|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778 |
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* > \brief \b ZGEEQUB */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZGEEQUB + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeequb
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeequb
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeequb
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZGEEQUB( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, */
- /* INFO ) */
-
- /* INTEGER INFO, LDA, M, N */
- /* DOUBLE PRECISION AMAX, COLCND, ROWCND */
- /* DOUBLE PRECISION C( * ), R( * ) */
- /* COMPLEX*16 A( LDA, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZGEEQUB computes row and column scalings intended to equilibrate an */
- /* > M-by-N matrix A and reduce its condition number. R returns the row */
- /* > scale factors and C the column scale factors, chosen to try to make */
- /* > the largest element in each row and column of the matrix B with */
- /* > elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
- /* > the radix. */
- /* > */
- /* > R(i) and C(j) are restricted to be a power of the radix between */
- /* > SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */
- /* > of these scaling factors is not guaranteed to reduce the condition */
- /* > number of A but works well in practice. */
- /* > */
- /* > This routine differs from ZGEEQU by restricting the scaling factors */
- /* > to a power of the radix. Barring over- and underflow, scaling by */
- /* > these factors introduces no additional rounding errors. However, the */
- /* > scaled entries' magnitudes are no longer approximately 1 but lie */
- /* > between sqrt(radix) and 1/sqrt(radix). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > The M-by-N matrix whose equilibration factors are */
- /* > to be computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] R */
- /* > \verbatim */
- /* > R is DOUBLE PRECISION array, dimension (M) */
- /* > If INFO = 0 or INFO > M, R contains the row scale factors */
- /* > for A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] C */
- /* > \verbatim */
- /* > C is DOUBLE PRECISION array, dimension (N) */
- /* > If INFO = 0, C contains the column scale factors for A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ROWCND */
- /* > \verbatim */
- /* > ROWCND is DOUBLE PRECISION */
- /* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
- /* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
- /* > AMAX is neither too large nor too small, it is not worth */
- /* > scaling by R. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] COLCND */
- /* > \verbatim */
- /* > COLCND is DOUBLE PRECISION */
- /* > If INFO = 0, COLCND contains the ratio of the smallest */
- /* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
- /* > worth scaling by C. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] AMAX */
- /* > \verbatim */
- /* > AMAX is DOUBLE PRECISION */
- /* > Absolute value of largest matrix element. If AMAX is very */
- /* > close to overflow or very close to underflow, the matrix */
- /* > should be scaled. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, and i is */
- /* > <= M: the i-th row of A is exactly zero */
- /* > > M: the (i-M)-th column of A is exactly zero */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16GEcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ int zgeequb_(integer *m, integer *n, doublecomplex *a,
- integer *lda, doublereal *r__, doublereal *c__, doublereal *rowcnd,
- doublereal *colcnd, doublereal *amax, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Local variables */
- integer i__, j;
- doublereal radix, rcmin, rcmax;
- extern doublereal dlamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal bignum, logrdx, smlnum;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --r__;
- --c__;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZGEEQUB", &i__1, (ftnlen)7);
- return 0;
- }
-
- /* Quick return if possible. */
-
- if (*m == 0 || *n == 0) {
- *rowcnd = 1.;
- *colcnd = 1.;
- *amax = 0.;
- return 0;
- }
-
- /* Get machine constants. Assume SMLNUM is a power of the radix. */
-
- smlnum = dlamch_("S");
- bignum = 1. / smlnum;
- radix = dlamch_("B");
- logrdx = log(radix);
-
- /* Compute row scale factors. */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- r__[i__] = 0.;
- /* L10: */
- }
-
- /* Find the maximum element in each row. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- i__3 = i__ + j * a_dim1;
- d__3 = r__[i__], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 =
- d_imag(&a[i__ + j * a_dim1]), abs(d__2));
- r__[i__] = f2cmax(d__3,d__4);
- /* L20: */
- }
- /* L30: */
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (r__[i__] > 0.) {
- i__2 = (integer) (log(r__[i__]) / logrdx);
- r__[i__] = pow_di(&radix, &i__2);
- }
- }
-
- /* Find the maximum and minimum scale factors. */
-
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = rcmax, d__2 = r__[i__];
- rcmax = f2cmax(d__1,d__2);
- /* Computing MIN */
- d__1 = rcmin, d__2 = r__[i__];
- rcmin = f2cmin(d__1,d__2);
- /* L40: */
- }
- *amax = rcmax;
-
- if (rcmin == 0.) {
-
- /* Find the first zero scale factor and return an error code. */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (r__[i__] == 0.) {
- *info = i__;
- return 0;
- }
- /* L50: */
- }
- } else {
-
- /* Invert the scale factors. */
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = r__[i__];
- d__1 = f2cmax(d__2,smlnum);
- r__[i__] = 1. / f2cmin(d__1,bignum);
- /* L60: */
- }
-
- /* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)). */
-
- *rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
- }
-
- /* Compute column scale factors. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- c__[j] = 0.;
- /* L70: */
- }
-
- /* Find the maximum element in each column, */
- /* assuming the row scaling computed above. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- i__3 = i__ + j * a_dim1;
- d__3 = c__[j], d__4 = ((d__1 = a[i__3].r, abs(d__1)) + (d__2 =
- d_imag(&a[i__ + j * a_dim1]), abs(d__2))) * r__[i__];
- c__[j] = f2cmax(d__3,d__4);
- /* L80: */
- }
- if (c__[j] > 0.) {
- i__2 = (integer) (log(c__[j]) / logrdx);
- c__[j] = pow_di(&radix, &i__2);
- }
- /* L90: */
- }
-
- /* Find the maximum and minimum scale factors. */
-
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = rcmin, d__2 = c__[j];
- rcmin = f2cmin(d__1,d__2);
- /* Computing MAX */
- d__1 = rcmax, d__2 = c__[j];
- rcmax = f2cmax(d__1,d__2);
- /* L100: */
- }
-
- if (rcmin == 0.) {
-
- /* Find the first zero scale factor and return an error code. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (c__[j] == 0.) {
- *info = *m + j;
- return 0;
- }
- /* L110: */
- }
- } else {
-
- /* Invert the scale factors. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = c__[j];
- d__1 = f2cmax(d__2,smlnum);
- c__[j] = 1. / f2cmin(d__1,bignum);
- /* L120: */
- }
-
- /* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)). */
-
- *colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
- }
-
- return 0;
-
- /* End of ZGEEQUB */
-
- } /* zgeequb_ */
-
|