You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbequb.c 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b ZGBEQUB */
  380. /* =========== DOCUMENTATION =========== */
  381. /* Online html documentation available at */
  382. /* http://www.netlib.org/lapack/explore-html/ */
  383. /* > \htmlonly */
  384. /* > Download ZGBEQUB + dependencies */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbequb
  386. .f"> */
  387. /* > [TGZ]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbequb
  389. .f"> */
  390. /* > [ZIP]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbequb
  392. .f"> */
  393. /* > [TXT]</a> */
  394. /* > \endhtmlonly */
  395. /* Definition: */
  396. /* =========== */
  397. /* SUBROUTINE ZGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, */
  398. /* AMAX, INFO ) */
  399. /* INTEGER INFO, KL, KU, LDAB, M, N */
  400. /* DOUBLE PRECISION AMAX, COLCND, ROWCND */
  401. /* DOUBLE PRECISION C( * ), R( * ) */
  402. /* COMPLEX*16 AB( LDAB, * ) */
  403. /* > \par Purpose: */
  404. /* ============= */
  405. /* > */
  406. /* > \verbatim */
  407. /* > */
  408. /* > ZGBEQUB computes row and column scalings intended to equilibrate an */
  409. /* > M-by-N matrix A and reduce its condition number. R returns the row */
  410. /* > scale factors and C the column scale factors, chosen to try to make */
  411. /* > the largest element in each row and column of the matrix B with */
  412. /* > elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
  413. /* > the radix. */
  414. /* > */
  415. /* > R(i) and C(j) are restricted to be a power of the radix between */
  416. /* > SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */
  417. /* > of these scaling factors is not guaranteed to reduce the condition */
  418. /* > number of A but works well in practice. */
  419. /* > */
  420. /* > This routine differs from ZGEEQU by restricting the scaling factors */
  421. /* > to a power of the radix. Barring over- and underflow, scaling by */
  422. /* > these factors introduces no additional rounding errors. However, the */
  423. /* > scaled entries' magnitudes are no longer approximately 1 but lie */
  424. /* > between sqrt(radix) and 1/sqrt(radix). */
  425. /* > \endverbatim */
  426. /* Arguments: */
  427. /* ========== */
  428. /* > \param[in] M */
  429. /* > \verbatim */
  430. /* > M is INTEGER */
  431. /* > The number of rows of the matrix A. M >= 0. */
  432. /* > \endverbatim */
  433. /* > */
  434. /* > \param[in] N */
  435. /* > \verbatim */
  436. /* > N is INTEGER */
  437. /* > The number of columns of the matrix A. N >= 0. */
  438. /* > \endverbatim */
  439. /* > */
  440. /* > \param[in] KL */
  441. /* > \verbatim */
  442. /* > KL is INTEGER */
  443. /* > The number of subdiagonals within the band of A. KL >= 0. */
  444. /* > \endverbatim */
  445. /* > */
  446. /* > \param[in] KU */
  447. /* > \verbatim */
  448. /* > KU is INTEGER */
  449. /* > The number of superdiagonals within the band of A. KU >= 0. */
  450. /* > \endverbatim */
  451. /* > */
  452. /* > \param[in] AB */
  453. /* > \verbatim */
  454. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  455. /* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
  456. /* > The j-th column of A is stored in the j-th column of the */
  457. /* > array AB as follows: */
  458. /* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] LDAB */
  462. /* > \verbatim */
  463. /* > LDAB is INTEGER */
  464. /* > The leading dimension of the array A. LDAB >= f2cmax(1,M). */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[out] R */
  468. /* > \verbatim */
  469. /* > R is DOUBLE PRECISION array, dimension (M) */
  470. /* > If INFO = 0 or INFO > M, R contains the row scale factors */
  471. /* > for A. */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[out] C */
  475. /* > \verbatim */
  476. /* > C is DOUBLE PRECISION array, dimension (N) */
  477. /* > If INFO = 0, C contains the column scale factors for A. */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] ROWCND */
  481. /* > \verbatim */
  482. /* > ROWCND is DOUBLE PRECISION */
  483. /* > If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
  484. /* > smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
  485. /* > AMAX is neither too large nor too small, it is not worth */
  486. /* > scaling by R. */
  487. /* > \endverbatim */
  488. /* > */
  489. /* > \param[out] COLCND */
  490. /* > \verbatim */
  491. /* > COLCND is DOUBLE PRECISION */
  492. /* > If INFO = 0, COLCND contains the ratio of the smallest */
  493. /* > C(i) to the largest C(i). If COLCND >= 0.1, it is not */
  494. /* > worth scaling by C. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[out] AMAX */
  498. /* > \verbatim */
  499. /* > AMAX is DOUBLE PRECISION */
  500. /* > Absolute value of largest matrix element. If AMAX is very */
  501. /* > close to overflow or very close to underflow, the matrix */
  502. /* > should be scaled. */
  503. /* > \endverbatim */
  504. /* > */
  505. /* > \param[out] INFO */
  506. /* > \verbatim */
  507. /* > INFO is INTEGER */
  508. /* > = 0: successful exit */
  509. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  510. /* > > 0: if INFO = i, and i is */
  511. /* > <= M: the i-th row of A is exactly zero */
  512. /* > > M: the (i-M)-th column of A is exactly zero */
  513. /* > \endverbatim */
  514. /* Authors: */
  515. /* ======== */
  516. /* > \author Univ. of Tennessee */
  517. /* > \author Univ. of California Berkeley */
  518. /* > \author Univ. of Colorado Denver */
  519. /* > \author NAG Ltd. */
  520. /* > \date June 2016 */
  521. /* > \ingroup complex16GBcomputational */
  522. /* ===================================================================== */
  523. /* Subroutine */ int zgbequb_(integer *m, integer *n, integer *kl, integer *
  524. ku, doublecomplex *ab, integer *ldab, doublereal *r__, doublereal *
  525. c__, doublereal *rowcnd, doublereal *colcnd, doublereal *amax,
  526. integer *info)
  527. {
  528. /* System generated locals */
  529. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
  530. doublereal d__1, d__2, d__3, d__4;
  531. /* Local variables */
  532. integer i__, j;
  533. doublereal radix, rcmin, rcmax;
  534. integer kd;
  535. extern doublereal dlamch_(char *);
  536. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  537. doublereal bignum, logrdx, smlnum;
  538. /* -- LAPACK computational routine (version 3.7.0) -- */
  539. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  540. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  541. /* June 2016 */
  542. /* ===================================================================== */
  543. /* Test the input parameters. */
  544. /* Parameter adjustments */
  545. ab_dim1 = *ldab;
  546. ab_offset = 1 + ab_dim1 * 1;
  547. ab -= ab_offset;
  548. --r__;
  549. --c__;
  550. /* Function Body */
  551. *info = 0;
  552. if (*m < 0) {
  553. *info = -1;
  554. } else if (*n < 0) {
  555. *info = -2;
  556. } else if (*kl < 0) {
  557. *info = -3;
  558. } else if (*ku < 0) {
  559. *info = -4;
  560. } else if (*ldab < *kl + *ku + 1) {
  561. *info = -6;
  562. }
  563. if (*info != 0) {
  564. i__1 = -(*info);
  565. xerbla_("ZGBEQUB", &i__1, (ftnlen)7);
  566. return 0;
  567. }
  568. /* Quick return if possible. */
  569. if (*m == 0 || *n == 0) {
  570. *rowcnd = 1.;
  571. *colcnd = 1.;
  572. *amax = 0.;
  573. return 0;
  574. }
  575. /* Get machine constants. Assume SMLNUM is a power of the radix. */
  576. smlnum = dlamch_("S");
  577. bignum = 1. / smlnum;
  578. radix = dlamch_("B");
  579. logrdx = log(radix);
  580. /* Compute row scale factors. */
  581. i__1 = *m;
  582. for (i__ = 1; i__ <= i__1; ++i__) {
  583. r__[i__] = 0.;
  584. /* L10: */
  585. }
  586. /* Find the maximum element in each row. */
  587. kd = *ku + 1;
  588. i__1 = *n;
  589. for (j = 1; j <= i__1; ++j) {
  590. /* Computing MAX */
  591. i__2 = j - *ku;
  592. /* Computing MIN */
  593. i__4 = j + *kl;
  594. i__3 = f2cmin(i__4,*m);
  595. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  596. /* Computing MAX */
  597. i__2 = kd + i__ - j + j * ab_dim1;
  598. d__3 = r__[i__], d__4 = (d__1 = ab[i__2].r, abs(d__1)) + (d__2 =
  599. d_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(d__2));
  600. r__[i__] = f2cmax(d__3,d__4);
  601. /* L20: */
  602. }
  603. /* L30: */
  604. }
  605. i__1 = *m;
  606. for (i__ = 1; i__ <= i__1; ++i__) {
  607. if (r__[i__] > 0.) {
  608. i__3 = (integer) (log(r__[i__]) / logrdx);
  609. r__[i__] = pow_di(&radix, &i__3);
  610. }
  611. }
  612. /* Find the maximum and minimum scale factors. */
  613. rcmin = bignum;
  614. rcmax = 0.;
  615. i__1 = *m;
  616. for (i__ = 1; i__ <= i__1; ++i__) {
  617. /* Computing MAX */
  618. d__1 = rcmax, d__2 = r__[i__];
  619. rcmax = f2cmax(d__1,d__2);
  620. /* Computing MIN */
  621. d__1 = rcmin, d__2 = r__[i__];
  622. rcmin = f2cmin(d__1,d__2);
  623. /* L40: */
  624. }
  625. *amax = rcmax;
  626. if (rcmin == 0.) {
  627. /* Find the first zero scale factor and return an error code. */
  628. i__1 = *m;
  629. for (i__ = 1; i__ <= i__1; ++i__) {
  630. if (r__[i__] == 0.) {
  631. *info = i__;
  632. return 0;
  633. }
  634. /* L50: */
  635. }
  636. } else {
  637. /* Invert the scale factors. */
  638. i__1 = *m;
  639. for (i__ = 1; i__ <= i__1; ++i__) {
  640. /* Computing MIN */
  641. /* Computing MAX */
  642. d__2 = r__[i__];
  643. d__1 = f2cmax(d__2,smlnum);
  644. r__[i__] = 1. / f2cmin(d__1,bignum);
  645. /* L60: */
  646. }
  647. /* Compute ROWCND = f2cmin(R(I)) / f2cmax(R(I)). */
  648. *rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  649. }
  650. /* Compute column scale factors. */
  651. i__1 = *n;
  652. for (j = 1; j <= i__1; ++j) {
  653. c__[j] = 0.;
  654. /* L70: */
  655. }
  656. /* Find the maximum element in each column, */
  657. /* assuming the row scaling computed above. */
  658. i__1 = *n;
  659. for (j = 1; j <= i__1; ++j) {
  660. /* Computing MAX */
  661. i__3 = j - *ku;
  662. /* Computing MIN */
  663. i__4 = j + *kl;
  664. i__2 = f2cmin(i__4,*m);
  665. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  666. /* Computing MAX */
  667. i__3 = kd + i__ - j + j * ab_dim1;
  668. d__3 = c__[j], d__4 = ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 =
  669. d_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(d__2))) *
  670. r__[i__];
  671. c__[j] = f2cmax(d__3,d__4);
  672. /* L80: */
  673. }
  674. if (c__[j] > 0.) {
  675. i__2 = (integer) (log(c__[j]) / logrdx);
  676. c__[j] = pow_di(&radix, &i__2);
  677. }
  678. /* L90: */
  679. }
  680. /* Find the maximum and minimum scale factors. */
  681. rcmin = bignum;
  682. rcmax = 0.;
  683. i__1 = *n;
  684. for (j = 1; j <= i__1; ++j) {
  685. /* Computing MIN */
  686. d__1 = rcmin, d__2 = c__[j];
  687. rcmin = f2cmin(d__1,d__2);
  688. /* Computing MAX */
  689. d__1 = rcmax, d__2 = c__[j];
  690. rcmax = f2cmax(d__1,d__2);
  691. /* L100: */
  692. }
  693. if (rcmin == 0.) {
  694. /* Find the first zero scale factor and return an error code. */
  695. i__1 = *n;
  696. for (j = 1; j <= i__1; ++j) {
  697. if (c__[j] == 0.) {
  698. *info = *m + j;
  699. return 0;
  700. }
  701. /* L110: */
  702. }
  703. } else {
  704. /* Invert the scale factors. */
  705. i__1 = *n;
  706. for (j = 1; j <= i__1; ++j) {
  707. /* Computing MIN */
  708. /* Computing MAX */
  709. d__2 = c__[j];
  710. d__1 = f2cmax(d__2,smlnum);
  711. c__[j] = 1. / f2cmin(d__1,bignum);
  712. /* L120: */
  713. }
  714. /* Compute COLCND = f2cmin(C(J)) / f2cmax(C(J)). */
  715. *colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  716. }
  717. return 0;
  718. /* End of ZGBEQUB */
  719. } /* zgbequb_ */