You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd3.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* Table of constant values */
  380. static integer c__1 = 1;
  381. static integer c__0 = 0;
  382. static real c_b13 = 1.f;
  383. static real c_b26 = 0.f;
  384. /* > \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in
  385. D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */
  386. /* =========== DOCUMENTATION =========== */
  387. /* Online html documentation available at */
  388. /* http://www.netlib.org/lapack/explore-html/ */
  389. /* > \htmlonly */
  390. /* > Download SLASD3 + dependencies */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.
  392. f"> */
  393. /* > [TGZ]</a> */
  394. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.
  395. f"> */
  396. /* > [ZIP]</a> */
  397. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.
  398. f"> */
  399. /* > [TXT]</a> */
  400. /* > \endhtmlonly */
  401. /* Definition: */
  402. /* =========== */
  403. /* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */
  404. /* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */
  405. /* INFO ) */
  406. /* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */
  407. /* $ SQRE */
  408. /* INTEGER CTOT( * ), IDXC( * ) */
  409. /* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */
  410. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  411. /* $ Z( * ) */
  412. /* > \par Purpose: */
  413. /* ============= */
  414. /* > */
  415. /* > \verbatim */
  416. /* > */
  417. /* > SLASD3 finds all the square roots of the roots of the secular */
  418. /* > equation, as defined by the values in D and Z. It makes the */
  419. /* > appropriate calls to SLASD4 and then updates the singular */
  420. /* > vectors by matrix multiplication. */
  421. /* > */
  422. /* > This code makes very mild assumptions about floating point */
  423. /* > arithmetic. It will work on machines with a guard digit in */
  424. /* > add/subtract, or on those binary machines without guard digits */
  425. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  426. /* > It could conceivably fail on hexadecimal or decimal machines */
  427. /* > without guard digits, but we know of none. */
  428. /* > */
  429. /* > SLASD3 is called from SLASD1. */
  430. /* > \endverbatim */
  431. /* Arguments: */
  432. /* ========== */
  433. /* > \param[in] NL */
  434. /* > \verbatim */
  435. /* > NL is INTEGER */
  436. /* > The row dimension of the upper block. NL >= 1. */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] NR */
  440. /* > \verbatim */
  441. /* > NR is INTEGER */
  442. /* > The row dimension of the lower block. NR >= 1. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] SQRE */
  446. /* > \verbatim */
  447. /* > SQRE is INTEGER */
  448. /* > = 0: the lower block is an NR-by-NR square matrix. */
  449. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  450. /* > */
  451. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  452. /* > M = N + SQRE >= N columns. */
  453. /* > \endverbatim */
  454. /* > */
  455. /* > \param[in] K */
  456. /* > \verbatim */
  457. /* > K is INTEGER */
  458. /* > The size of the secular equation, 1 =< K = < N. */
  459. /* > \endverbatim */
  460. /* > */
  461. /* > \param[out] D */
  462. /* > \verbatim */
  463. /* > D is REAL array, dimension(K) */
  464. /* > On exit the square roots of the roots of the secular equation, */
  465. /* > in ascending order. */
  466. /* > \endverbatim */
  467. /* > */
  468. /* > \param[out] Q */
  469. /* > \verbatim */
  470. /* > Q is REAL array, dimension (LDQ,K) */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in] LDQ */
  474. /* > \verbatim */
  475. /* > LDQ is INTEGER */
  476. /* > The leading dimension of the array Q. LDQ >= K. */
  477. /* > \endverbatim */
  478. /* > */
  479. /* > \param[in,out] DSIGMA */
  480. /* > \verbatim */
  481. /* > DSIGMA is REAL array, dimension(K) */
  482. /* > The first K elements of this array contain the old roots */
  483. /* > of the deflated updating problem. These are the poles */
  484. /* > of the secular equation. */
  485. /* > \endverbatim */
  486. /* > */
  487. /* > \param[out] U */
  488. /* > \verbatim */
  489. /* > U is REAL array, dimension (LDU, N) */
  490. /* > The last N - K columns of this matrix contain the deflated */
  491. /* > left singular vectors. */
  492. /* > \endverbatim */
  493. /* > */
  494. /* > \param[in] LDU */
  495. /* > \verbatim */
  496. /* > LDU is INTEGER */
  497. /* > The leading dimension of the array U. LDU >= N. */
  498. /* > \endverbatim */
  499. /* > */
  500. /* > \param[in] U2 */
  501. /* > \verbatim */
  502. /* > U2 is REAL array, dimension (LDU2, N) */
  503. /* > The first K columns of this matrix contain the non-deflated */
  504. /* > left singular vectors for the split problem. */
  505. /* > \endverbatim */
  506. /* > */
  507. /* > \param[in] LDU2 */
  508. /* > \verbatim */
  509. /* > LDU2 is INTEGER */
  510. /* > The leading dimension of the array U2. LDU2 >= N. */
  511. /* > \endverbatim */
  512. /* > */
  513. /* > \param[out] VT */
  514. /* > \verbatim */
  515. /* > VT is REAL array, dimension (LDVT, M) */
  516. /* > The last M - K columns of VT**T contain the deflated */
  517. /* > right singular vectors. */
  518. /* > \endverbatim */
  519. /* > */
  520. /* > \param[in] LDVT */
  521. /* > \verbatim */
  522. /* > LDVT is INTEGER */
  523. /* > The leading dimension of the array VT. LDVT >= N. */
  524. /* > \endverbatim */
  525. /* > */
  526. /* > \param[in,out] VT2 */
  527. /* > \verbatim */
  528. /* > VT2 is REAL array, dimension (LDVT2, N) */
  529. /* > The first K columns of VT2**T contain the non-deflated */
  530. /* > right singular vectors for the split problem. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] LDVT2 */
  534. /* > \verbatim */
  535. /* > LDVT2 is INTEGER */
  536. /* > The leading dimension of the array VT2. LDVT2 >= N. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] IDXC */
  540. /* > \verbatim */
  541. /* > IDXC is INTEGER array, dimension (N) */
  542. /* > The permutation used to arrange the columns of U (and rows of */
  543. /* > VT) into three groups: the first group contains non-zero */
  544. /* > entries only at and above (or before) NL +1; the second */
  545. /* > contains non-zero entries only at and below (or after) NL+2; */
  546. /* > and the third is dense. The first column of U and the row of */
  547. /* > VT are treated separately, however. */
  548. /* > */
  549. /* > The rows of the singular vectors found by SLASD4 */
  550. /* > must be likewise permuted before the matrix multiplies can */
  551. /* > take place. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] CTOT */
  555. /* > \verbatim */
  556. /* > CTOT is INTEGER array, dimension (4) */
  557. /* > A count of the total number of the various types of columns */
  558. /* > in U (or rows in VT), as described in IDXC. The fourth column */
  559. /* > type is any column which has been deflated. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] Z */
  563. /* > \verbatim */
  564. /* > Z is REAL array, dimension (K) */
  565. /* > The first K elements of this array contain the components */
  566. /* > of the deflation-adjusted updating row vector. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] INFO */
  570. /* > \verbatim */
  571. /* > INFO is INTEGER */
  572. /* > = 0: successful exit. */
  573. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  574. /* > > 0: if INFO = 1, a singular value did not converge */
  575. /* > \endverbatim */
  576. /* Authors: */
  577. /* ======== */
  578. /* > \author Univ. of Tennessee */
  579. /* > \author Univ. of California Berkeley */
  580. /* > \author Univ. of Colorado Denver */
  581. /* > \author NAG Ltd. */
  582. /* > \date June 2017 */
  583. /* > \ingroup OTHERauxiliary */
  584. /* > \par Contributors: */
  585. /* ================== */
  586. /* > */
  587. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  588. /* > California at Berkeley, USA */
  589. /* > */
  590. /* ===================================================================== */
  591. /* Subroutine */ int slasd3_(integer *nl, integer *nr, integer *sqre, integer
  592. *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer *
  593. ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2,
  594. integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer *
  595. info)
  596. {
  597. /* System generated locals */
  598. integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
  599. vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
  600. real r__1, r__2;
  601. /* Local variables */
  602. real temp;
  603. extern real snrm2_(integer *, real *, integer *);
  604. integer i__, j, m, n, ctemp;
  605. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  606. integer *, real *, real *, integer *, real *, integer *, real *,
  607. real *, integer *);
  608. integer ktemp;
  609. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  610. integer *);
  611. extern real slamc3_(real *, real *);
  612. extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *,
  613. real *, real *, real *, real *, integer *);
  614. integer jc;
  615. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slascl_(
  616. char *, integer *, integer *, real *, real *, integer *, integer *
  617. , real *, integer *, integer *), slacpy_(char *, integer *
  618. , integer *, real *, integer *, real *, integer *);
  619. real rho;
  620. integer nlp1, nlp2, nrp1;
  621. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  622. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  623. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  624. /* June 2017 */
  625. /* ===================================================================== */
  626. /* Test the input parameters. */
  627. /* Parameter adjustments */
  628. --d__;
  629. q_dim1 = *ldq;
  630. q_offset = 1 + q_dim1 * 1;
  631. q -= q_offset;
  632. --dsigma;
  633. u_dim1 = *ldu;
  634. u_offset = 1 + u_dim1 * 1;
  635. u -= u_offset;
  636. u2_dim1 = *ldu2;
  637. u2_offset = 1 + u2_dim1 * 1;
  638. u2 -= u2_offset;
  639. vt_dim1 = *ldvt;
  640. vt_offset = 1 + vt_dim1 * 1;
  641. vt -= vt_offset;
  642. vt2_dim1 = *ldvt2;
  643. vt2_offset = 1 + vt2_dim1 * 1;
  644. vt2 -= vt2_offset;
  645. --idxc;
  646. --ctot;
  647. --z__;
  648. /* Function Body */
  649. *info = 0;
  650. if (*nl < 1) {
  651. *info = -1;
  652. } else if (*nr < 1) {
  653. *info = -2;
  654. } else if (*sqre != 1 && *sqre != 0) {
  655. *info = -3;
  656. }
  657. n = *nl + *nr + 1;
  658. m = n + *sqre;
  659. nlp1 = *nl + 1;
  660. nlp2 = *nl + 2;
  661. if (*k < 1 || *k > n) {
  662. *info = -4;
  663. } else if (*ldq < *k) {
  664. *info = -7;
  665. } else if (*ldu < n) {
  666. *info = -10;
  667. } else if (*ldu2 < n) {
  668. *info = -12;
  669. } else if (*ldvt < m) {
  670. *info = -14;
  671. } else if (*ldvt2 < m) {
  672. *info = -16;
  673. }
  674. if (*info != 0) {
  675. i__1 = -(*info);
  676. xerbla_("SLASD3", &i__1, (ftnlen)6);
  677. return 0;
  678. }
  679. /* Quick return if possible */
  680. if (*k == 1) {
  681. d__[1] = abs(z__[1]);
  682. scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
  683. if (z__[1] > 0.f) {
  684. scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
  685. } else {
  686. i__1 = n;
  687. for (i__ = 1; i__ <= i__1; ++i__) {
  688. u[i__ + u_dim1] = -u2[i__ + u2_dim1];
  689. /* L10: */
  690. }
  691. }
  692. return 0;
  693. }
  694. /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
  695. /* be computed with high relative accuracy (barring over/underflow). */
  696. /* This is a problem on machines without a guard digit in */
  697. /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
  698. /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
  699. /* which on any of these machines zeros out the bottommost */
  700. /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
  701. /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
  702. /* occurs. On binary machines with a guard digit (almost all */
  703. /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
  704. /* and decimal machines with a guard digit, it slightly */
  705. /* changes the bottommost bits of DSIGMA(I). It does not account */
  706. /* for hexadecimal or decimal machines without guard digits */
  707. /* (we know of none). We use a subroutine call to compute */
  708. /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
  709. /* this code. */
  710. i__1 = *k;
  711. for (i__ = 1; i__ <= i__1; ++i__) {
  712. dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
  713. /* L20: */
  714. }
  715. /* Keep a copy of Z. */
  716. scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
  717. /* Normalize Z. */
  718. rho = snrm2_(k, &z__[1], &c__1);
  719. slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
  720. rho *= rho;
  721. /* Find the new singular values. */
  722. i__1 = *k;
  723. for (j = 1; j <= i__1; ++j) {
  724. slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
  725. &vt[j * vt_dim1 + 1], info);
  726. /* If the zero finder fails, report the convergence failure. */
  727. if (*info != 0) {
  728. return 0;
  729. }
  730. /* L30: */
  731. }
  732. /* Compute updated Z. */
  733. i__1 = *k;
  734. for (i__ = 1; i__ <= i__1; ++i__) {
  735. z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
  736. i__2 = i__ - 1;
  737. for (j = 1; j <= i__2; ++j) {
  738. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  739. i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
  740. /* L40: */
  741. }
  742. i__2 = *k - 1;
  743. for (j = i__; j <= i__2; ++j) {
  744. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  745. i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
  746. /* L50: */
  747. }
  748. r__2 = sqrt((r__1 = z__[i__], abs(r__1)));
  749. z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]);
  750. /* L60: */
  751. }
  752. /* Compute left singular vectors of the modified diagonal matrix, */
  753. /* and store related information for the right singular vectors. */
  754. i__1 = *k;
  755. for (i__ = 1; i__ <= i__1; ++i__) {
  756. vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
  757. vt_dim1 + 1];
  758. u[i__ * u_dim1 + 1] = -1.f;
  759. i__2 = *k;
  760. for (j = 2; j <= i__2; ++j) {
  761. vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
  762. * vt_dim1];
  763. u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
  764. /* L70: */
  765. }
  766. temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
  767. q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
  768. i__2 = *k;
  769. for (j = 2; j <= i__2; ++j) {
  770. jc = idxc[j];
  771. q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
  772. /* L80: */
  773. }
  774. /* L90: */
  775. }
  776. /* Update the left singular vector matrix. */
  777. if (*k == 2) {
  778. sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
  779. ldq, &c_b26, &u[u_offset], ldu);
  780. goto L100;
  781. }
  782. if (ctot[1] > 0) {
  783. sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
  784. ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  785. if (ctot[3] > 0) {
  786. ktemp = ctot[1] + 2 + ctot[2];
  787. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
  788. , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
  789. ldu);
  790. }
  791. } else if (ctot[3] > 0) {
  792. ktemp = ctot[1] + 2 + ctot[2];
  793. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
  794. ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  795. } else {
  796. slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
  797. }
  798. scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
  799. ktemp = ctot[1] + 2;
  800. ctemp = ctot[2] + ctot[3];
  801. sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
  802. &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
  803. /* Generate the right singular vectors. */
  804. L100:
  805. i__1 = *k;
  806. for (i__ = 1; i__ <= i__1; ++i__) {
  807. temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
  808. q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
  809. i__2 = *k;
  810. for (j = 2; j <= i__2; ++j) {
  811. jc = idxc[j];
  812. q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
  813. /* L110: */
  814. }
  815. /* L120: */
  816. }
  817. /* Update the right singular vector matrix. */
  818. if (*k == 2) {
  819. sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
  820. , ldvt2, &c_b26, &vt[vt_offset], ldvt);
  821. return 0;
  822. }
  823. ktemp = ctot[1] + 1;
  824. sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
  825. vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
  826. ktemp = ctot[1] + 2 + ctot[2];
  827. if (ktemp <= *ldvt2) {
  828. sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
  829. ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
  830. ldvt);
  831. }
  832. ktemp = ctot[1] + 1;
  833. nrp1 = *nr + *sqre;
  834. if (ktemp > 1) {
  835. i__1 = *k;
  836. for (i__ = 1; i__ <= i__1; ++i__) {
  837. q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
  838. /* L130: */
  839. }
  840. i__1 = m;
  841. for (i__ = nlp2; i__ <= i__1; ++i__) {
  842. vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
  843. /* L140: */
  844. }
  845. }
  846. ctemp = ctot[2] + 1 + ctot[3];
  847. sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
  848. vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
  849. 1], ldvt);
  850. return 0;
  851. /* End of SLASD3 */
  852. } /* slasd3_ */