You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytd2.c 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static real c_b8 = 0.f;
  382. static real c_b14 = -1.f;
  383. /* > \brief \b SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarit
  384. y transformation (unblocked algorithm). */
  385. /* =========== DOCUMENTATION =========== */
  386. /* Online html documentation available at */
  387. /* http://www.netlib.org/lapack/explore-html/ */
  388. /* > \htmlonly */
  389. /* > Download SSYTD2 + dependencies */
  390. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytd2.
  391. f"> */
  392. /* > [TGZ]</a> */
  393. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytd2.
  394. f"> */
  395. /* > [ZIP]</a> */
  396. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytd2.
  397. f"> */
  398. /* > [TXT]</a> */
  399. /* > \endhtmlonly */
  400. /* Definition: */
  401. /* =========== */
  402. /* SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO ) */
  403. /* CHARACTER UPLO */
  404. /* INTEGER INFO, LDA, N */
  405. /* REAL A( LDA, * ), D( * ), E( * ), TAU( * ) */
  406. /* > \par Purpose: */
  407. /* ============= */
  408. /* > */
  409. /* > \verbatim */
  410. /* > */
  411. /* > SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */
  412. /* > form T by an orthogonal similarity transformation: Q**T * A * Q = T. */
  413. /* > \endverbatim */
  414. /* Arguments: */
  415. /* ========== */
  416. /* > \param[in] UPLO */
  417. /* > \verbatim */
  418. /* > UPLO is CHARACTER*1 */
  419. /* > Specifies whether the upper or lower triangular part of the */
  420. /* > symmetric matrix A is stored: */
  421. /* > = 'U': Upper triangular */
  422. /* > = 'L': Lower triangular */
  423. /* > \endverbatim */
  424. /* > */
  425. /* > \param[in] N */
  426. /* > \verbatim */
  427. /* > N is INTEGER */
  428. /* > The order of the matrix A. N >= 0. */
  429. /* > \endverbatim */
  430. /* > */
  431. /* > \param[in,out] A */
  432. /* > \verbatim */
  433. /* > A is REAL array, dimension (LDA,N) */
  434. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  435. /* > n-by-n upper triangular part of A contains the upper */
  436. /* > triangular part of the matrix A, and the strictly lower */
  437. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  438. /* > leading n-by-n lower triangular part of A contains the lower */
  439. /* > triangular part of the matrix A, and the strictly upper */
  440. /* > triangular part of A is not referenced. */
  441. /* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
  442. /* > of A are overwritten by the corresponding elements of the */
  443. /* > tridiagonal matrix T, and the elements above the first */
  444. /* > superdiagonal, with the array TAU, represent the orthogonal */
  445. /* > matrix Q as a product of elementary reflectors; if UPLO */
  446. /* > = 'L', the diagonal and first subdiagonal of A are over- */
  447. /* > written by the corresponding elements of the tridiagonal */
  448. /* > matrix T, and the elements below the first subdiagonal, with */
  449. /* > the array TAU, represent the orthogonal matrix Q as a product */
  450. /* > of elementary reflectors. See Further Details. */
  451. /* > \endverbatim */
  452. /* > */
  453. /* > \param[in] LDA */
  454. /* > \verbatim */
  455. /* > LDA is INTEGER */
  456. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  457. /* > \endverbatim */
  458. /* > */
  459. /* > \param[out] D */
  460. /* > \verbatim */
  461. /* > D is REAL array, dimension (N) */
  462. /* > The diagonal elements of the tridiagonal matrix T: */
  463. /* > D(i) = A(i,i). */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[out] E */
  467. /* > \verbatim */
  468. /* > E is REAL array, dimension (N-1) */
  469. /* > The off-diagonal elements of the tridiagonal matrix T: */
  470. /* > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[out] TAU */
  474. /* > \verbatim */
  475. /* > TAU is REAL array, dimension (N-1) */
  476. /* > The scalar factors of the elementary reflectors (see Further */
  477. /* > Details). */
  478. /* > \endverbatim */
  479. /* > */
  480. /* > \param[out] INFO */
  481. /* > \verbatim */
  482. /* > INFO is INTEGER */
  483. /* > = 0: successful exit */
  484. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  485. /* > \endverbatim */
  486. /* Authors: */
  487. /* ======== */
  488. /* > \author Univ. of Tennessee */
  489. /* > \author Univ. of California Berkeley */
  490. /* > \author Univ. of Colorado Denver */
  491. /* > \author NAG Ltd. */
  492. /* > \date December 2016 */
  493. /* > \ingroup realSYcomputational */
  494. /* > \par Further Details: */
  495. /* ===================== */
  496. /* > */
  497. /* > \verbatim */
  498. /* > */
  499. /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
  500. /* > reflectors */
  501. /* > */
  502. /* > Q = H(n-1) . . . H(2) H(1). */
  503. /* > */
  504. /* > Each H(i) has the form */
  505. /* > */
  506. /* > H(i) = I - tau * v * v**T */
  507. /* > */
  508. /* > where tau is a real scalar, and v is a real vector with */
  509. /* > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
  510. /* > A(1:i-1,i+1), and tau in TAU(i). */
  511. /* > */
  512. /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
  513. /* > reflectors */
  514. /* > */
  515. /* > Q = H(1) H(2) . . . H(n-1). */
  516. /* > */
  517. /* > Each H(i) has the form */
  518. /* > */
  519. /* > H(i) = I - tau * v * v**T */
  520. /* > */
  521. /* > where tau is a real scalar, and v is a real vector with */
  522. /* > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
  523. /* > and tau in TAU(i). */
  524. /* > */
  525. /* > The contents of A on exit are illustrated by the following examples */
  526. /* > with n = 5: */
  527. /* > */
  528. /* > if UPLO = 'U': if UPLO = 'L': */
  529. /* > */
  530. /* > ( d e v2 v3 v4 ) ( d ) */
  531. /* > ( d e v3 v4 ) ( e d ) */
  532. /* > ( d e v4 ) ( v1 e d ) */
  533. /* > ( d e ) ( v1 v2 e d ) */
  534. /* > ( d ) ( v1 v2 v3 e d ) */
  535. /* > */
  536. /* > where d and e denote diagonal and off-diagonal elements of T, and vi */
  537. /* > denotes an element of the vector defining H(i). */
  538. /* > \endverbatim */
  539. /* > */
  540. /* ===================================================================== */
  541. /* Subroutine */ int ssytd2_(char *uplo, integer *n, real *a, integer *lda,
  542. real *d__, real *e, real *tau, integer *info)
  543. {
  544. /* System generated locals */
  545. integer a_dim1, a_offset, i__1, i__2, i__3;
  546. /* Local variables */
  547. real taui;
  548. extern real sdot_(integer *, real *, integer *, real *, integer *);
  549. integer i__;
  550. extern /* Subroutine */ int ssyr2_(char *, integer *, real *, real *,
  551. integer *, real *, integer *, real *, integer *);
  552. real alpha;
  553. extern logical lsame_(char *, char *);
  554. logical upper;
  555. extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
  556. real *, integer *), ssymv_(char *, integer *, real *, real *,
  557. integer *, real *, integer *, real *, real *, integer *),
  558. xerbla_(char *, integer *, ftnlen), slarfg_(integer *, real *,
  559. real *, integer *, real *);
  560. /* -- LAPACK computational routine (version 3.7.0) -- */
  561. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  562. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  563. /* December 2016 */
  564. /* ===================================================================== */
  565. /* Test the input parameters */
  566. /* Parameter adjustments */
  567. a_dim1 = *lda;
  568. a_offset = 1 + a_dim1 * 1;
  569. a -= a_offset;
  570. --d__;
  571. --e;
  572. --tau;
  573. /* Function Body */
  574. *info = 0;
  575. upper = lsame_(uplo, "U");
  576. if (! upper && ! lsame_(uplo, "L")) {
  577. *info = -1;
  578. } else if (*n < 0) {
  579. *info = -2;
  580. } else if (*lda < f2cmax(1,*n)) {
  581. *info = -4;
  582. }
  583. if (*info != 0) {
  584. i__1 = -(*info);
  585. xerbla_("SSYTD2", &i__1, (ftnlen)6);
  586. return 0;
  587. }
  588. /* Quick return if possible */
  589. if (*n <= 0) {
  590. return 0;
  591. }
  592. if (upper) {
  593. /* Reduce the upper triangle of A */
  594. for (i__ = *n - 1; i__ >= 1; --i__) {
  595. /* Generate elementary reflector H(i) = I - tau * v * v**T */
  596. /* to annihilate A(1:i-1,i+1) */
  597. slarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1
  598. + 1], &c__1, &taui);
  599. e[i__] = a[i__ + (i__ + 1) * a_dim1];
  600. if (taui != 0.f) {
  601. /* Apply H(i) from both sides to A(1:i,1:i) */
  602. a[i__ + (i__ + 1) * a_dim1] = 1.f;
  603. /* Compute x := tau * A * v storing x in TAU(1:i) */
  604. ssymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
  605. a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1);
  606. /* Compute w := x - 1/2 * tau * (x**T * v) * v */
  607. alpha = taui * -.5f * sdot_(&i__, &tau[1], &c__1, &a[(i__ + 1)
  608. * a_dim1 + 1], &c__1);
  609. saxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
  610. 1], &c__1);
  611. /* Apply the transformation as a rank-2 update: */
  612. /* A := A - v * w**T - w * v**T */
  613. ssyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1,
  614. &tau[1], &c__1, &a[a_offset], lda);
  615. a[i__ + (i__ + 1) * a_dim1] = e[i__];
  616. }
  617. d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
  618. tau[i__] = taui;
  619. /* L10: */
  620. }
  621. d__[1] = a[a_dim1 + 1];
  622. } else {
  623. /* Reduce the lower triangle of A */
  624. i__1 = *n - 1;
  625. for (i__ = 1; i__ <= i__1; ++i__) {
  626. /* Generate elementary reflector H(i) = I - tau * v * v**T */
  627. /* to annihilate A(i+2:n,i) */
  628. i__2 = *n - i__;
  629. /* Computing MIN */
  630. i__3 = i__ + 2;
  631. slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
  632. a_dim1], &c__1, &taui);
  633. e[i__] = a[i__ + 1 + i__ * a_dim1];
  634. if (taui != 0.f) {
  635. /* Apply H(i) from both sides to A(i+1:n,i+1:n) */
  636. a[i__ + 1 + i__ * a_dim1] = 1.f;
  637. /* Compute x := tau * A * v storing y in TAU(i:n-1) */
  638. i__2 = *n - i__;
  639. ssymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
  640. lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[
  641. i__], &c__1);
  642. /* Compute w := x - 1/2 * tau * (x**T * v) * v */
  643. i__2 = *n - i__;
  644. alpha = taui * -.5f * sdot_(&i__2, &tau[i__], &c__1, &a[i__ +
  645. 1 + i__ * a_dim1], &c__1);
  646. i__2 = *n - i__;
  647. saxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
  648. i__], &c__1);
  649. /* Apply the transformation as a rank-2 update: */
  650. /* A := A - v * w**T - w * v**T */
  651. i__2 = *n - i__;
  652. ssyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1,
  653. &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1],
  654. lda);
  655. a[i__ + 1 + i__ * a_dim1] = e[i__];
  656. }
  657. d__[i__] = a[i__ + i__ * a_dim1];
  658. tau[i__] = taui;
  659. /* L20: */
  660. }
  661. d__[*n] = a[*n + *n * a_dim1];
  662. }
  663. return 0;
  664. /* End of SSYTD2 */
  665. } /* ssytd2_ */