You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spftrf.c 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static real c_b12 = 1.f;
  381. static real c_b15 = -1.f;
  382. /* > \brief \b SPFTRF */
  383. /* =========== DOCUMENTATION =========== */
  384. /* Online html documentation available at */
  385. /* http://www.netlib.org/lapack/explore-html/ */
  386. /* > \htmlonly */
  387. /* > Download SPFTRF + dependencies */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spftrf.
  389. f"> */
  390. /* > [TGZ]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spftrf.
  392. f"> */
  393. /* > [ZIP]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spftrf.
  395. f"> */
  396. /* > [TXT]</a> */
  397. /* > \endhtmlonly */
  398. /* Definition: */
  399. /* =========== */
  400. /* SUBROUTINE SPFTRF( TRANSR, UPLO, N, A, INFO ) */
  401. /* CHARACTER TRANSR, UPLO */
  402. /* INTEGER N, INFO */
  403. /* REAL A( 0: * ) */
  404. /* > \par Purpose: */
  405. /* ============= */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > SPFTRF computes the Cholesky factorization of a real symmetric */
  410. /* > positive definite matrix A. */
  411. /* > */
  412. /* > The factorization has the form */
  413. /* > A = U**T * U, if UPLO = 'U', or */
  414. /* > A = L * L**T, if UPLO = 'L', */
  415. /* > where U is an upper triangular matrix and L is lower triangular. */
  416. /* > */
  417. /* > This is the block version of the algorithm, calling Level 3 BLAS. */
  418. /* > \endverbatim */
  419. /* Arguments: */
  420. /* ========== */
  421. /* > \param[in] TRANSR */
  422. /* > \verbatim */
  423. /* > TRANSR is CHARACTER*1 */
  424. /* > = 'N': The Normal TRANSR of RFP A is stored; */
  425. /* > = 'T': The Transpose TRANSR of RFP A is stored. */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in] UPLO */
  429. /* > \verbatim */
  430. /* > UPLO is CHARACTER*1 */
  431. /* > = 'U': Upper triangle of RFP A is stored; */
  432. /* > = 'L': Lower triangle of RFP A is stored. */
  433. /* > \endverbatim */
  434. /* > */
  435. /* > \param[in] N */
  436. /* > \verbatim */
  437. /* > N is INTEGER */
  438. /* > The order of the matrix A. N >= 0. */
  439. /* > \endverbatim */
  440. /* > */
  441. /* > \param[in,out] A */
  442. /* > \verbatim */
  443. /* > A is REAL array, dimension ( N*(N+1)/2 ); */
  444. /* > On entry, the symmetric matrix A in RFP format. RFP format is */
  445. /* > described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
  446. /* > then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
  447. /* > (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
  448. /* > the transpose of RFP A as defined when */
  449. /* > TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
  450. /* > follows: If UPLO = 'U' the RFP A contains the NT elements of */
  451. /* > upper packed A. If UPLO = 'L' the RFP A contains the elements */
  452. /* > of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
  453. /* > 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
  454. /* > is odd. See the Note below for more details. */
  455. /* > */
  456. /* > On exit, if INFO = 0, the factor U or L from the Cholesky */
  457. /* > factorization RFP A = U**T*U or RFP A = L*L**T. */
  458. /* > \endverbatim */
  459. /* > */
  460. /* > \param[out] INFO */
  461. /* > \verbatim */
  462. /* > INFO is INTEGER */
  463. /* > = 0: successful exit */
  464. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  465. /* > > 0: if INFO = i, the leading minor of order i is not */
  466. /* > positive definite, and the factorization could not be */
  467. /* > completed. */
  468. /* > \endverbatim */
  469. /* Authors: */
  470. /* ======== */
  471. /* > \author Univ. of Tennessee */
  472. /* > \author Univ. of California Berkeley */
  473. /* > \author Univ. of Colorado Denver */
  474. /* > \author NAG Ltd. */
  475. /* > \date December 2016 */
  476. /* > \ingroup realOTHERcomputational */
  477. /* > \par Further Details: */
  478. /* ===================== */
  479. /* > */
  480. /* > \verbatim */
  481. /* > */
  482. /* > We first consider Rectangular Full Packed (RFP) Format when N is */
  483. /* > even. We give an example where N = 6. */
  484. /* > */
  485. /* > AP is Upper AP is Lower */
  486. /* > */
  487. /* > 00 01 02 03 04 05 00 */
  488. /* > 11 12 13 14 15 10 11 */
  489. /* > 22 23 24 25 20 21 22 */
  490. /* > 33 34 35 30 31 32 33 */
  491. /* > 44 45 40 41 42 43 44 */
  492. /* > 55 50 51 52 53 54 55 */
  493. /* > */
  494. /* > */
  495. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  496. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  497. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  498. /* > the transpose of the first three columns of AP upper. */
  499. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  500. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  501. /* > the transpose of the last three columns of AP lower. */
  502. /* > This covers the case N even and TRANSR = 'N'. */
  503. /* > */
  504. /* > RFP A RFP A */
  505. /* > */
  506. /* > 03 04 05 33 43 53 */
  507. /* > 13 14 15 00 44 54 */
  508. /* > 23 24 25 10 11 55 */
  509. /* > 33 34 35 20 21 22 */
  510. /* > 00 44 45 30 31 32 */
  511. /* > 01 11 55 40 41 42 */
  512. /* > 02 12 22 50 51 52 */
  513. /* > */
  514. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  515. /* > transpose of RFP A above. One therefore gets: */
  516. /* > */
  517. /* > */
  518. /* > RFP A RFP A */
  519. /* > */
  520. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  521. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  522. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  523. /* > */
  524. /* > */
  525. /* > We then consider Rectangular Full Packed (RFP) Format when N is */
  526. /* > odd. We give an example where N = 5. */
  527. /* > */
  528. /* > AP is Upper AP is Lower */
  529. /* > */
  530. /* > 00 01 02 03 04 00 */
  531. /* > 11 12 13 14 10 11 */
  532. /* > 22 23 24 20 21 22 */
  533. /* > 33 34 30 31 32 33 */
  534. /* > 44 40 41 42 43 44 */
  535. /* > */
  536. /* > */
  537. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  538. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  539. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  540. /* > the transpose of the first two columns of AP upper. */
  541. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  542. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  543. /* > the transpose of the last two columns of AP lower. */
  544. /* > This covers the case N odd and TRANSR = 'N'. */
  545. /* > */
  546. /* > RFP A RFP A */
  547. /* > */
  548. /* > 02 03 04 00 33 43 */
  549. /* > 12 13 14 10 11 44 */
  550. /* > 22 23 24 20 21 22 */
  551. /* > 00 33 34 30 31 32 */
  552. /* > 01 11 44 40 41 42 */
  553. /* > */
  554. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  555. /* > transpose of RFP A above. One therefore gets: */
  556. /* > */
  557. /* > RFP A RFP A */
  558. /* > */
  559. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  560. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  561. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  562. /* > \endverbatim */
  563. /* > */
  564. /* ===================================================================== */
  565. /* Subroutine */ int spftrf_(char *transr, char *uplo, integer *n, real *a,
  566. integer *info)
  567. {
  568. /* System generated locals */
  569. integer i__1, i__2;
  570. /* Local variables */
  571. integer k;
  572. logical normaltransr;
  573. extern logical lsame_(char *, char *);
  574. logical lower;
  575. integer n1, n2;
  576. extern /* Subroutine */ int strsm_(char *, char *, char *, char *,
  577. integer *, integer *, real *, real *, integer *, real *, integer *
  578. ), ssyrk_(char *, char *, integer
  579. *, integer *, real *, real *, integer *, real *, real *, integer *
  580. ), xerbla_(char *, integer *, ftnlen);
  581. logical nisodd;
  582. extern /* Subroutine */ int spotrf_(char *, integer *, real *, integer *,
  583. integer *);
  584. /* -- LAPACK computational routine (version 3.7.0) -- */
  585. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  586. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  587. /* December 2016 */
  588. /* ===================================================================== */
  589. /* Test the input parameters. */
  590. *info = 0;
  591. normaltransr = lsame_(transr, "N");
  592. lower = lsame_(uplo, "L");
  593. if (! normaltransr && ! lsame_(transr, "T")) {
  594. *info = -1;
  595. } else if (! lower && ! lsame_(uplo, "U")) {
  596. *info = -2;
  597. } else if (*n < 0) {
  598. *info = -3;
  599. }
  600. if (*info != 0) {
  601. i__1 = -(*info);
  602. xerbla_("SPFTRF", &i__1, (ftnlen)6);
  603. return 0;
  604. }
  605. /* Quick return if possible */
  606. if (*n == 0) {
  607. return 0;
  608. }
  609. /* If N is odd, set NISODD = .TRUE. */
  610. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  611. if (*n % 2 == 0) {
  612. k = *n / 2;
  613. nisodd = FALSE_;
  614. } else {
  615. nisodd = TRUE_;
  616. }
  617. /* Set N1 and N2 depending on LOWER */
  618. if (lower) {
  619. n2 = *n / 2;
  620. n1 = *n - n2;
  621. } else {
  622. n1 = *n / 2;
  623. n2 = *n - n1;
  624. }
  625. /* start execution: there are eight cases */
  626. if (nisodd) {
  627. /* N is odd */
  628. if (normaltransr) {
  629. /* N is odd and TRANSR = 'N' */
  630. if (lower) {
  631. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  632. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  633. /* T1 -> a(0), T2 -> a(n), S -> a(n1) */
  634. spotrf_("L", &n1, a, n, info);
  635. if (*info > 0) {
  636. return 0;
  637. }
  638. strsm_("R", "L", "T", "N", &n2, &n1, &c_b12, a, n, &a[n1], n);
  639. ssyrk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b12, &a[*n],
  640. n);
  641. spotrf_("U", &n2, &a[*n], n, info);
  642. if (*info > 0) {
  643. *info += n1;
  644. }
  645. } else {
  646. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  647. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  648. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  649. spotrf_("L", &n1, &a[n2], n, info);
  650. if (*info > 0) {
  651. return 0;
  652. }
  653. strsm_("L", "L", "N", "N", &n1, &n2, &c_b12, &a[n2], n, a, n);
  654. ssyrk_("U", "T", &n2, &n1, &c_b15, a, n, &c_b12, &a[n1], n);
  655. spotrf_("U", &n2, &a[n1], n, info);
  656. if (*info > 0) {
  657. *info += n1;
  658. }
  659. }
  660. } else {
  661. /* N is odd and TRANSR = 'T' */
  662. if (lower) {
  663. /* SRPA for LOWER, TRANSPOSE and N is odd */
  664. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  665. /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
  666. spotrf_("U", &n1, a, &n1, info);
  667. if (*info > 0) {
  668. return 0;
  669. }
  670. strsm_("L", "U", "T", "N", &n1, &n2, &c_b12, a, &n1, &a[n1 *
  671. n1], &n1);
  672. ssyrk_("L", "T", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b12, &
  673. a[1], &n1);
  674. spotrf_("L", &n2, &a[1], &n1, info);
  675. if (*info > 0) {
  676. *info += n1;
  677. }
  678. } else {
  679. /* SRPA for UPPER, TRANSPOSE and N is odd */
  680. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  681. /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
  682. spotrf_("U", &n1, &a[n2 * n2], &n2, info);
  683. if (*info > 0) {
  684. return 0;
  685. }
  686. strsm_("R", "U", "N", "N", &n2, &n1, &c_b12, &a[n2 * n2], &n2,
  687. a, &n2);
  688. ssyrk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b12, &a[n1 * n2]
  689. , &n2);
  690. spotrf_("L", &n2, &a[n1 * n2], &n2, info);
  691. if (*info > 0) {
  692. *info += n1;
  693. }
  694. }
  695. }
  696. } else {
  697. /* N is even */
  698. if (normaltransr) {
  699. /* N is even and TRANSR = 'N' */
  700. if (lower) {
  701. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  702. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  703. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  704. i__1 = *n + 1;
  705. spotrf_("L", &k, &a[1], &i__1, info);
  706. if (*info > 0) {
  707. return 0;
  708. }
  709. i__1 = *n + 1;
  710. i__2 = *n + 1;
  711. strsm_("R", "L", "T", "N", &k, &k, &c_b12, &a[1], &i__1, &a[k
  712. + 1], &i__2);
  713. i__1 = *n + 1;
  714. i__2 = *n + 1;
  715. ssyrk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b12, a,
  716. &i__2);
  717. i__1 = *n + 1;
  718. spotrf_("U", &k, a, &i__1, info);
  719. if (*info > 0) {
  720. *info += k;
  721. }
  722. } else {
  723. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  724. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  725. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  726. i__1 = *n + 1;
  727. spotrf_("L", &k, &a[k + 1], &i__1, info);
  728. if (*info > 0) {
  729. return 0;
  730. }
  731. i__1 = *n + 1;
  732. i__2 = *n + 1;
  733. strsm_("L", "L", "N", "N", &k, &k, &c_b12, &a[k + 1], &i__1,
  734. a, &i__2);
  735. i__1 = *n + 1;
  736. i__2 = *n + 1;
  737. ssyrk_("U", "T", &k, &k, &c_b15, a, &i__1, &c_b12, &a[k], &
  738. i__2);
  739. i__1 = *n + 1;
  740. spotrf_("U", &k, &a[k], &i__1, info);
  741. if (*info > 0) {
  742. *info += k;
  743. }
  744. }
  745. } else {
  746. /* N is even and TRANSR = 'T' */
  747. if (lower) {
  748. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  749. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  750. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  751. spotrf_("U", &k, &a[k], &k, info);
  752. if (*info > 0) {
  753. return 0;
  754. }
  755. strsm_("L", "U", "T", "N", &k, &k, &c_b12, &a[k], &n1, &a[k *
  756. (k + 1)], &k);
  757. ssyrk_("L", "T", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b12,
  758. a, &k);
  759. spotrf_("L", &k, a, &k, info);
  760. if (*info > 0) {
  761. *info += k;
  762. }
  763. } else {
  764. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  765. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  766. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  767. spotrf_("U", &k, &a[k * (k + 1)], &k, info);
  768. if (*info > 0) {
  769. return 0;
  770. }
  771. strsm_("R", "U", "N", "N", &k, &k, &c_b12, &a[k * (k + 1)], &
  772. k, a, &k);
  773. ssyrk_("L", "N", &k, &k, &c_b15, a, &k, &c_b12, &a[k * k], &k);
  774. spotrf_("L", &k, &a[k * k], &k, info);
  775. if (*info > 0) {
  776. *info += k;
  777. }
  778. }
  779. }
  780. }
  781. return 0;
  782. /* End of SPFTRF */
  783. } /* spftrf_ */