== */
  480. /* Subroutine */ int zhetri_(char *uplo, integer *n, doublecomplex *a,
  481. integer *lda, integer *ipiv, doublecomplex *work, integer *info)
  482. {
  483. /* System generated locals */
  484. integer a_dim1, a_offset, i__1, i__2, i__3;
  485. doublereal d__1;
  486. doublecomplex z__1, z__2;
  487. /* Local variables */
  488. doublecomplex temp, akkp1;
  489. doublereal d__;
  490. integer j, k;
  491. doublereal t;
  492. extern logical lsame_(char *, char *);
  493. extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
  494. doublecomplex *, integer *, doublecomplex *, integer *);
  495. integer kstep;
  496. extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *,
  497. doublecomplex *, integer *, doublecomplex *, integer *,
  498. doublecomplex *, doublecomplex *, integer *);
  499. logical upper;
  500. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  501. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  502. integer *, doublecomplex *, integer *);
  503. doublereal ak;
  504. integer kp;
  505. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  506. doublereal akp1;
  507. /* -- LAPACK computational routine (version 3.7.0) -- */
  508. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  509. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  510. /* December 2016 */
  511. /* ===================================================================== */
  512. /* Test the input parameters. */
  513. /* Parameter adjustments */
  514. a_dim1 = *lda;
  515. a_offset = 1 + a_dim1 * 1;
  516. a -= a_offset;
  517. --ipiv;
  518. --work;
  519. /* Function Body */
  520. *info = 0;
  521. upper = lsame_(uplo, "U");
  522. if (! upper && ! lsame_(uplo, "L")) {
  523. *info = -1;
  524. } else if (*n < 0) {
  525. *info = -2;
  526. } else if (*lda < f2cmax(1,*n)) {
  527. *info = -4;
  528. }
  529. if (*info != 0) {
  530. i__1 = -(*info);
  531. xerbla_("ZHETRI", &i__1, (ftnlen)6);
  532. return 0;
  533. }
  534. /* Quick return if possible */
  535. if (*n == 0) {
  536. return 0;
  537. }
  538. /* Check that the diagonal matrix D is nonsingular. */
  539. if (upper) {
  540. /* Upper triangular storage: examine D from bottom to top */
  541. for (*info = *n; *info >= 1; --(*info)) {
  542. i__1 = *info + *info * a_dim1;
  543. if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) {
  544. return 0;
  545. }
  546. /* L10: */
  547. }
  548. } else {
  549. /* Lower triangular storage: examine D from top to bottom. */
  550. i__1 = *n;
  551. for (*info = 1; *info <= i__1; ++(*info)) {
  552. i__2 = *info + *info * a_dim1;
  553. if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) {
  554. return 0;
  555. }
  556. /* L20: */
  557. }
  558. }
  559. *info = 0;
  560. if (upper) {
  561. /* Compute inv(A) from the factorization A = U*D*U**H. */
  562. /* K is the main loop index, increasing from 1 to N in steps of */
  563. /* 1 or 2, depending on the size of the diagonal blocks. */
  564. k = 1;
  565. L30:
  566. /* If K > N, exit from loop. */
  567. if (k > *n) {
  568. goto L50;
  569. }
  570. if (ipiv[k] > 0) {
  571. /* 1 x 1 diagonal block */
  572. /* Invert the diagonal block. */
  573. i__1 = k + k * a_dim1;
  574. i__2 = k + k * a_dim1;
  575. d__1 = 1. / a[i__2].r;
  576. a[i__1].r = d__1, a[i__1].i = 0.;
  577. /* Compute column K of the inverse. */
  578. if (k > 1) {
  579. i__1 = k - 1;
  580. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  581. i__1 = k - 1;
  582. z__1.r = -1., z__1.i = 0.;
  583. zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  584. &c_b2, &a[k * a_dim1 + 1], &c__1);
  585. i__1 = k + k * a_dim1;
  586. i__2 = k + k * a_dim1;
  587. i__3 = k - 1;
  588. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  589. c__1);
  590. d__1 = z__2.r;
  591. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  592. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  593. }
  594. kstep = 1;
  595. } else {
  596. /* 2 x 2 diagonal block */
  597. /* Invert the diagonal block. */
  598. t = z_abs(&a[k + (k + 1) * a_dim1]);
  599. i__1 = k + k * a_dim1;
  600. ak = a[i__1].r / t;
  601. i__1 = k + 1 + (k + 1) * a_dim1;
  602. akp1 = a[i__1].r / t;
  603. i__1 = k + (k + 1) * a_dim1;
  604. z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t;
  605. akkp1.r = z__1.r, akkp1.i = z__1.i;
  606. d__ = t * (ak * akp1 - 1.);
  607. i__1 = k + k * a_dim1;
  608. d__1 = akp1 / d__;
  609. a[i__1].r = d__1, a[i__1].i = 0.;
  610. i__1 = k + 1 + (k + 1) * a_dim1;
  611. d__1 = ak / d__;
  612. a[i__1].r = d__1, a[i__1].i = 0.;
  613. i__1 = k + (k + 1) * a_dim1;
  614. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  615. z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
  616. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  617. /* Compute columns K and K+1 of the inverse. */
  618. if (k > 1) {
  619. i__1 = k - 1;
  620. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  621. i__1 = k - 1;
  622. z__1.r = -1., z__1.i = 0.;
  623. zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  624. &c_b2, &a[k * a_dim1 + 1], &c__1);
  625. i__1 = k + k * a_dim1;
  626. i__2 = k + k * a_dim1;
  627. i__3 = k - 1;
  628. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  629. c__1);
  630. d__1 = z__2.r;
  631. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  632. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  633. i__1 = k + (k + 1) * a_dim1;
  634. i__2 = k + (k + 1) * a_dim1;
  635. i__3 = k - 1;
  636. zdotc_(&z__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
  637. a_dim1 + 1], &c__1);
  638. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  639. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  640. i__1 = k - 1;
  641. zcopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
  642. c__1);
  643. i__1 = k - 1;
  644. z__1.r = -1., z__1.i = 0.;
  645. zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  646. &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
  647. i__1 = k + 1 + (k + 1) * a_dim1;
  648. i__2 = k + 1 + (k + 1) * a_dim1;
  649. i__3 = k - 1;
  650. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
  651. , &c__1);
  652. d__1 = z__2.r;
  653. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  654. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  655. }
  656. kstep = 2;
  657. }
  658. kp = (i__1 = ipiv[k], abs(i__1));
  659. if (kp != k) {
  660. /* Interchange rows and columns K and KP in the leading */
  661. /* submatrix A(1:k+1,1:k+1) */
  662. i__1 = kp - 1;
  663. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
  664. c__1);
  665. i__1 = k - 1;
  666. for (j = kp + 1; j <= i__1; ++j) {
  667. d_cnjg(&z__1, &a[j + k * a_dim1]);
  668. temp.r = z__1.r, temp.i = z__1.i;
  669. i__2 = j + k * a_dim1;
  670. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  671. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  672. i__2 = kp + j * a_dim1;
  673. a[i__2].r = temp.r, a[i__2].i = temp.i;
  674. /* L40: */
  675. }
  676. i__1 = kp + k * a_dim1;
  677. d_cnjg(&z__1, &a[kp + k * a_dim1]);
  678. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  679. i__1 = k + k * a_dim1;
  680. temp.r = a[i__1].r, temp.i = a[i__1].i;
  681. i__1 = k + k * a_dim1;
  682. i__2 = kp + kp * a_dim1;
  683. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  684. i__1 = kp + kp * a_dim1;
  685. a[i__1].r = temp.r, a[i__1].i = temp.i;
  686. if (kstep == 2) {
  687. i__1 = k + (k + 1) * a_dim1;
  688. temp.r = a[i__1].r, temp.i = a[i__1].i;
  689. i__1 = k + (k + 1) * a_dim1;
  690. i__2 = kp + (k + 1) * a_dim1;
  691. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  692. i__1 = kp + (k + 1) * a_dim1;
  693. a[i__1].r = temp.r, a[i__1].i = temp.i;
  694. }
  695. }
  696. k += kstep;
  697. goto L30;
  698. L50:
  699. ;
  700. } else {
  701. /* Compute inv(A) from the factorization A = L*D*L**H. */
  702. /* K is the main loop index, increasing from 1 to N in steps of */
  703. /* 1 or 2, depending on the size of the diagonal blocks. */
  704. k = *n;
  705. L60:
  706. /* If K < 1, exit from loop. */
  707. if (k < 1) {
  708. goto L80;
  709. }
  710. if (ipiv[k] > 0) {
  711. /* 1 x 1 diagonal block */
  712. /* Invert the diagonal block. */
  713. i__1 = k + k * a_dim1;
  714. i__2 = k + k * a_dim1;
  715. d__1 = 1. / a[i__2].r;
  716. a[i__1].r = d__1, a[i__1].i = 0.;
  717. /* Compute column K of the inverse. */
  718. if (k < *n) {
  719. i__1 = *n - k;
  720. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  721. i__1 = *n - k;
  722. z__1.r = -1., z__1.i = 0.;
  723. zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  724. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  725. i__1 = k + k * a_dim1;
  726. i__2 = k + k * a_dim1;
  727. i__3 = *n - k;
  728. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  729. &c__1);
  730. d__1 = z__2.r;
  731. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  732. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  733. }
  734. kstep = 1;
  735. } else {
  736. /* 2 x 2 diagonal block */
  737. /* Invert the diagonal block. */
  738. t = z_abs(&a[k + (k - 1) * a_dim1]);
  739. i__1 = k - 1 + (k - 1) * a_dim1;
  740. ak = a[i__1].r / t;
  741. i__1 = k + k * a_dim1;
  742. akp1 = a[i__1].r / t;
  743. i__1 = k + (k - 1) * a_dim1;
  744. z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t;
  745. akkp1.r = z__1.r, akkp1.i = z__1.i;
  746. d__ = t * (ak * akp1 - 1.);
  747. i__1 = k - 1 + (k - 1) * a_dim1;
  748. d__1 = akp1 / d__;
  749. a[i__1].r = d__1, a[i__1].i = 0.;
  750. i__1 = k + k * a_dim1;
  751. d__1 = ak / d__;
  752. a[i__1].r = d__1, a[i__1].i = 0.;
  753. i__1 = k + (k - 1) * a_dim1;
  754. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  755. z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
  756. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  757. /* Compute columns K-1 and K of the inverse. */
  758. if (k < *n) {
  759. i__1 = *n - k;
  760. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  761. i__1 = *n - k;
  762. z__1.r = -1., z__1.i = 0.;
  763. zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  764. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  765. i__1 = k + k * a_dim1;
  766. i__2 = k + k * a_dim1;
  767. i__3 = *n - k;
  768. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  769. &c__1);
  770. d__1 = z__2.r;
  771. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  772. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  773. i__1 = k + (k - 1) * a_dim1;
  774. i__2 = k + (k - 1) * a_dim1;
  775. i__3 = *n - k;
  776. zdotc_(&z__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
  777. + (k - 1) * a_dim1], &c__1);
  778. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  779. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  780. i__1 = *n - k;
  781. zcopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
  782. c__1);
  783. i__1 = *n - k;
  784. z__1.r = -1., z__1.i = 0.;
  785. zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  786. &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
  787. &c__1);
  788. i__1 = k - 1 + (k - 1) * a_dim1;
  789. i__2 = k - 1 + (k - 1) * a_dim1;
  790. i__3 = *n - k;
  791. zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
  792. a_dim1], &c__1);
  793. d__1 = z__2.r;
  794. z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
  795. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  796. }
  797. kstep = 2;
  798. }
  799. kp = (i__1 = ipiv[k], abs(i__1));
  800. if (kp != k) {
  801. /* Interchange rows and columns K and KP in the trailing */
  802. /* submatrix A(k-1:n,k-1:n) */
  803. if (kp < *n) {
  804. i__1 = *n - kp;
  805. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 + kp *
  806. a_dim1], &c__1);
  807. }
  808. i__1 = kp - 1;
  809. for (j = k + 1; j <= i__1; ++j) {
  810. d_cnjg(&z__1, &a[j + k * a_dim1]);
  811. temp.r = z__1.r, temp.i = z__1.i;
  812. i__2 = j + k * a_dim1;
  813. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  814. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  815. i__2 = kp + j * a_dim1;
  816. a[i__2].r = temp.r, a[i__2].i = temp.i;
  817. /* L70: */
  818. }
  819. i__1 = kp + k * a_dim1;
  820. d_cnjg(&z__1, &a[kp + k * a_dim1]);
  821. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  822. i__1 = k + k * a_dim1;
  823. temp.r = a[i__1].r, temp.i = a[i__1].i;
  824. i__1 = k + k * a_dim1;
  825. i__2 = kp + kp * a_dim1;
  826. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  827. i__1 = kp + kp * a_dim1;
  828. a[i__1].r = temp.r, a[i__1].i = temp.i;
  829. if (kstep == 2) {
  830. i__1 = k + (k - 1) * a_dim1;
  831. temp.r = a[i__1].r, temp.i = a[i__1].i;
  832. i__1 = k + (k - 1) * a_dim1;
  833. i__2 = kp + (k - 1) * a_dim1;
  834. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  835. i__1 = kp + (k - 1) * a_dim1;
  836. a[i__1].r = temp.r, a[i__1].i = temp.i;
  837. }
  838. }
  839. k -= kstep;
  840. goto L60;
  841. L80:
  842. ;
  843. }
  844. return 0;
  845. /* End of ZHETRI */
  846. } /* zhetri_ */