You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorhr_col.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static real c_b7 = 1.f;
  381. static integer c__1 = 1;
  382. static real c_b10 = -1.f;
  383. /* > \brief \b SORHR_COL */
  384. /* =========== DOCUMENTATION =========== */
  385. /* Online html documentation available at */
  386. /* http://www.netlib.org/lapack/explore-html/ */
  387. /* > \htmlonly */
  388. /* > Download SORHR_COL + dependencies */
  389. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorhr_c
  390. ol.f"> */
  391. /* > [TGZ]</a> */
  392. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorhr_c
  393. ol.f"> */
  394. /* > [ZIP]</a> */
  395. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorhr_c
  396. ol.f"> */
  397. /* > [TXT]</a> */
  398. /* > */
  399. /* Definition: */
  400. /* =========== */
  401. /* SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) */
  402. /* INTEGER INFO, LDA, LDT, M, N, NB */
  403. /* REAL A( LDA, * ), D( * ), T( LDT, * ) */
  404. /* > \par Purpose: */
  405. /* ============= */
  406. /* > */
  407. /* > \verbatim */
  408. /* > */
  409. /* > SORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns */
  410. /* > as input, stored in A, and performs Householder Reconstruction (HR), */
  411. /* > i.e. reconstructs Householder vectors V(i) implicitly representing */
  412. /* > another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, */
  413. /* > where S is an N-by-N diagonal matrix with diagonal entries */
  414. /* > equal to +1 or -1. The Householder vectors (columns V(i) of V) are */
  415. /* > stored in A on output, and the diagonal entries of S are stored in D. */
  416. /* > Block reflectors are also returned in T */
  417. /* > (same output format as SGEQRT). */
  418. /* > \endverbatim */
  419. /* Arguments: */
  420. /* ========== */
  421. /* > \param[in] M */
  422. /* > \verbatim */
  423. /* > M is INTEGER */
  424. /* > The number of rows of the matrix A. M >= 0. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] N */
  428. /* > \verbatim */
  429. /* > N is INTEGER */
  430. /* > The number of columns of the matrix A. M >= N >= 0. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] NB */
  434. /* > \verbatim */
  435. /* > NB is INTEGER */
  436. /* > The column block size to be used in the reconstruction */
  437. /* > of Householder column vector blocks in the array A and */
  438. /* > corresponding block reflectors in the array T. NB >= 1. */
  439. /* > (Note that if NB > N, then N is used instead of NB */
  440. /* > as the column block size.) */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[in,out] A */
  444. /* > \verbatim */
  445. /* > A is REAL array, dimension (LDA,N) */
  446. /* > */
  447. /* > On entry: */
  448. /* > */
  449. /* > The array A contains an M-by-N orthonormal matrix Q_in, */
  450. /* > i.e the columns of A are orthogonal unit vectors. */
  451. /* > */
  452. /* > On exit: */
  453. /* > */
  454. /* > The elements below the diagonal of A represent the unit */
  455. /* > lower-trapezoidal matrix V of Householder column vectors */
  456. /* > V(i). The unit diagonal entries of V are not stored */
  457. /* > (same format as the output below the diagonal in A from */
  458. /* > SGEQRT). The matrix T and the matrix V stored on output */
  459. /* > in A implicitly define Q_out. */
  460. /* > */
  461. /* > The elements above the diagonal contain the factor U */
  462. /* > of the "modified" LU-decomposition: */
  463. /* > Q_in - ( S ) = V * U */
  464. /* > ( 0 ) */
  465. /* > where 0 is a (M-N)-by-(M-N) zero matrix. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[in] LDA */
  469. /* > \verbatim */
  470. /* > LDA is INTEGER */
  471. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  472. /* > \endverbatim */
  473. /* > */
  474. /* > \param[out] T */
  475. /* > \verbatim */
  476. /* > T is REAL array, */
  477. /* > dimension (LDT, N) */
  478. /* > */
  479. /* > Let NOCB = Number_of_output_col_blocks */
  480. /* > = CEIL(N/NB) */
  481. /* > */
  482. /* > On exit, T(1:NB, 1:N) contains NOCB upper-triangular */
  483. /* > block reflectors used to define Q_out stored in compact */
  484. /* > form as a sequence of upper-triangular NB-by-NB column */
  485. /* > blocks (same format as the output T in SGEQRT). */
  486. /* > The matrix T and the matrix V stored on output in A */
  487. /* > implicitly define Q_out. NOTE: The lower triangles */
  488. /* > below the upper-triangular blcoks will be filled with */
  489. /* > zeros. See Further Details. */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[in] LDT */
  493. /* > \verbatim */
  494. /* > LDT is INTEGER */
  495. /* > The leading dimension of the array T. */
  496. /* > LDT >= f2cmax(1,f2cmin(NB,N)). */
  497. /* > \endverbatim */
  498. /* > */
  499. /* > \param[out] D */
  500. /* > \verbatim */
  501. /* > D is REAL array, dimension f2cmin(M,N). */
  502. /* > The elements can be only plus or minus one. */
  503. /* > */
  504. /* > D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where */
  505. /* > 1 <= i <= f2cmin(M,N), and Q_in_i is Q_in after performing */
  506. /* > i-1 steps of “modified” Gaussian elimination. */
  507. /* > See Further Details. */
  508. /* > \endverbatim */
  509. /* > */
  510. /* > \param[out] INFO */
  511. /* > \verbatim */
  512. /* > INFO is INTEGER */
  513. /* > = 0: successful exit */
  514. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \par Further Details: */
  518. /* ===================== */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > The computed M-by-M orthogonal factor Q_out is defined implicitly as */
  523. /* > a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in */
  524. /* > the compact WY-representation format in the corresponding blocks of */
  525. /* > matrices V (stored in A) and T. */
  526. /* > */
  527. /* > The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N */
  528. /* > matrix A contains the column vectors V(i) in NB-size column */
  529. /* > blocks VB(j). For example, VB(1) contains the columns */
  530. /* > V(1), V(2), ... V(NB). NOTE: The unit entries on */
  531. /* > the diagonal of Y are not stored in A. */
  532. /* > */
  533. /* > The number of column blocks is */
  534. /* > */
  535. /* > NOCB = Number_of_output_col_blocks = CEIL(N/NB) */
  536. /* > */
  537. /* > where each block is of order NB except for the last block, which */
  538. /* > is of order LAST_NB = N - (NOCB-1)*NB. */
  539. /* > */
  540. /* > For example, if M=6, N=5 and NB=2, the matrix V is */
  541. /* > */
  542. /* > */
  543. /* > V = ( VB(1), VB(2), VB(3) ) = */
  544. /* > */
  545. /* > = ( 1 ) */
  546. /* > ( v21 1 ) */
  547. /* > ( v31 v32 1 ) */
  548. /* > ( v41 v42 v43 1 ) */
  549. /* > ( v51 v52 v53 v54 1 ) */
  550. /* > ( v61 v62 v63 v54 v65 ) */
  551. /* > */
  552. /* > */
  553. /* > For each of the column blocks VB(i), an upper-triangular block */
  554. /* > reflector TB(i) is computed. These blocks are stored as */
  555. /* > a sequence of upper-triangular column blocks in the NB-by-N */
  556. /* > matrix T. The size of each TB(i) block is NB-by-NB, except */
  557. /* > for the last block, whose size is LAST_NB-by-LAST_NB. */
  558. /* > */
  559. /* > For example, if M=6, N=5 and NB=2, the matrix T is */
  560. /* > */
  561. /* > T = ( TB(1), TB(2), TB(3) ) = */
  562. /* > */
  563. /* > = ( t11 t12 t13 t14 t15 ) */
  564. /* > ( t22 t24 ) */
  565. /* > */
  566. /* > */
  567. /* > The M-by-M factor Q_out is given as a product of NOCB */
  568. /* > orthogonal M-by-M matrices Q_out(i). */
  569. /* > */
  570. /* > Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), */
  571. /* > */
  572. /* > where each matrix Q_out(i) is given by the WY-representation */
  573. /* > using corresponding blocks from the matrices V and T: */
  574. /* > */
  575. /* > Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, */
  576. /* > */
  577. /* > where I is the identity matrix. Here is the formula with matrix */
  578. /* > dimensions: */
  579. /* > */
  580. /* > Q(i){M-by-M} = I{M-by-M} - */
  581. /* > VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, */
  582. /* > */
  583. /* > where INB = NB, except for the last block NOCB */
  584. /* > for which INB=LAST_NB. */
  585. /* > */
  586. /* > ===== */
  587. /* > NOTE: */
  588. /* > ===== */
  589. /* > */
  590. /* > If Q_in is the result of doing a QR factorization */
  591. /* > B = Q_in * R_in, then: */
  592. /* > */
  593. /* > B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out. */
  594. /* > */
  595. /* > So if one wants to interpret Q_out as the result */
  596. /* > of the QR factorization of B, then corresponding R_out */
  597. /* > should be obtained by R_out = S * R_in, i.e. some rows of R_in */
  598. /* > should be multiplied by -1. */
  599. /* > */
  600. /* > For the details of the algorithm, see [1]. */
  601. /* > */
  602. /* > [1] "Reconstructing Householder vectors from tall-skinny QR", */
  603. /* > G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, */
  604. /* > E. Solomonik, J. Parallel Distrib. Comput., */
  605. /* > vol. 85, pp. 3-31, 2015. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* Authors: */
  609. /* ======== */
  610. /* > \author Univ. of Tennessee */
  611. /* > \author Univ. of California Berkeley */
  612. /* > \author Univ. of Colorado Denver */
  613. /* > \author NAG Ltd. */
  614. /* > \date November 2019 */
  615. /* > \ingroup singleOTHERcomputational */
  616. /* > \par Contributors: */
  617. /* ================== */
  618. /* > */
  619. /* > \verbatim */
  620. /* > */
  621. /* > November 2019, Igor Kozachenko, */
  622. /* > Computer Science Division, */
  623. /* > University of California, Berkeley */
  624. /* > */
  625. /* > \endverbatim */
  626. /* ===================================================================== */
  627. /* Subroutine */ int sorhr_col_(integer *m, integer *n, integer *nb, real *a,
  628. integer *lda, real *t, integer *ldt, real *d__, integer *info)
  629. {
  630. /* System generated locals */
  631. integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4;
  632. /* Local variables */
  633. extern /* Subroutine */ int slaorhr_col_getrfnp_(integer *, integer *,
  634. real *, integer *, real *, integer *);
  635. integer nplusone, i__, j, iinfo;
  636. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
  637. scopy_(integer *, real *, integer *, real *, integer *), strsm_(
  638. char *, char *, char *, char *, integer *, integer *, real *,
  639. real *, integer *, real *, integer *);
  640. integer jb;
  641. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  642. integer jbtemp1, jbtemp2, jnb;
  643. /* -- LAPACK computational routine (version 3.9.0) -- */
  644. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  645. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  646. /* November 2019 */
  647. /* ===================================================================== */
  648. /* Test the input parameters */
  649. /* Parameter adjustments */
  650. a_dim1 = *lda;
  651. a_offset = 1 + a_dim1 * 1;
  652. a -= a_offset;
  653. t_dim1 = *ldt;
  654. t_offset = 1 + t_dim1 * 1;
  655. t -= t_offset;
  656. --d__;
  657. /* Function Body */
  658. *info = 0;
  659. if (*m < 0) {
  660. *info = -1;
  661. } else if (*n < 0 || *n > *m) {
  662. *info = -2;
  663. } else if (*nb < 1) {
  664. *info = -3;
  665. } else if (*lda < f2cmax(1,*m)) {
  666. *info = -5;
  667. } else /* if(complicated condition) */ {
  668. /* Computing MAX */
  669. i__1 = 1, i__2 = f2cmin(*nb,*n);
  670. if (*ldt < f2cmax(i__1,i__2)) {
  671. *info = -7;
  672. }
  673. }
  674. /* Handle error in the input parameters. */
  675. if (*info != 0) {
  676. i__1 = -(*info);
  677. xerbla_("SORHR_COL", &i__1, (ftnlen)9);
  678. return 0;
  679. }
  680. /* Quick return if possible */
  681. if (f2cmin(*m,*n) == 0) {
  682. return 0;
  683. }
  684. /* On input, the M-by-N matrix A contains the orthogonal */
  685. /* M-by-N matrix Q_in. */
  686. /* (1) Compute the unit lower-trapezoidal V (ones on the diagonal */
  687. /* are not stored) by performing the "modified" LU-decomposition. */
  688. /* Q_in - ( S ) = V * U = ( V1 ) * U, */
  689. /* ( 0 ) ( V2 ) */
  690. /* where 0 is an (M-N)-by-N zero matrix. */
  691. /* (1-1) Factor V1 and U. */
  692. slaorhr_col_getrfnp_(n, n, &a[a_offset], lda, &d__[1], &iinfo);
  693. /* (1-2) Solve for V2. */
  694. if (*m > *n) {
  695. i__1 = *m - *n;
  696. strsm_("R", "U", "N", "N", &i__1, n, &c_b7, &a[a_offset], lda, &a[*n
  697. + 1 + a_dim1], lda);
  698. }
  699. /* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) */
  700. /* as a sequence of upper-triangular blocks with NB-size column */
  701. /* blocking. */
  702. /* Loop over the column blocks of size NB of the array A(1:M,1:N) */
  703. /* and the array T(1:NB,1:N), JB is the column index of a column */
  704. /* block, JNB is the column block size at each step JB. */
  705. nplusone = *n + 1;
  706. i__1 = *n;
  707. i__2 = *nb;
  708. for (jb = 1; i__2 < 0 ? jb >= i__1 : jb <= i__1; jb += i__2) {
  709. /* (2-0) Determine the column block size JNB. */
  710. /* Computing MIN */
  711. i__3 = nplusone - jb;
  712. jnb = f2cmin(i__3,*nb);
  713. /* (2-1) Copy the upper-triangular part of the current JNB-by-JNB */
  714. /* diagonal block U(JB) (of the N-by-N matrix U) stored */
  715. /* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part */
  716. /* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) */
  717. /* column-by-column, total JNB*(JNB+1)/2 elements. */
  718. jbtemp1 = jb - 1;
  719. i__3 = jb + jnb - 1;
  720. for (j = jb; j <= i__3; ++j) {
  721. i__4 = j - jbtemp1;
  722. scopy_(&i__4, &a[jb + j * a_dim1], &c__1, &t[j * t_dim1 + 1], &
  723. c__1);
  724. }
  725. /* (2-2) Perform on the upper-triangular part of the current */
  726. /* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored */
  727. /* in T(1:JNB,JB:JB+JNB-1) the following operation in place: */
  728. /* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- */
  729. /* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication */
  730. /* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB */
  731. /* diagonal block S(JB) of the N-by-N sign matrix S from the */
  732. /* right means changing the sign of each J-th column of the block */
  733. /* U(JB) according to the sign of the diagonal element of the block */
  734. /* S(JB), i.e. S(J,J) that is stored in the array element D(J). */
  735. i__3 = jb + jnb - 1;
  736. for (j = jb; j <= i__3; ++j) {
  737. if (d__[j] == 1.f) {
  738. i__4 = j - jbtemp1;
  739. sscal_(&i__4, &c_b10, &t[j * t_dim1 + 1], &c__1);
  740. }
  741. }
  742. /* (2-3) Perform the triangular solve for the current block */
  743. /* matrix X(JB): */
  744. /* X(JB) * (A(JB)**T) = B(JB), where: */
  745. /* A(JB)**T is a JNB-by-JNB unit upper-triangular */
  746. /* coefficient block, and A(JB)=V1(JB), which */
  747. /* is a JNB-by-JNB unit lower-triangular block */
  748. /* stored in A(JB:JB+JNB-1,JB:JB+JNB-1). */
  749. /* The N-by-N matrix V1 is the upper part */
  750. /* of the M-by-N lower-trapezoidal matrix V */
  751. /* stored in A(1:M,1:N); */
  752. /* B(JB) is a JNB-by-JNB upper-triangular right-hand */
  753. /* side block, B(JB) = (-1)*U(JB)*S(JB), and */
  754. /* B(JB) is stored in T(1:JNB,JB:JB+JNB-1); */
  755. /* X(JB) is a JNB-by-JNB upper-triangular solution */
  756. /* block, X(JB) is the upper-triangular block */
  757. /* reflector T(JB), and X(JB) is stored */
  758. /* in T(1:JNB,JB:JB+JNB-1). */
  759. /* In other words, we perform the triangular solve for the */
  760. /* upper-triangular block T(JB): */
  761. /* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). */
  762. /* Even though the blocks X(JB) and B(JB) are upper- */
  763. /* triangular, the routine STRSM will access all JNB**2 */
  764. /* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, */
  765. /* we need to set to zero the elements of the block */
  766. /* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call */
  767. /* to STRSM. */
  768. /* (2-3a) Set the elements to zero. */
  769. jbtemp2 = jb - 2;
  770. i__3 = jb + jnb - 2;
  771. for (j = jb; j <= i__3; ++j) {
  772. i__4 = *nb;
  773. for (i__ = j - jbtemp2; i__ <= i__4; ++i__) {
  774. t[i__ + j * t_dim1] = 0.f;
  775. }
  776. }
  777. /* (2-3b) Perform the triangular solve. */
  778. strsm_("R", "L", "T", "U", &jnb, &jnb, &c_b7, &a[jb + jb * a_dim1],
  779. lda, &t[jb * t_dim1 + 1], ldt);
  780. }
  781. return 0;
  782. /* End of SORHR_COL */
  783. } /* sorhr_col__ */