You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasq3.c 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b SLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr. */
  380. /* =========== DOCUMENTATION =========== */
  381. /* Online html documentation available at */
  382. /* http://www.netlib.org/lapack/explore-html/ */
  383. /* > \htmlonly */
  384. /* > Download SLASQ3 + dependencies */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq3.
  386. f"> */
  387. /* > [TGZ]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq3.
  389. f"> */
  390. /* > [ZIP]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq3.
  392. f"> */
  393. /* > [TXT]</a> */
  394. /* > \endhtmlonly */
  395. /* Definition: */
  396. /* =========== */
  397. /* SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, */
  398. /* ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, */
  399. /* DN2, G, TAU ) */
  400. /* LOGICAL IEEE */
  401. /* INTEGER I0, ITER, N0, NDIV, NFAIL, PP */
  402. /* REAL DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, */
  403. /* $ QMAX, SIGMA, TAU */
  404. /* REAL Z( * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. */
  411. /* > In case of failure it changes shifts, and tries again until output */
  412. /* > is positive. */
  413. /* > \endverbatim */
  414. /* Arguments: */
  415. /* ========== */
  416. /* > \param[in] I0 */
  417. /* > \verbatim */
  418. /* > I0 is INTEGER */
  419. /* > First index. */
  420. /* > \endverbatim */
  421. /* > */
  422. /* > \param[in,out] N0 */
  423. /* > \verbatim */
  424. /* > N0 is INTEGER */
  425. /* > Last index. */
  426. /* > \endverbatim */
  427. /* > */
  428. /* > \param[in,out] Z */
  429. /* > \verbatim */
  430. /* > Z is REAL array, dimension ( 4*N0 ) */
  431. /* > Z holds the qd array. */
  432. /* > \endverbatim */
  433. /* > */
  434. /* > \param[in,out] PP */
  435. /* > \verbatim */
  436. /* > PP is INTEGER */
  437. /* > PP=0 for ping, PP=1 for pong. */
  438. /* > PP=2 indicates that flipping was applied to the Z array */
  439. /* > and that the initial tests for deflation should not be */
  440. /* > performed. */
  441. /* > \endverbatim */
  442. /* > */
  443. /* > \param[out] DMIN */
  444. /* > \verbatim */
  445. /* > DMIN is REAL */
  446. /* > Minimum value of d. */
  447. /* > \endverbatim */
  448. /* > */
  449. /* > \param[out] SIGMA */
  450. /* > \verbatim */
  451. /* > SIGMA is REAL */
  452. /* > Sum of shifts used in current segment. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in,out] DESIG */
  456. /* > \verbatim */
  457. /* > DESIG is REAL */
  458. /* > Lower order part of SIGMA */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[in] QMAX */
  462. /* > \verbatim */
  463. /* > QMAX is REAL */
  464. /* > Maximum value of q. */
  465. /* > \endverbatim */
  466. /* > */
  467. /* > \param[in,out] NFAIL */
  468. /* > \verbatim */
  469. /* > NFAIL is INTEGER */
  470. /* > Increment NFAIL by 1 each time the shift was too big. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in,out] ITER */
  474. /* > \verbatim */
  475. /* > ITER is INTEGER */
  476. /* > Increment ITER by 1 for each iteration. */
  477. /* > \endverbatim */
  478. /* > */
  479. /* > \param[in,out] NDIV */
  480. /* > \verbatim */
  481. /* > NDIV is INTEGER */
  482. /* > Increment NDIV by 1 for each division. */
  483. /* > \endverbatim */
  484. /* > */
  485. /* > \param[in] IEEE */
  486. /* > \verbatim */
  487. /* > IEEE is LOGICAL */
  488. /* > Flag for IEEE or non IEEE arithmetic (passed to SLASQ5). */
  489. /* > \endverbatim */
  490. /* > */
  491. /* > \param[in,out] TTYPE */
  492. /* > \verbatim */
  493. /* > TTYPE is INTEGER */
  494. /* > Shift type. */
  495. /* > \endverbatim */
  496. /* > */
  497. /* > \param[in,out] DMIN1 */
  498. /* > \verbatim */
  499. /* > DMIN1 is REAL */
  500. /* > \endverbatim */
  501. /* > */
  502. /* > \param[in,out] DMIN2 */
  503. /* > \verbatim */
  504. /* > DMIN2 is REAL */
  505. /* > \endverbatim */
  506. /* > */
  507. /* > \param[in,out] DN */
  508. /* > \verbatim */
  509. /* > DN is REAL */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[in,out] DN1 */
  513. /* > \verbatim */
  514. /* > DN1 is REAL */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \param[in,out] DN2 */
  518. /* > \verbatim */
  519. /* > DN2 is REAL */
  520. /* > \endverbatim */
  521. /* > */
  522. /* > \param[in,out] G */
  523. /* > \verbatim */
  524. /* > G is REAL */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[in,out] TAU */
  528. /* > \verbatim */
  529. /* > TAU is REAL */
  530. /* > */
  531. /* > These are passed as arguments in order to save their values */
  532. /* > between calls to SLASQ3. */
  533. /* > \endverbatim */
  534. /* Authors: */
  535. /* ======== */
  536. /* > \author Univ. of Tennessee */
  537. /* > \author Univ. of California Berkeley */
  538. /* > \author Univ. of Colorado Denver */
  539. /* > \author NAG Ltd. */
  540. /* > \date June 2016 */
  541. /* > \ingroup auxOTHERcomputational */
  542. /* ===================================================================== */
  543. /* Subroutine */ int slasq3_(integer *i0, integer *n0, real *z__, integer *pp,
  544. real *dmin__, real *sigma, real *desig, real *qmax, integer *nfail,
  545. integer *iter, integer *ndiv, logical *ieee, integer *ttype, real *
  546. dmin1, real *dmin2, real *dn, real *dn1, real *dn2, real *g, real *
  547. tau)
  548. {
  549. /* System generated locals */
  550. integer i__1;
  551. real r__1, r__2;
  552. /* Local variables */
  553. real temp, s, t;
  554. integer j4;
  555. extern /* Subroutine */ int slasq4_(integer *, integer *, real *, integer
  556. *, integer *, real *, real *, real *, real *, real *, real *,
  557. real *, integer *, real *), slasq5_(integer *, integer *, real *,
  558. integer *, real *, real *, real *, real *, real *, real *, real *,
  559. real *, logical *, real *), slasq6_(integer *, integer *, real *,
  560. integer *, real *, real *, real *, real *, real *, real *);
  561. integer nn;
  562. extern real slamch_(char *);
  563. extern logical sisnan_(real *);
  564. real eps, tol;
  565. integer n0in, ipn4;
  566. real tol2;
  567. /* -- LAPACK computational routine (version 3.7.0) -- */
  568. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  569. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  570. /* June 2016 */
  571. /* ===================================================================== */
  572. /* Parameter adjustments */
  573. --z__;
  574. /* Function Body */
  575. n0in = *n0;
  576. eps = slamch_("Precision");
  577. tol = eps * 100.f;
  578. /* Computing 2nd power */
  579. r__1 = tol;
  580. tol2 = r__1 * r__1;
  581. /* Check for deflation. */
  582. L10:
  583. if (*n0 < *i0) {
  584. return 0;
  585. }
  586. if (*n0 == *i0) {
  587. goto L20;
  588. }
  589. nn = (*n0 << 2) + *pp;
  590. if (*n0 == *i0 + 1) {
  591. goto L40;
  592. }
  593. /* Check whether E(N0-1) is negligible, 1 eigenvalue. */
  594. if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) -
  595. 4] > tol2 * z__[nn - 7]) {
  596. goto L30;
  597. }
  598. L20:
  599. z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma;
  600. --(*n0);
  601. goto L10;
  602. /* Check whether E(N0-2) is negligible, 2 eigenvalues. */
  603. L30:
  604. if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[
  605. nn - 11]) {
  606. goto L50;
  607. }
  608. L40:
  609. if (z__[nn - 3] > z__[nn - 7]) {
  610. s = z__[nn - 3];
  611. z__[nn - 3] = z__[nn - 7];
  612. z__[nn - 7] = s;
  613. }
  614. t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5f;
  615. if (z__[nn - 5] > z__[nn - 3] * tol2 && t != 0.f) {
  616. s = z__[nn - 3] * (z__[nn - 5] / t);
  617. if (s <= t) {
  618. s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.f) + 1.f)));
  619. } else {
  620. s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));
  621. }
  622. t = z__[nn - 7] + (s + z__[nn - 5]);
  623. z__[nn - 3] *= z__[nn - 7] / t;
  624. z__[nn - 7] = t;
  625. }
  626. z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma;
  627. z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma;
  628. *n0 += -2;
  629. goto L10;
  630. L50:
  631. if (*pp == 2) {
  632. *pp = 0;
  633. }
  634. /* Reverse the qd-array, if warranted. */
  635. if (*dmin__ <= 0.f || *n0 < n0in) {
  636. if (z__[(*i0 << 2) + *pp - 3] * 1.5f < z__[(*n0 << 2) + *pp - 3]) {
  637. ipn4 = *i0 + *n0 << 2;
  638. i__1 = *i0 + *n0 - 1 << 1;
  639. for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) {
  640. temp = z__[j4 - 3];
  641. z__[j4 - 3] = z__[ipn4 - j4 - 3];
  642. z__[ipn4 - j4 - 3] = temp;
  643. temp = z__[j4 - 2];
  644. z__[j4 - 2] = z__[ipn4 - j4 - 2];
  645. z__[ipn4 - j4 - 2] = temp;
  646. temp = z__[j4 - 1];
  647. z__[j4 - 1] = z__[ipn4 - j4 - 5];
  648. z__[ipn4 - j4 - 5] = temp;
  649. temp = z__[j4];
  650. z__[j4] = z__[ipn4 - j4 - 4];
  651. z__[ipn4 - j4 - 4] = temp;
  652. /* L60: */
  653. }
  654. if (*n0 - *i0 <= 4) {
  655. z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1];
  656. z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp];
  657. }
  658. /* Computing MIN */
  659. r__1 = *dmin2, r__2 = z__[(*n0 << 2) + *pp - 1];
  660. *dmin2 = f2cmin(r__1,r__2);
  661. /* Computing MIN */
  662. r__1 = z__[(*n0 << 2) + *pp - 1], r__2 = z__[(*i0 << 2) + *pp - 1]
  663. , r__1 = f2cmin(r__1,r__2), r__2 = z__[(*i0 << 2) + *pp + 3];
  664. z__[(*n0 << 2) + *pp - 1] = f2cmin(r__1,r__2);
  665. /* Computing MIN */
  666. r__1 = z__[(*n0 << 2) - *pp], r__2 = z__[(*i0 << 2) - *pp], r__1 =
  667. f2cmin(r__1,r__2), r__2 = z__[(*i0 << 2) - *pp + 4];
  668. z__[(*n0 << 2) - *pp] = f2cmin(r__1,r__2);
  669. /* Computing MAX */
  670. r__1 = *qmax, r__2 = z__[(*i0 << 2) + *pp - 3], r__1 = f2cmax(r__1,
  671. r__2), r__2 = z__[(*i0 << 2) + *pp + 1];
  672. *qmax = f2cmax(r__1,r__2);
  673. *dmin__ = 0.f;
  674. }
  675. }
  676. /* Choose a shift. */
  677. slasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2,
  678. tau, ttype, g);
  679. /* Call dqds until DMIN > 0. */
  680. L70:
  681. slasq5_(i0, n0, &z__[1], pp, tau, sigma, dmin__, dmin1, dmin2, dn, dn1,
  682. dn2, ieee, &eps);
  683. *ndiv += *n0 - *i0 + 2;
  684. ++(*iter);
  685. /* Check status. */
  686. if (*dmin__ >= 0.f && *dmin1 >= 0.f) {
  687. /* Success. */
  688. goto L90;
  689. } else if (*dmin__ < 0.f && *dmin1 > 0.f && z__[(*n0 - 1 << 2) - *pp] <
  690. tol * (*sigma + *dn1) && abs(*dn) < tol * *sigma) {
  691. /* Convergence hidden by negative DN. */
  692. z__[(*n0 - 1 << 2) - *pp + 2] = 0.f;
  693. *dmin__ = 0.f;
  694. goto L90;
  695. } else if (*dmin__ < 0.f) {
  696. /* TAU too big. Select new TAU and try again. */
  697. ++(*nfail);
  698. if (*ttype < -22) {
  699. /* Failed twice. Play it safe. */
  700. *tau = 0.f;
  701. } else if (*dmin1 > 0.f) {
  702. /* Late failure. Gives excellent shift. */
  703. *tau = (*tau + *dmin__) * (1.f - eps * 2.f);
  704. *ttype += -11;
  705. } else {
  706. /* Early failure. Divide by 4. */
  707. *tau *= .25f;
  708. *ttype += -12;
  709. }
  710. goto L70;
  711. } else if (sisnan_(dmin__)) {
  712. /* NaN. */
  713. if (*tau == 0.f) {
  714. goto L80;
  715. } else {
  716. *tau = 0.f;
  717. goto L70;
  718. }
  719. } else {
  720. /* Possible underflow. Play it safe. */
  721. goto L80;
  722. }
  723. /* Risk of underflow. */
  724. L80:
  725. slasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2);
  726. *ndiv += *n0 - *i0 + 2;
  727. ++(*iter);
  728. *tau = 0.f;
  729. L90:
  730. if (*tau < *sigma) {
  731. *desig += *tau;
  732. t = *sigma + *desig;
  733. *desig -= t - *sigma;
  734. } else {
  735. t = *sigma + *tau;
  736. *desig = *sigma - (t - *tau) + *desig;
  737. }
  738. *sigma = t;
  739. return 0;
  740. /* End of SLASQ3 */
  741. } /* slasq3_ */