You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssterf.c 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__0 = 0;
  381. static integer c__1 = 1;
  382. static real c_b32 = 1.f;
  383. /* > \brief \b SSTERF */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download SSTERF + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssterf.
  390. f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssterf.
  393. f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssterf.
  396. f"> */
  397. /* > [TXT]</a> */
  398. /* > \endhtmlonly */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE SSTERF( N, D, E, INFO ) */
  402. /* INTEGER INFO, N */
  403. /* REAL D( * ), E( * ) */
  404. /* > \par Purpose: */
  405. /* ============= */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > SSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
  410. /* > using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
  411. /* > \endverbatim */
  412. /* Arguments: */
  413. /* ========== */
  414. /* > \param[in] N */
  415. /* > \verbatim */
  416. /* > N is INTEGER */
  417. /* > The order of the matrix. N >= 0. */
  418. /* > \endverbatim */
  419. /* > */
  420. /* > \param[in,out] D */
  421. /* > \verbatim */
  422. /* > D is REAL array, dimension (N) */
  423. /* > On entry, the n diagonal elements of the tridiagonal matrix. */
  424. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in,out] E */
  428. /* > \verbatim */
  429. /* > E is REAL array, dimension (N-1) */
  430. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  431. /* > matrix. */
  432. /* > On exit, E has been destroyed. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[out] INFO */
  436. /* > \verbatim */
  437. /* > INFO is INTEGER */
  438. /* > = 0: successful exit */
  439. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  440. /* > > 0: the algorithm failed to find all of the eigenvalues in */
  441. /* > a total of 30*N iterations; if INFO = i, then i */
  442. /* > elements of E have not converged to zero. */
  443. /* > \endverbatim */
  444. /* Authors: */
  445. /* ======== */
  446. /* > \author Univ. of Tennessee */
  447. /* > \author Univ. of California Berkeley */
  448. /* > \author Univ. of Colorado Denver */
  449. /* > \author NAG Ltd. */
  450. /* > \date December 2016 */
  451. /* > \ingroup auxOTHERcomputational */
  452. /* ===================================================================== */
  453. /* Subroutine */ int ssterf_(integer *n, real *d__, real *e, integer *info)
  454. {
  455. /* System generated locals */
  456. integer i__1;
  457. real r__1, r__2, r__3;
  458. /* Local variables */
  459. real oldc;
  460. integer lend, jtot;
  461. extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
  462. ;
  463. real c__;
  464. integer i__, l, m;
  465. real p, gamma, r__, s, alpha, sigma, anorm;
  466. integer l1;
  467. real bb;
  468. extern real slapy2_(real *, real *);
  469. integer iscale;
  470. real oldgam;
  471. extern real slamch_(char *);
  472. real safmin;
  473. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  474. real safmax;
  475. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  476. real *, integer *, integer *, real *, integer *, integer *);
  477. integer lendsv;
  478. real ssfmin;
  479. integer nmaxit;
  480. real ssfmax;
  481. extern real slanst_(char *, integer *, real *, real *);
  482. extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
  483. real rt1, rt2, eps, rte;
  484. integer lsv;
  485. real eps2;
  486. /* -- LAPACK computational routine (version 3.7.0) -- */
  487. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  488. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  489. /* December 2016 */
  490. /* ===================================================================== */
  491. /* Test the input parameters. */
  492. /* Parameter adjustments */
  493. --e;
  494. --d__;
  495. /* Function Body */
  496. *info = 0;
  497. /* Quick return if possible */
  498. if (*n < 0) {
  499. *info = -1;
  500. i__1 = -(*info);
  501. xerbla_("SSTERF", &i__1, (ftnlen)6);
  502. return 0;
  503. }
  504. if (*n <= 1) {
  505. return 0;
  506. }
  507. /* Determine the unit roundoff for this environment. */
  508. eps = slamch_("E");
  509. /* Computing 2nd power */
  510. r__1 = eps;
  511. eps2 = r__1 * r__1;
  512. safmin = slamch_("S");
  513. safmax = 1.f / safmin;
  514. ssfmax = sqrt(safmax) / 3.f;
  515. ssfmin = sqrt(safmin) / eps2;
  516. /* Compute the eigenvalues of the tridiagonal matrix. */
  517. nmaxit = *n * 30;
  518. sigma = 0.f;
  519. jtot = 0;
  520. /* Determine where the matrix splits and choose QL or QR iteration */
  521. /* for each block, according to whether top or bottom diagonal */
  522. /* element is smaller. */
  523. l1 = 1;
  524. L10:
  525. if (l1 > *n) {
  526. goto L170;
  527. }
  528. if (l1 > 1) {
  529. e[l1 - 1] = 0.f;
  530. }
  531. i__1 = *n - 1;
  532. for (m = l1; m <= i__1; ++m) {
  533. if ((r__3 = e[m], abs(r__3)) <= sqrt((r__1 = d__[m], abs(r__1))) *
  534. sqrt((r__2 = d__[m + 1], abs(r__2))) * eps) {
  535. e[m] = 0.f;
  536. goto L30;
  537. }
  538. /* L20: */
  539. }
  540. m = *n;
  541. L30:
  542. l = l1;
  543. lsv = l;
  544. lend = m;
  545. lendsv = lend;
  546. l1 = m + 1;
  547. if (lend == l) {
  548. goto L10;
  549. }
  550. /* Scale submatrix in rows and columns L to LEND */
  551. i__1 = lend - l + 1;
  552. anorm = slanst_("M", &i__1, &d__[l], &e[l]);
  553. iscale = 0;
  554. if (anorm == 0.f) {
  555. goto L10;
  556. }
  557. if (anorm > ssfmax) {
  558. iscale = 1;
  559. i__1 = lend - l + 1;
  560. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  561. info);
  562. i__1 = lend - l;
  563. slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  564. info);
  565. } else if (anorm < ssfmin) {
  566. iscale = 2;
  567. i__1 = lend - l + 1;
  568. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  569. info);
  570. i__1 = lend - l;
  571. slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  572. info);
  573. }
  574. i__1 = lend - 1;
  575. for (i__ = l; i__ <= i__1; ++i__) {
  576. /* Computing 2nd power */
  577. r__1 = e[i__];
  578. e[i__] = r__1 * r__1;
  579. /* L40: */
  580. }
  581. /* Choose between QL and QR iteration */
  582. if ((r__1 = d__[lend], abs(r__1)) < (r__2 = d__[l], abs(r__2))) {
  583. lend = lsv;
  584. l = lendsv;
  585. }
  586. if (lend >= l) {
  587. /* QL Iteration */
  588. /* Look for small subdiagonal element. */
  589. L50:
  590. if (l != lend) {
  591. i__1 = lend - 1;
  592. for (m = l; m <= i__1; ++m) {
  593. if ((r__2 = e[m], abs(r__2)) <= eps2 * (r__1 = d__[m] * d__[m
  594. + 1], abs(r__1))) {
  595. goto L70;
  596. }
  597. /* L60: */
  598. }
  599. }
  600. m = lend;
  601. L70:
  602. if (m < lend) {
  603. e[m] = 0.f;
  604. }
  605. p = d__[l];
  606. if (m == l) {
  607. goto L90;
  608. }
  609. /* If remaining matrix is 2 by 2, use SLAE2 to compute its */
  610. /* eigenvalues. */
  611. if (m == l + 1) {
  612. rte = sqrt(e[l]);
  613. slae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
  614. d__[l] = rt1;
  615. d__[l + 1] = rt2;
  616. e[l] = 0.f;
  617. l += 2;
  618. if (l <= lend) {
  619. goto L50;
  620. }
  621. goto L150;
  622. }
  623. if (jtot == nmaxit) {
  624. goto L150;
  625. }
  626. ++jtot;
  627. /* Form shift. */
  628. rte = sqrt(e[l]);
  629. sigma = (d__[l + 1] - p) / (rte * 2.f);
  630. r__ = slapy2_(&sigma, &c_b32);
  631. sigma = p - rte / (sigma + r_sign(&r__, &sigma));
  632. c__ = 1.f;
  633. s = 0.f;
  634. gamma = d__[m] - sigma;
  635. p = gamma * gamma;
  636. /* Inner loop */
  637. i__1 = l;
  638. for (i__ = m - 1; i__ >= i__1; --i__) {
  639. bb = e[i__];
  640. r__ = p + bb;
  641. if (i__ != m - 1) {
  642. e[i__ + 1] = s * r__;
  643. }
  644. oldc = c__;
  645. c__ = p / r__;
  646. s = bb / r__;
  647. oldgam = gamma;
  648. alpha = d__[i__];
  649. gamma = c__ * (alpha - sigma) - s * oldgam;
  650. d__[i__ + 1] = oldgam + (alpha - gamma);
  651. if (c__ != 0.f) {
  652. p = gamma * gamma / c__;
  653. } else {
  654. p = oldc * bb;
  655. }
  656. /* L80: */
  657. }
  658. e[l] = s * p;
  659. d__[l] = sigma + gamma;
  660. goto L50;
  661. /* Eigenvalue found. */
  662. L90:
  663. d__[l] = p;
  664. ++l;
  665. if (l <= lend) {
  666. goto L50;
  667. }
  668. goto L150;
  669. } else {
  670. /* QR Iteration */
  671. /* Look for small superdiagonal element. */
  672. L100:
  673. i__1 = lend + 1;
  674. for (m = l; m >= i__1; --m) {
  675. if ((r__2 = e[m - 1], abs(r__2)) <= eps2 * (r__1 = d__[m] * d__[m
  676. - 1], abs(r__1))) {
  677. goto L120;
  678. }
  679. /* L110: */
  680. }
  681. m = lend;
  682. L120:
  683. if (m > lend) {
  684. e[m - 1] = 0.f;
  685. }
  686. p = d__[l];
  687. if (m == l) {
  688. goto L140;
  689. }
  690. /* If remaining matrix is 2 by 2, use SLAE2 to compute its */
  691. /* eigenvalues. */
  692. if (m == l - 1) {
  693. rte = sqrt(e[l - 1]);
  694. slae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
  695. d__[l] = rt1;
  696. d__[l - 1] = rt2;
  697. e[l - 1] = 0.f;
  698. l += -2;
  699. if (l >= lend) {
  700. goto L100;
  701. }
  702. goto L150;
  703. }
  704. if (jtot == nmaxit) {
  705. goto L150;
  706. }
  707. ++jtot;
  708. /* Form shift. */
  709. rte = sqrt(e[l - 1]);
  710. sigma = (d__[l - 1] - p) / (rte * 2.f);
  711. r__ = slapy2_(&sigma, &c_b32);
  712. sigma = p - rte / (sigma + r_sign(&r__, &sigma));
  713. c__ = 1.f;
  714. s = 0.f;
  715. gamma = d__[m] - sigma;
  716. p = gamma * gamma;
  717. /* Inner loop */
  718. i__1 = l - 1;
  719. for (i__ = m; i__ <= i__1; ++i__) {
  720. bb = e[i__];
  721. r__ = p + bb;
  722. if (i__ != m) {
  723. e[i__ - 1] = s * r__;
  724. }
  725. oldc = c__;
  726. c__ = p / r__;
  727. s = bb / r__;
  728. oldgam = gamma;
  729. alpha = d__[i__ + 1];
  730. gamma = c__ * (alpha - sigma) - s * oldgam;
  731. d__[i__] = oldgam + (alpha - gamma);
  732. if (c__ != 0.f) {
  733. p = gamma * gamma / c__;
  734. } else {
  735. p = oldc * bb;
  736. }
  737. /* L130: */
  738. }
  739. e[l - 1] = s * p;
  740. d__[l] = sigma + gamma;
  741. goto L100;
  742. /* Eigenvalue found. */
  743. L140:
  744. d__[l] = p;
  745. --l;
  746. if (l >= lend) {
  747. goto L100;
  748. }
  749. goto L150;
  750. }
  751. /* Undo scaling if necessary */
  752. L150:
  753. if (iscale == 1) {
  754. i__1 = lendsv - lsv + 1;
  755. slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  756. n, info);
  757. }
  758. if (iscale == 2) {
  759. i__1 = lendsv - lsv + 1;
  760. slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  761. n, info);
  762. }
  763. /* Check for no convergence to an eigenvalue after a total */
  764. /* of N*MAXIT iterations. */
  765. if (jtot < nmaxit) {
  766. goto L10;
  767. }
  768. i__1 = *n - 1;
  769. for (i__ = 1; i__ <= i__1; ++i__) {
  770. if (e[i__] != 0.f) {
  771. ++(*info);
  772. }
  773. /* L160: */
  774. }
  775. goto L180;
  776. /* Sort eigenvalues in increasing order. */
  777. L170:
  778. slasrt_("I", n, &d__[1], info);
  779. L180:
  780. return 0;
  781. /* End of SSTERF */
  782. } /* ssterf_ */