You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarrb.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /* f2c.h -- Standard Fortran to C header file */
  2. /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
  3. - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
  4. #ifndef F2C_INCLUDE
  5. #define F2C_INCLUDE
  6. #include <math.h>
  7. #include <stdlib.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <complex.h>
  11. #ifdef complex
  12. #undef complex
  13. #endif
  14. #ifdef I
  15. #undef I
  16. #endif
  17. #if defined(_WIN64)
  18. typedef long long BLASLONG;
  19. typedef unsigned long long BLASULONG;
  20. #else
  21. typedef long BLASLONG;
  22. typedef unsigned long BLASULONG;
  23. #endif
  24. #ifdef LAPACK_ILP64
  25. typedef BLASLONG blasint;
  26. #if defined(_WIN64)
  27. #define blasabs(x) llabs(x)
  28. #else
  29. #define blasabs(x) labs(x)
  30. #endif
  31. #else
  32. typedef int blasint;
  33. #define blasabs(x) abs(x)
  34. #endif
  35. typedef blasint integer;
  36. typedef unsigned int uinteger;
  37. typedef char *address;
  38. typedef short int shortint;
  39. typedef float real;
  40. typedef double doublereal;
  41. typedef struct { real r, i; } complex;
  42. typedef struct { doublereal r, i; } doublecomplex;
  43. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  44. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  46. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  47. #define pCf(z) (*_pCf(z))
  48. #define pCd(z) (*_pCd(z))
  49. typedef int logical;
  50. typedef short int shortlogical;
  51. typedef char logical1;
  52. typedef char integer1;
  53. #define TRUE_ (1)
  54. #define FALSE_ (0)
  55. /* Extern is for use with -E */
  56. #ifndef Extern
  57. #define Extern extern
  58. #endif
  59. /* I/O stuff */
  60. typedef int flag;
  61. typedef int ftnlen;
  62. typedef int ftnint;
  63. /*external read, write*/
  64. typedef struct
  65. { flag cierr;
  66. ftnint ciunit;
  67. flag ciend;
  68. char *cifmt;
  69. ftnint cirec;
  70. } cilist;
  71. /*internal read, write*/
  72. typedef struct
  73. { flag icierr;
  74. char *iciunit;
  75. flag iciend;
  76. char *icifmt;
  77. ftnint icirlen;
  78. ftnint icirnum;
  79. } icilist;
  80. /*open*/
  81. typedef struct
  82. { flag oerr;
  83. ftnint ounit;
  84. char *ofnm;
  85. ftnlen ofnmlen;
  86. char *osta;
  87. char *oacc;
  88. char *ofm;
  89. ftnint orl;
  90. char *oblnk;
  91. } olist;
  92. /*close*/
  93. typedef struct
  94. { flag cerr;
  95. ftnint cunit;
  96. char *csta;
  97. } cllist;
  98. /*rewind, backspace, endfile*/
  99. typedef struct
  100. { flag aerr;
  101. ftnint aunit;
  102. } alist;
  103. /* inquire */
  104. typedef struct
  105. { flag inerr;
  106. ftnint inunit;
  107. char *infile;
  108. ftnlen infilen;
  109. ftnint *inex; /*parameters in standard's order*/
  110. ftnint *inopen;
  111. ftnint *innum;
  112. ftnint *innamed;
  113. char *inname;
  114. ftnlen innamlen;
  115. char *inacc;
  116. ftnlen inacclen;
  117. char *inseq;
  118. ftnlen inseqlen;
  119. char *indir;
  120. ftnlen indirlen;
  121. char *infmt;
  122. ftnlen infmtlen;
  123. char *inform;
  124. ftnint informlen;
  125. char *inunf;
  126. ftnlen inunflen;
  127. ftnint *inrecl;
  128. ftnint *innrec;
  129. char *inblank;
  130. ftnlen inblanklen;
  131. } inlist;
  132. #define VOID void
  133. union Multitype { /* for multiple entry points */
  134. integer1 g;
  135. shortint h;
  136. integer i;
  137. /* longint j; */
  138. real r;
  139. doublereal d;
  140. complex c;
  141. doublecomplex z;
  142. };
  143. typedef union Multitype Multitype;
  144. struct Vardesc { /* for Namelist */
  145. char *name;
  146. char *addr;
  147. ftnlen *dims;
  148. int type;
  149. };
  150. typedef struct Vardesc Vardesc;
  151. struct Namelist {
  152. char *name;
  153. Vardesc **vars;
  154. int nvars;
  155. };
  156. typedef struct Namelist Namelist;
  157. #define abs(x) ((x) >= 0 ? (x) : -(x))
  158. #define dabs(x) (fabs(x))
  159. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  160. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  161. #define dmin(a,b) (f2cmin(a,b))
  162. #define dmax(a,b) (f2cmax(a,b))
  163. #define bit_test(a,b) ((a) >> (b) & 1)
  164. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  165. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  166. #define abort_() { sig_die("Fortran abort routine called", 1); }
  167. #define c_abs(z) (cabsf(Cf(z)))
  168. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  169. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  170. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  171. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  172. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  173. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  174. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  175. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  176. #define d_abs(x) (fabs(*(x)))
  177. #define d_acos(x) (acos(*(x)))
  178. #define d_asin(x) (asin(*(x)))
  179. #define d_atan(x) (atan(*(x)))
  180. #define d_atn2(x, y) (atan2(*(x),*(y)))
  181. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  182. #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
  183. #define d_cos(x) (cos(*(x)))
  184. #define d_cosh(x) (cosh(*(x)))
  185. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  186. #define d_exp(x) (exp(*(x)))
  187. #define d_imag(z) (cimag(Cd(z)))
  188. #define r_imag(z) (cimag(Cf(z)))
  189. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  190. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  191. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  192. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  193. #define d_log(x) (log(*(x)))
  194. #define d_mod(x, y) (fmod(*(x), *(y)))
  195. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  196. #define d_nint(x) u_nint(*(x))
  197. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  198. #define d_sign(a,b) u_sign(*(a),*(b))
  199. #define r_sign(a,b) u_sign(*(a),*(b))
  200. #define d_sin(x) (sin(*(x)))
  201. #define d_sinh(x) (sinh(*(x)))
  202. #define d_sqrt(x) (sqrt(*(x)))
  203. #define d_tan(x) (tan(*(x)))
  204. #define d_tanh(x) (tanh(*(x)))
  205. #define i_abs(x) abs(*(x))
  206. #define i_dnnt(x) ((integer)u_nint(*(x)))
  207. #define i_len(s, n) (n)
  208. #define i_nint(x) ((integer)u_nint(*(x)))
  209. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  210. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  211. #define pow_si(B,E) spow_ui(*(B),*(E))
  212. #define pow_ri(B,E) spow_ui(*(B),*(E))
  213. #define pow_di(B,E) dpow_ui(*(B),*(E))
  214. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  215. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  216. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  217. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  218. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  219. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  220. #define sig_die(s, kill) { exit(1); }
  221. #define s_stop(s, n) {exit(0);}
  222. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  223. #define z_abs(z) (cabs(Cd(z)))
  224. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  225. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  226. #define myexit_() break;
  227. #define mycycle() continue;
  228. #define myceiling(w) {ceil(w)}
  229. #define myhuge(w) {HUGE_VAL}
  230. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  231. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  232. /* procedure parameter types for -A and -C++ */
  233. #define F2C_proc_par_types 1
  234. #ifdef __cplusplus
  235. typedef logical (*L_fp)(...);
  236. #else
  237. typedef logical (*L_fp)();
  238. #endif
  239. static float spow_ui(float x, integer n) {
  240. float pow=1.0; unsigned long int u;
  241. if(n != 0) {
  242. if(n < 0) n = -n, x = 1/x;
  243. for(u = n; ; ) {
  244. if(u & 01) pow *= x;
  245. if(u >>= 1) x *= x;
  246. else break;
  247. }
  248. }
  249. return pow;
  250. }
  251. static double dpow_ui(double x, integer n) {
  252. double pow=1.0; unsigned long int u;
  253. if(n != 0) {
  254. if(n < 0) n = -n, x = 1/x;
  255. for(u = n; ; ) {
  256. if(u & 01) pow *= x;
  257. if(u >>= 1) x *= x;
  258. else break;
  259. }
  260. }
  261. return pow;
  262. }
  263. static _Complex float cpow_ui(_Complex float x, integer n) {
  264. _Complex float pow=1.0; unsigned long int u;
  265. if(n != 0) {
  266. if(n < 0) n = -n, x = 1/x;
  267. for(u = n; ; ) {
  268. if(u & 01) pow *= x;
  269. if(u >>= 1) x *= x;
  270. else break;
  271. }
  272. }
  273. return pow;
  274. }
  275. static _Complex double zpow_ui(_Complex double x, integer n) {
  276. _Complex double pow=1.0; unsigned long int u;
  277. if(n != 0) {
  278. if(n < 0) n = -n, x = 1/x;
  279. for(u = n; ; ) {
  280. if(u & 01) pow *= x;
  281. if(u >>= 1) x *= x;
  282. else break;
  283. }
  284. }
  285. return pow;
  286. }
  287. static integer pow_ii(integer x, integer n) {
  288. integer pow; unsigned long int u;
  289. if (n <= 0) {
  290. if (n == 0 || x == 1) pow = 1;
  291. else if (x != -1) pow = x == 0 ? 1/x : 0;
  292. else n = -n;
  293. }
  294. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  295. u = n;
  296. for(pow = 1; ; ) {
  297. if(u & 01) pow *= x;
  298. if(u >>= 1) x *= x;
  299. else break;
  300. }
  301. }
  302. return pow;
  303. }
  304. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  305. {
  306. double m; integer i, mi;
  307. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  308. if (w[i-1]>m) mi=i ,m=w[i-1];
  309. return mi-s+1;
  310. }
  311. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  312. {
  313. float m; integer i, mi;
  314. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  315. if (w[i-1]>m) mi=i ,m=w[i-1];
  316. return mi-s+1;
  317. }
  318. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  319. integer n = *n_, incx = *incx_, incy = *incy_, i;
  320. _Complex float zdotc = 0.0;
  321. if (incx == 1 && incy == 1) {
  322. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  323. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  324. }
  325. } else {
  326. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  327. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  328. }
  329. }
  330. pCf(z) = zdotc;
  331. }
  332. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  333. integer n = *n_, incx = *incx_, incy = *incy_, i;
  334. _Complex double zdotc = 0.0;
  335. if (incx == 1 && incy == 1) {
  336. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  337. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  338. }
  339. } else {
  340. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  341. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  342. }
  343. }
  344. pCd(z) = zdotc;
  345. }
  346. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  347. integer n = *n_, incx = *incx_, incy = *incy_, i;
  348. _Complex float zdotc = 0.0;
  349. if (incx == 1 && incy == 1) {
  350. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  351. zdotc += Cf(&x[i]) * Cf(&y[i]);
  352. }
  353. } else {
  354. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  355. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  356. }
  357. }
  358. pCf(z) = zdotc;
  359. }
  360. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  361. integer n = *n_, incx = *incx_, incy = *incy_, i;
  362. _Complex double zdotc = 0.0;
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc += Cd(&x[i]) * Cd(&y[i]);
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  370. }
  371. }
  372. pCd(z) = zdotc;
  373. }
  374. #endif
  375. /* -- translated by f2c (version 20000121).
  376. You must link the resulting object file with the libraries:
  377. -lf2c -lm (in that order)
  378. */
  379. /* > \brief \b SLARRB provides limited bisection to locate eigenvalues for more accuracy. */
  380. /* =========== DOCUMENTATION =========== */
  381. /* Online html documentation available at */
  382. /* http://www.netlib.org/lapack/explore-html/ */
  383. /* > \htmlonly */
  384. /* > Download SLARRB + dependencies */
  385. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrb.
  386. f"> */
  387. /* > [TGZ]</a> */
  388. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrb.
  389. f"> */
  390. /* > [ZIP]</a> */
  391. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrb.
  392. f"> */
  393. /* > [TXT]</a> */
  394. /* > \endhtmlonly */
  395. /* Definition: */
  396. /* =========== */
  397. /* SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, */
  398. /* RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK, */
  399. /* PIVMIN, SPDIAM, TWIST, INFO ) */
  400. /* INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST */
  401. /* REAL PIVMIN, RTOL1, RTOL2, SPDIAM */
  402. /* INTEGER IWORK( * ) */
  403. /* REAL D( * ), LLD( * ), W( * ), */
  404. /* $ WERR( * ), WGAP( * ), WORK( * ) */
  405. /* > \par Purpose: */
  406. /* ============= */
  407. /* > */
  408. /* > \verbatim */
  409. /* > */
  410. /* > Given the relatively robust representation(RRR) L D L^T, SLARRB */
  411. /* > does "limited" bisection to refine the eigenvalues of L D L^T, */
  412. /* > W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
  413. /* > guesses for these eigenvalues are input in W, the corresponding estimate */
  414. /* > of the error in these guesses and their gaps are input in WERR */
  415. /* > and WGAP, respectively. During bisection, intervals */
  416. /* > [left, right] are maintained by storing their mid-points and */
  417. /* > semi-widths in the arrays W and WERR respectively. */
  418. /* > \endverbatim */
  419. /* Arguments: */
  420. /* ========== */
  421. /* > \param[in] N */
  422. /* > \verbatim */
  423. /* > N is INTEGER */
  424. /* > The order of the matrix. */
  425. /* > \endverbatim */
  426. /* > */
  427. /* > \param[in] D */
  428. /* > \verbatim */
  429. /* > D is REAL array, dimension (N) */
  430. /* > The N diagonal elements of the diagonal matrix D. */
  431. /* > \endverbatim */
  432. /* > */
  433. /* > \param[in] LLD */
  434. /* > \verbatim */
  435. /* > LLD is REAL array, dimension (N-1) */
  436. /* > The (N-1) elements L(i)*L(i)*D(i). */
  437. /* > \endverbatim */
  438. /* > */
  439. /* > \param[in] IFIRST */
  440. /* > \verbatim */
  441. /* > IFIRST is INTEGER */
  442. /* > The index of the first eigenvalue to be computed. */
  443. /* > \endverbatim */
  444. /* > */
  445. /* > \param[in] ILAST */
  446. /* > \verbatim */
  447. /* > ILAST is INTEGER */
  448. /* > The index of the last eigenvalue to be computed. */
  449. /* > \endverbatim */
  450. /* > */
  451. /* > \param[in] RTOL1 */
  452. /* > \verbatim */
  453. /* > RTOL1 is REAL */
  454. /* > \endverbatim */
  455. /* > */
  456. /* > \param[in] RTOL2 */
  457. /* > \verbatim */
  458. /* > RTOL2 is REAL */
  459. /* > Tolerance for the convergence of the bisection intervals. */
  460. /* > An interval [LEFT,RIGHT] has converged if */
  461. /* > RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
  462. /* > where GAP is the (estimated) distance to the nearest */
  463. /* > eigenvalue. */
  464. /* > \endverbatim */
  465. /* > */
  466. /* > \param[in] OFFSET */
  467. /* > \verbatim */
  468. /* > OFFSET is INTEGER */
  469. /* > Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET */
  470. /* > through ILAST-OFFSET elements of these arrays are to be used. */
  471. /* > \endverbatim */
  472. /* > */
  473. /* > \param[in,out] W */
  474. /* > \verbatim */
  475. /* > W is REAL array, dimension (N) */
  476. /* > On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
  477. /* > estimates of the eigenvalues of L D L^T indexed IFIRST through */
  478. /* > ILAST. */
  479. /* > On output, these estimates are refined. */
  480. /* > \endverbatim */
  481. /* > */
  482. /* > \param[in,out] WGAP */
  483. /* > \verbatim */
  484. /* > WGAP is REAL array, dimension (N-1) */
  485. /* > On input, the (estimated) gaps between consecutive */
  486. /* > eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between */
  487. /* > eigenvalues I and I+1. Note that if IFIRST = ILAST */
  488. /* > then WGAP(IFIRST-OFFSET) must be set to ZERO. */
  489. /* > On output, these gaps are refined. */
  490. /* > \endverbatim */
  491. /* > */
  492. /* > \param[in,out] WERR */
  493. /* > \verbatim */
  494. /* > WERR is REAL array, dimension (N) */
  495. /* > On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
  496. /* > the errors in the estimates of the corresponding elements in W. */
  497. /* > On output, these errors are refined. */
  498. /* > \endverbatim */
  499. /* > */
  500. /* > \param[out] WORK */
  501. /* > \verbatim */
  502. /* > WORK is REAL array, dimension (2*N) */
  503. /* > Workspace. */
  504. /* > \endverbatim */
  505. /* > */
  506. /* > \param[out] IWORK */
  507. /* > \verbatim */
  508. /* > IWORK is INTEGER array, dimension (2*N) */
  509. /* > Workspace. */
  510. /* > \endverbatim */
  511. /* > */
  512. /* > \param[in] PIVMIN */
  513. /* > \verbatim */
  514. /* > PIVMIN is REAL */
  515. /* > The minimum pivot in the Sturm sequence. */
  516. /* > \endverbatim */
  517. /* > */
  518. /* > \param[in] SPDIAM */
  519. /* > \verbatim */
  520. /* > SPDIAM is REAL */
  521. /* > The spectral diameter of the matrix. */
  522. /* > \endverbatim */
  523. /* > */
  524. /* > \param[in] TWIST */
  525. /* > \verbatim */
  526. /* > TWIST is INTEGER */
  527. /* > The twist index for the twisted factorization that is used */
  528. /* > for the negcount. */
  529. /* > TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T */
  530. /* > TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T */
  531. /* > TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r) */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[out] INFO */
  535. /* > \verbatim */
  536. /* > INFO is INTEGER */
  537. /* > Error flag. */
  538. /* > \endverbatim */
  539. /* Authors: */
  540. /* ======== */
  541. /* > \author Univ. of Tennessee */
  542. /* > \author Univ. of California Berkeley */
  543. /* > \author Univ. of Colorado Denver */
  544. /* > \author NAG Ltd. */
  545. /* > \date June 2017 */
  546. /* > \ingroup OTHERauxiliary */
  547. /* > \par Contributors: */
  548. /* ================== */
  549. /* > */
  550. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  551. /* > Jim Demmel, University of California, Berkeley, USA \n */
  552. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  553. /* > Osni Marques, LBNL/NERSC, USA \n */
  554. /* > Christof Voemel, University of California, Berkeley, USA */
  555. /* ===================================================================== */
  556. /* Subroutine */ int slarrb_(integer *n, real *d__, real *lld, integer *
  557. ifirst, integer *ilast, real *rtol1, real *rtol2, integer *offset,
  558. real *w, real *wgap, real *werr, real *work, integer *iwork, real *
  559. pivmin, real *spdiam, integer *twist, integer *info)
  560. {
  561. /* System generated locals */
  562. integer i__1;
  563. real r__1, r__2;
  564. /* Local variables */
  565. real back, lgap, rgap, left;
  566. integer iter, nint, prev, next, i__, k, r__;
  567. real cvrgd, right, width;
  568. integer i1, ii, ip;
  569. extern integer slaneg_(integer *, real *, real *, real *, real *, integer
  570. *);
  571. integer negcnt;
  572. real mnwdth;
  573. integer olnint, maxitr;
  574. real gap, mid, tmp;
  575. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  576. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  577. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  578. /* June 2017 */
  579. /* ===================================================================== */
  580. /* Parameter adjustments */
  581. --iwork;
  582. --work;
  583. --werr;
  584. --wgap;
  585. --w;
  586. --lld;
  587. --d__;
  588. /* Function Body */
  589. *info = 0;
  590. /* Quick return if possible */
  591. if (*n <= 0) {
  592. return 0;
  593. }
  594. maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) +
  595. 2;
  596. mnwdth = *pivmin * 2.f;
  597. r__ = *twist;
  598. if (r__ < 1 || r__ > *n) {
  599. r__ = *n;
  600. }
  601. /* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
  602. /* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
  603. /* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
  604. /* for an unconverged interval is set to the index of the next unconverged */
  605. /* interval, and is -1 or 0 for a converged interval. Thus a linked */
  606. /* list of unconverged intervals is set up. */
  607. i1 = *ifirst;
  608. /* The number of unconverged intervals */
  609. nint = 0;
  610. /* The last unconverged interval found */
  611. prev = 0;
  612. rgap = wgap[i1 - *offset];
  613. i__1 = *ilast;
  614. for (i__ = i1; i__ <= i__1; ++i__) {
  615. k = i__ << 1;
  616. ii = i__ - *offset;
  617. left = w[ii] - werr[ii];
  618. right = w[ii] + werr[ii];
  619. lgap = rgap;
  620. rgap = wgap[ii];
  621. gap = f2cmin(lgap,rgap);
  622. /* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
  623. /* Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT */
  624. /* Do while( NEGCNT(LEFT).GT.I-1 ) */
  625. back = werr[ii];
  626. L20:
  627. negcnt = slaneg_(n, &d__[1], &lld[1], &left, pivmin, &r__);
  628. if (negcnt > i__ - 1) {
  629. left -= back;
  630. back *= 2.f;
  631. goto L20;
  632. }
  633. /* Do while( NEGCNT(RIGHT).LT.I ) */
  634. /* Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT */
  635. back = werr[ii];
  636. L50:
  637. negcnt = slaneg_(n, &d__[1], &lld[1], &right, pivmin, &r__);
  638. if (negcnt < i__) {
  639. right += back;
  640. back *= 2.f;
  641. goto L50;
  642. }
  643. width = (r__1 = left - right, abs(r__1)) * .5f;
  644. /* Computing MAX */
  645. r__1 = abs(left), r__2 = abs(right);
  646. tmp = f2cmax(r__1,r__2);
  647. /* Computing MAX */
  648. r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
  649. cvrgd = f2cmax(r__1,r__2);
  650. if (width <= cvrgd || width <= mnwdth) {
  651. /* This interval has already converged and does not need refinement. */
  652. /* (Note that the gaps might change through refining the */
  653. /* eigenvalues, however, they can only get bigger.) */
  654. /* Remove it from the list. */
  655. iwork[k - 1] = -1;
  656. /* Make sure that I1 always points to the first unconverged interval */
  657. if (i__ == i1 && i__ < *ilast) {
  658. i1 = i__ + 1;
  659. }
  660. if (prev >= i1 && i__ <= *ilast) {
  661. iwork[(prev << 1) - 1] = i__ + 1;
  662. }
  663. } else {
  664. /* unconverged interval found */
  665. prev = i__;
  666. ++nint;
  667. iwork[k - 1] = i__ + 1;
  668. iwork[k] = negcnt;
  669. }
  670. work[k - 1] = left;
  671. work[k] = right;
  672. /* L75: */
  673. }
  674. /* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
  675. /* and while (ITER.LT.MAXITR) */
  676. iter = 0;
  677. L80:
  678. prev = i1 - 1;
  679. i__ = i1;
  680. olnint = nint;
  681. i__1 = olnint;
  682. for (ip = 1; ip <= i__1; ++ip) {
  683. k = i__ << 1;
  684. ii = i__ - *offset;
  685. rgap = wgap[ii];
  686. lgap = rgap;
  687. if (ii > 1) {
  688. lgap = wgap[ii - 1];
  689. }
  690. gap = f2cmin(lgap,rgap);
  691. next = iwork[k - 1];
  692. left = work[k - 1];
  693. right = work[k];
  694. mid = (left + right) * .5f;
  695. /* semiwidth of interval */
  696. width = right - mid;
  697. /* Computing MAX */
  698. r__1 = abs(left), r__2 = abs(right);
  699. tmp = f2cmax(r__1,r__2);
  700. /* Computing MAX */
  701. r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
  702. cvrgd = f2cmax(r__1,r__2);
  703. if (width <= cvrgd || width <= mnwdth || iter == maxitr) {
  704. /* reduce number of unconverged intervals */
  705. --nint;
  706. /* Mark interval as converged. */
  707. iwork[k - 1] = 0;
  708. if (i1 == i__) {
  709. i1 = next;
  710. } else {
  711. /* Prev holds the last unconverged interval previously examined */
  712. if (prev >= i1) {
  713. iwork[(prev << 1) - 1] = next;
  714. }
  715. }
  716. i__ = next;
  717. goto L100;
  718. }
  719. prev = i__;
  720. /* Perform one bisection step */
  721. negcnt = slaneg_(n, &d__[1], &lld[1], &mid, pivmin, &r__);
  722. if (negcnt <= i__ - 1) {
  723. work[k - 1] = mid;
  724. } else {
  725. work[k] = mid;
  726. }
  727. i__ = next;
  728. L100:
  729. ;
  730. }
  731. ++iter;
  732. /* do another loop if there are still unconverged intervals */
  733. /* However, in the last iteration, all intervals are accepted */
  734. /* since this is the best we can do. */
  735. if (nint > 0 && iter <= maxitr) {
  736. goto L80;
  737. }
  738. /* At this point, all the intervals have converged */
  739. i__1 = *ilast;
  740. for (i__ = *ifirst; i__ <= i__1; ++i__) {
  741. k = i__ << 1;
  742. ii = i__ - *offset;
  743. /* All intervals marked by '0' have been refined. */
  744. if (iwork[k - 1] == 0) {
  745. w[ii] = (work[k - 1] + work[k]) * .5f;
  746. werr[ii] = work[k] - w[ii];
  747. }
  748. /* L110: */
  749. }
  750. i__1 = *ilast;
  751. for (i__ = *ifirst + 1; i__ <= i__1; ++i__) {
  752. k = i__ << 1;
  753. ii = i__ - *offset;
  754. /* Computing MAX */
  755. r__1 = 0.f, r__2 = w[ii] - werr[ii] - w[ii - 1] - werr[ii - 1];
  756. wgap[ii - 1] = f2cmax(r__1,r__2);
  757. /* L111: */
  758. }
  759. return 0;
  760. /* End of SLARRB */
  761. } /* slarrb_ */